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ABSTRACT

We present a new incremental learning framework for real-
time object recognition in video streams. ImageNet is used
to bootstrap a set of one-vs-all incrementally trainable SVMs
which are updated by user annotation events during stream-
ing. We adopt an inductive transfer learning (ITL) approach
to warp the video feature space to the ImageNet feature space,
so enabling the incremental updates. Uniquely, the trans-
formation used for the ITL warp is also learned incremen-
tally using the same update events. We demonstrate a semi-
automated video logging (SAVL) system using our incremen-
tally learned ITL approach and show this to outperform exist-
ing SAVL which uses non-incremental transfer learning.

Index Terms— Object Recognition, Incremental Learn-
ing, Transfer Learning, Video Classification.

1. INTRODUCTION

Object recognition ‘in the wild’ remains an open challenge;
it is difficult to train systems to classify objects correctly
over diverse footage the nature of which is unknown a priori.
Recently, significant progress has been made using ‘transfer
learning’ approaches that train classifiers on object exemplars
captured under one set of conditions (the source domain),
and transform those classifiers to be applicable to the clas-
sifying content captured under another set of conditions (the
target domain). One promising class of technique is induc-
tive transfer learning (ITL) [1] that seeks to warp the feature
space of the source domain to the target e.g. by estimat-
ing a linear transformation between the two based on class
correspondences established between domains.

In this paper we apply the principles of ITL to the prob-
lem of incrementally learning classifiers for object recogni-
tion in streaming video. Our incrementally trainable classi-
fiers improve accuracy as additional annotation is supplied
piece-meal by the user, whilst watching the video stream. A
practical use case is broadcast production where raw footage
is ‘logged’ (annotated with metadata) on-set by a human op-
erator. Due to the high volume of footage, and the need for
expeditious logging for downstream production, this process
is performed in real-time as footage is recorded. We envisage
semi-automated video logging (SAVL) system in which oc-

casional user annotations are used to incrementally train and
improve classifiers until the user-desired degree of automated
recognition is reached. For SAVL to be practical, interac-
tive training should be minimal whilst retaining high accu-
racy. One strategy is to bootstrap classifiers through a pre-
training step prior to the start of streaming annotation. This
motivates transfer learning approaches, since the pre-training
dataset may not resemble the video data to be annotated.

The technical contribution of this paper is the first use
of ITL in a SAVL system. We bootstrap our classifiers by
pre-training over relevant data sampled from ImageNet [2].
Our classifiers are incrementally trainable Support Vector
Machines (SVMs) which are updated at each user-annotation
event. Uniquely, the feature space warp used for ITL is also
learned incrementally and updated with each user annotation
event. We show that our incremental warping approach to
SAVL outperforms existing state-of-the-art SAVL where this
warping transform is estimated once during the pre-training
and held constant subsequently.

2. RELATED WORK

Object recognition is a long-studied problem, yet classifica-
tion methods achieving a high level of performance typically
require hundreds of exemplar images per class and a trained in
a batch process[3]. Recent algorithms can build upon batch
training to learn novel categories, by generalising (transfer-
ring learning) from existing categories. Fei-Fei er al. de-
scribed a ‘one-shot’ Bayesian learning framework for image
classification in which a handful of examples are sufficient
[4, 5]. Subsequently, alternative one-shot frameworks have
been proposed e.g. using adaptive SVMs (A-SVMs) [6] to
transfer learning from ImageNet [7]. Under Pan’s taxonomy
[1] such systems are ITL since exemplars are provided in the
target domain. Zero-shot frameworks have also been pro-
posed for constrained classes of object attribute [8] or activity
[9].

In addition to efficient learning of novel categories, algo-
rithms have been proposed to refine training on existing cat-
egories using incremental learning techniques such as multi-
ple kernel learning for image classification [10]. In previous
work [11] we described a SAVL system that combined the
LASVM framework [12] to incrementally learn max-margins



for object categories online, with the A-SVMs of [7] for ITL
from ImageNet. LASVMs are combine Sequential Minimal
Optimization and support vector removal yielding a system
with low memory overhead (prior data and decision errors
need not be retained between training iterations) with com-
parable performance to off-line SVM training [11] and fast
update times. However A-SVMs and other prior ITL work
for object recognition perform a once-only estimation of the
transform mapping the source feature domain to the target. In
a SAVL framework, new training annotations become incre-
mentally available during playback and this one-off process
may subsequently become sub-optimal for ITL.

In this paper we extend [11] to enable incremental learn-
ing of the ITL transform, yielding a fully incrementally train-
able SAVL solution that combines both incremental classifi-
cation (LASVM) and incremental ITL. For the latter we adapt
the LORETA (Low rank retraction algorithm) algorithm [13].

3. VIDEO CLASSIFICATION OVERVIEW

Our SAVL framework operates upon streaming video in real-
time. A set of object categories are named and a set of one-vs-
all SVMs initialised prior to the commencement of streaming;
specifically one LASVM [12] is initialised corresponding to
each object category. During playback, each video frame is
processed through the LASVM bank to detect the presence of
the trained categories. Optionally, the user may manually in-
dicate the presence of an object in the frame by touching the
appropriate object category name in a video playback inter-
face. This generates an update event. Subsequent frames are
classified incorporating this new information.

3.1. Bootstrapping

ImageNet is used as an auxilliary data source for initial train-
ing. When an update event occurs, and training has yet to
be received for all categories, a search of ImageNet is per-
formed using both the pre-supplied object category name and
the frame as a visual exemplar. Ferrari et al.’s ImageNet dis-
tance [14] is used to identify the closest visual exemplars
(in our experiment, 40) which are used as positive examples
to bootstrap the relevant LASVM, and negative examples for
the others. Once training exemplars have been supplied for
all categories the system transfers from the Bootstrapping to
the Updating phase.

3.2. Updating

Domain adaptation is necessary to fuse training from the Im-
ageNet and video feature spaces. This is because the distri-
bution formed by visual exemplars e.g. for ‘car’ in ImageNet
differs from the distribution formed by similar semantic ob-
jects in the video domain. In our ITL framework we build
our LASVM classifiers in the ImageNet domain, i.e. the ‘tar-
get’ domain. Our video represents the ‘source’ domain from
which we must transfer incrementally supplied training ex-
amples, in order that they be added to the LASVMs (Fig. 1).
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Fig. 1. Proposed framework. LASVM built in the target (Im-
ageNet) domain are updated by transformed data from source
(Video) domain using an incrementally learned transform.

Update

When an update event occurs, the visual representation
obtained from the video frame (source domain) is transferred
to the target domain via a linear transformation (c.f. W in
Sec. 4.2). The relevant LASVM is incrementally updated
with this warped data as a positive exemplar; the others
are updated with the new data as a negative exemplar. The
LASVM update process is outlined in Sec. 4. W is also in-
crementally updated to improve the accuracy of the ITL. This
is the novel step over [11] and is described in Sec. 4.2.

3.3. Visual Representation

In both domains, the image data is distilled into a feature vec-
tor using the bag-of visual words (BoVW) pipeline. We ex-
tract a 128-dimensional SIFT [15] features from 20x20 over-
lapping patches densely sampled using the VLFeat [16] li-
brary. A codebook of 1000 words is generated using k-means
and each visual descriptor is assigned, through approximate
k — NN to a single cluster center. The codebook is built a
priori using randomly sampled ImageNet data. Despite using
identical representations, the statistical distribution of exem-
plars in this space differs significantly between domains for
the similar semantic objects necessitating use of ITL.

4. INCREMENTAL LEARNING FOR SAVL

4.1. Incremental Transfer Learning

Our incremental ITL method linearly warps visual features
between domains via an incrementally learned transformation
(or ‘similarity’) matrix estimated iteratively using a Rieman-
nian manifold model.

We first describe our general domain adaptation model in
linear setting. We assume that two domains A and B contain
data x o1,...,ZAn, and xpB1, ..., T Bm for which class labels
are known (i.e. ITL). We adopt the linear framework of [17]
to learn transformation W from B to A. A matrix W € R™*™



no_border
]

[1#:6059 Uh0.9997] (_lay ]
By (e )3 =—w

(5o [ Modsicen

Fig. 2. Streaming video is classified and corrected in real-time
by the user who indicates category presence via the Ul

of rank r can be factorized to a product of two r dimension
matrices W = ABT, A € R"*" B € R™*". Each product
term is computed by applying gradient descent [18].

We use an online learning algorithm on the Riemannian
manifold of low-rank matrices to learn transformation matri-
ces (A and B). We start with a brief introduction of optimiza-
tion of Riemannian manifold and retraction [19].

The basic assumption of manifold learning algorithm is
that the input data exists on low dimensional manifold em-
bedded in a space R™. Namely, a smooth subset of R™ is a
embedded manifold. We focus on the Riemannian manifold
of r-rank matrices of size n x m with r < min{m,n} and
denote M ™. For incremental learning, a stochastic gradient
descent is adopted to minimize a loss function /(W) for each
point W over M>™,

mwllnl(W) st xe M. )
The stochastic gradient descent algorithm takes two steps at
each step ¢ to solve the above problem. The first step is to
compute Riemannian gradient &' = VI(W*) which is a pro-
jection of the Euclidean gradient in ambient space onto the
tangent space Ty M associated with a point . Then the Rie-
mannian gradient &' enables us to yield Witz = Wt + ¢t
The second step is to map the £¢ back onto the Riemannian
manifold; the process of retraction. As the result of the pro-
cess we have Wit = Ry« (—n'&?), where 1 is step size and
R indicates retraction.

To describe an online algorithm to learn low-rank matri-
ces, we define the tangent space T,, M as following [13] ;

M N{ B
TwM=[ A AL}X[NQ OI]X[B%]' @

where W € M™™ can be factorized into W = ABT jand
A, and B, are the orthogonal complements of A and B in-
dividually. Also M,N; and Ns being k x k, (m — 1) X r,
and (n — r) X r matrix separately, the proof can be found ap-
pendix of [13]. angent vector £ can be decomposed into three
orthogonal elements;

£:§AB+£ABJ_ +§ALB7Where

48 = AMBT, ¢*P1 = AN BT  and ¢+7% = A, N, B”.
3

Algorithm 1 The r-rank Riemannian stochastic gradient de-
scent algorithm of [19] instantiated for our SAVL framework.
Input: z1, x2

Init: A,B

Output: 71, Z2
Compute :
At = (ATA)~'AT, Bt = (BTB)~'BT

matrix dimension
rXn,rXm

a1 =AT -x1,81 =BT 22 rx1,rx1
as =A-ay nx1
H=8T a3 1x1
ag:—%a2+%o¢2~H+x1—%x1~H nxl1
Z1:A+a3~6%ﬂ nxr
B2 = (z¥'B)- Bt 1xm
53:—51_52+%H~62+IQT—%H-065 Ixm
Zg:B + a1 - B3 rXm

Then we define the three matrices M ,/N; and N5 related to the
projection of the gradient matrix denoted as Z, such that Z =
£. If we assume that A is full rank matrix, then its pseudo-
inverse A is (AT A)~! AT, With the assumption,the matrix
projection P4 onto A’ columns is exactly match to AA™ and
similar to P4, , Pp and Pp . For a given matrix Z, we have
M = A*ZB*T | Ny = BTZTA+T and N, = AT ZB+T
using (3). It enables us to represent & = ¢AB 4 ¢ABL 4 ¢ALB
in terms of the projection.

The retraction is defined using the following theorem pre-
sented below (from [13]):

1 1 1
Vi= W+ §§AB FEALE _ ngBW+€AB -~ §€ALBW+€AB7

1 1 1
Vo= W+ 55AB 4 eABL _ gSABW-‘—gAB _ §£ABW+€ABL.
“)

The retraction is Ry (§) = Vi W V5. The algorithm 1 shows
the procedure of learning at ¢ step. For the first time step,
an example is expressed as a pair z; € A and o € B and
x9 is produced by the difference of two examples (one’s label
is same as x; and the other’s label is different from x;). At
t = 1, model A and B are initialized as identity matrix. For
later ¢, the algorithm computes the updated model Z; and Z5
which adapts to model A and B for the new data.

4.2. Incremental Classifier Training

We adopt the LASVM algorithm for incremental training of
SVMs, introduced by Bordes et al. [12]. The LASVM uti-
lizes the Sequential Minimal Optimization (SMO) which of-
fers fast training, using less memory and producing similar
performance to batch SVM solvers. LASVM was employed
in the SAVL system of Kim et al. [11], the principal differ-
ence here is the training of LASVM in the ImageNet domain,
and the use of incremental ITL to pre-process the video fea-
tures for compatibility with initial ImageNet-based training.
The LASVM maintains three important pieces of infor-
mation during the online learning — S a set of potential support
vectors, ay; coefficients of the current kernel expansion, g; the



partial gradient of the dual objective function W defined by

N
W=D oy -
i=1

where ¢ and j are the indices of kernel expansion and K (x, x)
is the kernel function.

The LASVM update comprises two basic operations,
PROCESS and REPROCESS, which rely on SMO algorithm
calculating a 7 approximate solution, which is an approxi-
mation of functions defined by the equations in [20]. The
aim of the PROCESS operation is to recalculate the o and g
after add a new vector(x) as a support vector. The operation
first trains the new vector for the model, and then finds a
corresponding support vector which consists of 7 violating
pairs with the new vector at maximal g. It finally updates the
weight for all support vectors. In subsequent REPROCESS
operation, support vectors are eliminated from the kernel ex-
pansion S where av = 0. The removal of unnecessary vectors
mitigates overfitting. The operation begin with finding the 7
violating pairs in kernel expansion with maximum gradient
as they are not candidates of support vectors anymore. After
finding the pairs, it re-calculates the weight for all support
vectors. Second, any support vectors whose weight o = 0 are
removed, and g updated. The final result S provides support
vectors and coefficients for a new classifier f(x). Our system
only keeps the new classifier for a category and uses it for
next incremental procedure — the training data itself is not
retained and so avoids cumulative memory requirements for
training successive updates.

1 N
5 Z OéiOéjK(QZi,QZj). (5)

i=1,j=1

S. RESULTS AND DISCUSSION

We evaluate our SAVL system on the dataset of [11] compris-
ing ~ 30 minutes of television broadcast footage. As per [11]
we perform shot detection and sample a constant number of
frames from each shot to prevent bias e.g. from longer ‘eas-
ier’ shots that contain self-similar frames. The data contains
8 object categories: {Bed, Bird, Car, Fireplace, House, Bath-
room, Map, People} and split into a training set (285 frames)
and test set (282 frames) such that training and test frames
are not drawn from the same shot. We compare classification
performance of our method against [11] which uses a non-
incrementally learned ITL (A-SVMs) for domain adaptation,
and trains LASVMSs in the source (video) domain. We also
compare against a classical (batch-training) BoVW pipeline
with no transfer learning (NTF). To learn W, r-rank is set em-
pirically to 400. LASVMs were configured as per [11].

5.1. Comparative Evaluation

We compute the Mean Average Precision (MAP) i.e. AP aver-
aged over all categories, after exposure to training from 2 (Im-
ageNet only), 10, 50, 100 and 285 frames. Fig. 3 illustrates
a performance increase of ~ 5% using the proposed method,
over non-incremental ITL. Both ITL methods clearly outper-
form non-incremental training SAVL frameworks. The learn-
ing rate is approximately equal for all, plateauing after around

Table 1. Comparison of A-SVM (A) vs. proposed (P)
2 10 50 100 285
AP(%) A TP |[A[P|A[P|A[P|A]P
Bed 9 [ 14|16 |19 |16 |20 |17|25| 14 | 26
Bird 31 |30 |33 |35(30|41|34]49 | 55|61
Car 5 6 [ 12 |17 |13 |18 [14] 20 | 20 | 21
Fireplace | 11 | 10 | 19 | 20 | 20 | 22 [19| 24 | 14 | 20
House | 58 | 57 |59 | 63 | 61 | 67 [63] 68 | 65 | 67
Bathroom | 31 | 28 | 37 | 39 | 41 | 43 [40| 43 | 39 | 43
Map 100|100 | 100|100 | 100 | 100 {99 | 100 | 100 | 100
People | 54 | 52|64 | 67|67 |70 |67| 71 |68 |73
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Fig. 3. Relative accuracy of the proposed method (green)
vs. non-incremental ITL (A-SVM, blue) and classical non-
transfer learning BoVW (NTF, green).

100 training examples. Table 1 shows improvement over non-
incremental ITL is roughly uniform across categories. Both
ITL outperform classical BoVW. The high AP of the Map
class is caused by lack of visual variance in that category (a
graphic of the UK).

Our C/C++ implementation ran on a 3.6Ghz Pentium
4 PC. Update events took 200ms being equally split be-
tween LASVM and ITL updates; slightly more expensive
than 150ms for [11]. The cost is acceptable as occasional
updating is unnecessary after classifiers mature, and can be
multi-threaded to update in the background. Average clas-
sification time (transfer and LASVM prediction) was 600us
however SIFT extraction takes 400ms. We work around this
bottle-neck by predicting only every 20 frames.

6. CONCLUSION

We have introduced an incremental ITL framework for SAVL
and shown this to out-perform non-incremental ITL (and clas-
sical BoVW recognition) by ~ 5% with similar computa-
tional expense. To the best of our knowledge an incrementally
estimated domain transformation is novel to ITL for object
classification in images or video. Our learning and classifica-
tion framework comfortably exceeds real-time speeds though
the implementation requires temporal sub-sampling due to the
expense of our CPU based SIFT extraction. This engineering
consideration could be addressed in future work.
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