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Abstract

We propose a self-supervised learning approach for videos
that learns representations of both the RGB frames and the
accompanying audio without human supervision. In contrast
to images that capture the static scene appearance, videos also
contain sound and temporal scene dynamics. To leverage the
temporal and aural dimension inherent to videos, our method
extends temporal self-supervision to the audio-visual setting
and integrates it with multi-modal contrastive objectives. As
temporal self-supervision, we pose playback speed and di-
rection recognition in both modalities and propose intra- and
inter-modal temporal ordering tasks. Furthermore, we design
a novel contrastive objective in which the usual pairs are sup-
plemented with additional sample-dependent positives and
negatives sampled from the evolving feature space. In our
model, we apply such losses among video clips and between
videos and their temporally corresponding audio clips. We
verify our model design in extensive ablation experiments and
evaluate the video and audio representations in transfer ex-
periments to action recognition and retrieval on UCF101 and
HMBD51, audio classification on ESC50, and robust video
fingerprinting on VGG-Sound, with state-of-the-art results.

Introduction

Videos provide a rich source of information for audio-
visual learning. Besides static moments in time (single video
frames), they also contain the scene dynamics (object mo-
tion) and often include the sounds of the environment and
scene objects. It seems hopeless to learn general representa-
tions that capture this rich semantic information in videos,
i.e., their appearance, motions, and sounds from such high-
dimensional data through sparse human supervision. Self-
supervised learning (SSL) (Doersch, Gupta, and Efros 2015;
Chen et al. 2020b; He et al. 2020) has emerged as a viable al-
ternative to supervised learning in recent years. Such meth-
ods might be better suited for general video representation
learning since they are not constrained by the prohibitive
cost of exhaustive human annotations on video. However,
since most current self-supervised methods are tailored to
static images, they might not effectively use videos’ added
temporal and aural dimensions. A self-supervised learning
task that successfully integrates the static scene appearance
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and the aural and temporal features potentially results in a
representation that better generalizes to downstream vision
applications, such as action recognition, video retrieval, or
robust video content fingerprinting.

Indeed, recent works that explored the aural and tem-
poral dimensions of videos in isolation have demon-
strated that they are both effective self-supervision signals.
Several works (Morgado, Vasconcelos, and Misra 2021;
Patrick et al. 2020; Alwassel et al. 2019) demonstrate that
audio-visual contrastive learning often performs better than
uni-modal contrastive learning (i.e., using only the RGB
frames). Likewise, temporal reasoning tasks (Misra, Zitnick,
and Hebert 2016; Jenni and Jin 2021; Dave et al. 2021)
have demonstrated good transfer performance, especially for
downstream tasks where motion is the main discerning fac-
tor (as opposed to static scene appearance).

In contrast, our work aims to leverage both sound and
time as learning signals in a unified model architecture and
training objective. To this end, we extend temporal self-
supervision to the audio domain and propose cross-modal
audio-visual temporal reasoning tasks. Concretely, we pose
playback-speed and -direction recognition (Wei et al. 2018;
Benaim et al. 2020; Jenni, Meishvili, and Favaro 2020), as
a pretext task for audio representation learning and propose
temporal clip ordering as a task for both intra-modal (e.g.,
audio-audio) and cross-modal (e.g., audio-video) learning
(see Figure 2). Furthermore, we introduce a model architec-
ture and training objective for contrastive audio-visual learn-
ing that supplements these temporal learning tasks. Towards
this goal, we carefully study how the inclusion and exclu-
sion of different intra- and inter-modal contrastive objectives
influences downstream performance. Our key findings for
optimal audio-visual contrastive learning are 1. inclusion of
video-video contrastive terms 2. temporally aligned cross-
modal positives, and 3. exclusion of audio-audio contrastive
terms (see Figure 1).

We further explore the design of the contrastive loss terms
(Wuetal. 2018), i.e., how to build positive and negative pairs
for effective learning. In constructing our contrastive objec-
tive, we take inspiration from recent image-based methods
(Dwibedi et al. 2021; Koohpayegani, Tejankar, and Pirsi-
avash 2021) and extend the set of positive samples with near-
est neighbors in the evolving feature space. Thus, besides
standard augmented views for positive sampling, we con-



sider nearest neighbors sampled from a queue of prior em-
beddings as additional positives. Notably, the neighborhood
structure and sample weights are both calculated through
cross-view similarity, i.e., either through the feature space
similarity to the augmented view (for intra-modal learning)
or the temporally aligned sample from the other modal-
ity (for cross-modal learning). We also use this cross-view
induced neighborhood structure to sample negative pairs
in a sample-dependent manner. This allows us to control
the difficulty of the negative samples, e.g., preventing am-
biguous or confusing negatives resulting from duplicates or
heavy class imbalance, while also preventing possible col-
lapse through the absence of any negatives.

We verify our model design in extensive ablation experi-
ments and compare it to prior works in established action
recognition and retrieval benchmarks on UCF101 and
HMDB51. We also evaluate the audio branch of our model
for environmental sound classification on ESC50. Finally,
we demonstrate the effectiveness of fusing the learned
audio-visual features for downstream video classification
on Kinetics-600 and VGG-Sound, and for robust video
content retrieval under novel content manipulations for
video fingerprinting (Lee and Yoo 2008; Black et al. 2021)
on VGG-Sound. We investigate video fingerprinting as a
novel downstream application due to its growing importance
given the ever-expanding scale of visual data online and the
increasing threat and sophistication of malicious content
manipulations.

Contributions. To summarize, we make the following con-
tributions: 1) We introduce temporal self-supervision in the
audio domain and the cross-modal setting; 2) We propose
a contrastive loss design that extends the usual contrastive
pairs with sample-dependent positives and negatives; 3) We
explore various multi-modal contrastive model designs and
demonstrate the importance of a) using temporally aligned
positives for cross-modal terms and b) excluding audio-
audio contrastive terms; 4) Finally, we demonstrate the qual-
ity of the learned audio-visual features in extensive trans-
fer experiments to action recognition, video retrieval, audio
classification, and a novel video fingerprinting benchmark.

Prior Work

Contrastive Video Representation Learning. Contrastive
learning is arguably the most popular self-supervised learn-
ing approach in computer vision today. These methods are
typically based on the task of discriminating training in-
stances up to strong data-augmentation (Dosovitskiy et al.
2015; Wu et al. 2018), which was shown to be remark-
ably effective for unsupervised image representation learn-
ing (Chen et al. 2020b; He et al. 2020) and has inspired a line
of novel self-supervised methods (Grill et al. 2020; Chen
and He 2020; Caron et al. 2020; Wang, Liu, and Yu 2020).
Recently, methods were proposed that extend the set of pos-
itive pairs with nearest neighbors in the learned embedding
space (Dwibedi et al. 2021; Koohpayegani, Tejankar, and
Pirsiavash 2021). Our loss design similarly uses the evolv-
ing feature space to extend the set of contrastive pairs. In
contrast, our loss design retains the exact match, contains
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Figure 1: Illustration of Contrastive Loss Terms in our
Model. We demonstrate the main contrastive pairs in our
formulation given an example video clip (yellow box in the
middle) and its corresponding audio clip. Positives (solid
green arrows) are constructed from differently augmented
video clips of the same training instance (blue box) and tem-
porally aligned pairs of the corresponding video and au-
dio clips. Negatives (dashed red arrows) stem from m other
video and audio clips from the current mini-batch or a mem-
ory bank of prior embeddings (gray box on the right). Addi-
tional positives from the memory bank are omitted from the
figure. Note that our formulation does not contain any con-
trastive terms among audio clips.

multiple positives weighted based on cross-view similarity,
and uses additional sample-dependent negatives.

Several recent works have explored contrastive learning
on video. When dealing with video, the set of data augmen-
tations can be extended with several temporal augmentations
(e.g., temporal crops). A natural extension is thus to add tem-
poral augmentations to the set of data-augmentations that
define the positive pairs for contrastive learning (Qian et al.
2020; Feichtenhofer et al. 2021). Other works instead pro-
pose to learn to discriminate among temporally augmented
clips (Dave et al. 2021; Patrick et al. 2020), or learn to rec-
ognize the temporal input transformations in a multi-task ap-
proach (Bai et al. 2020; Jenni and Jin 2021). Our model com-
bines contrastive learning among video clips with audio-
visual contrastive and temporal self-supervised learning.
Temporal Self-Supervision. Classic self-supervised ap-
proaches were based on so-called pretext tasks. On images,
popular examples are the ordering of image patches (Doer-
sch, Gupta, and Efros 2015; Noroozi and Favaro 2016), the
colorization of gray-scale images (Zhang, Isola, and Efros
2016, 2017), or the classification of sets of image transfor-
mations (Gidaris, Singh, and Komodakis 2018; Jenni and
Favaro 2018; Jenni, Jin, and Favaro 2020). Pretext tasks that
turned out particularly successful on video are based on rec-
ognizing temporal transformations. Some works explored
the ordering of video frames (Misra, Zitnick, and Hebert
2016; Brattoli et al. 2017; Fernando et al. 2017; Lee et al.
2017) or whole video clips (Xu et al. 2019; Kim, Cho, and
Kweon 2019), others the classification of the playback direc-
tion (Wei et al. 2018), the playback speed (Epstein, Chen,
and Vondrick 2020; Benaim et al. 2020; Yao et al. 2020),
or general temporal warpings (Jenni, Meishvili, and Favaro
2020). We also leverage temporal supervision and extend it
to multi-modal audio-visual representation learning.
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Figure 2: Illustration of the Temporal Reasoning Tasks.
Besides contrastive terms, our model encompasses both per-
clip classification tasks (blue arrows) about the playback-
speed and -direction, and temporal ordering tasks (green ar-
rows) which are performed both intra- and cross-modal (V:
RGB frames, A: audio).

Audio-Visual Self-Supervised Learning. Another source
of self-supervision on video can be found in the accom-
panying sound. Early works explored audio to learn single
frame representations, e.g., by predicting summary statis-
tics of the sounds corresponding to a frame (Owens et al.
2016), or by recognizing if an audio snippet and image are
temporally aligned (Owens and Efros 2018; Arandjelovic
and Zisserman 2017). Similar to these image-based ap-
proaches (Korbar, Tran, and Torresani 2018) learned audio
and video representations by recognizing when audio and
video signals are synchronized. More recently, contrastive
audio-visual learning for video achieved remarkable perfor-
mance (Recasens et al. 2021). For example, (Alwassel et al.
2020) performs clustering in one domain (e.g., audio) and
uses the resulting clusters as supervision for the other do-
main (e.g., video). (Morgado, Vasconcelos, and Misra 2021)
demonstrate the effectiveness of cross-modal audio-visual
contrastive learning and extend the set of positive samples
within a modality with samples that show high cross-modal
agreement. Other works even include language in audio-
visual contrastive models (Alayrac et al. 2020; Akbari et al.
2021). We instead focus on audio-visual learning and pro-
pose incorporating temporal supervision in both modalities.

Model
Let D, = {v1,v2,...,un} be a set of unlabelled train-
ing videos and let D, = {ai,as9,...,an} be their cor-

responding audio tracks. Our goal is to learn a video en-
coder F, (a 3D-ConvNet) and an audio encoder F, (a 2D-
ConvNet) without human supervision. The inputs to the two
networks are assumed to be of shape v; € RT*H*WxC apd
a; € RFXt where a; is a spectogram representation of the
audio track.

Temporal Input Augmentations. An essential component
of modern SSL approaches is the set of data augmenta-
tions applied to the input. In contrastive learning, these input
transformations define the set of learned invariances. They
typically comprise color jittering and geometric transforma-

tions, like random resizing, cropping, and horizontal flip-
ping. For our method, temporal transformations, i.e., ran-
dom temporal cropping and manipulations of the playback
speed and direction, are particularly important. We will thus
indicate the precise temporal manipulations with 7,.. Fur-
thermore, we assume that 7, has consistent behavior across
modalities, i.e., 7(v;) and 7;(a,) represent the exact same
moments in time for the audio and video domain.

Intra- and Inter-Modal Contrastive Learning

Our training objective comprises several predictive-
contrastive loss terms. In general, we formulate these losses
based on the two modalities involved and on the direction
of the prediction, e.g., indicating that the visual representa-
tion is being predicted from the audio. For the purpose of
this discussion let v = ), (F,(7(v;))) denote the output
of the video encoder followed by a projection MLP 1,, for
the input 7, (v;). Let similarly af = ¢, (F,(7(a;))) be the
feature vector for the corresponding audio track. Let further
U7 be the feature of a different augmentation of the video v;.

We illustrate the general form of the contrastive objective
using the video-to-audio loss term, which is given by
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where ¢, denotes a predictor MLP (following prior work
(Grill et al. 2020)) and
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is a measure of the similarity between the feature represen-
tations of = and y, and A = 0.2 is a temperature parameter.
Note that we do not back-propagate through the second ar-
gument y in Eq. 2. In this general formulation, the set P;
defines the instance-dependent positive samples along with
their weighting factor w, and N; defines the negatives for
contrastive learning.

Sources for Positive and Negative Contrastive Samples.
We consider two sources for sampling the positive and neg-
ative pairs of the contrastive loss terms: 1. the set of exam-
ples in the mini-batch 3 at each iteration, and 2. a memory
bank of prior feature embeddings. In our model, we main-
tain a memory bank @), (implemented as a FIFO queue) for
the video domain and a corresponding (), for audio. Let
|Qu| = |Qa|l = nq be the size of the memory banks and
let NN;. (v, Q,) denote the sequence {7;, ..., N} from the
j-th to the k-th nearest-neighbor of v in @Q,. For positive
examples from the memory bank we further introduce a set
of loss term weights W1, (v) := {w1, ..., wx}, where each
weight is given by

d(l/v nj)
ZmENNLk(Vi,Qv) d(l/, m)

thus weighting each nearest neighbor proportional to their
similarity to v. The memory banks are updated with the

wj =

3)



mean of the features from the two augmented views in each
mini-batch, i.e., (¥ + ) /2 in the case of Q.

We will now describe different instantiations of the con-
trastive losses and their positive and negative sample sets for
the intra-modal and cross-modal objectives.

Visual-Visual Contrastive Term /,,. For a video feature
vector v; in the case of video-video contrastive learning, we
set PP = {(97,1)} UNNy.4(27, Qy) X Wi (7), where
NNy, (7, Q) is the set of the first k nearest neighbors of
U7 extracted from Q,. We set £ = 5 in our experiments.
The set of negatives is constructed as N'* = {v; € B|j #
1}UNN.q+m (77, Qy) and contains all the video features not
belonging to v; that are in the current training mini-batch B,
as well as m additional negatives sampled from the memory
queue as the ¢-th up to the (¢+m)-th nearest neighbor of &/}
By default we set ¢ = %, thus starting from the neighbor in
(), with median distance to ] and set m = 2048.
Audio-Visual Contrastive Terms /,, and /,,. Since the
terms £,, and ¢, and the definition of their respective pos-
itive and negative sets is symmetric, we will restrict our il-
lustration to the case of ¢,,,. Given a video feature vector v,
we set PP = {(af,1)}UNNg(al, Qq) x Wi.k(af ), where
o is the feature of the corresponding audio clip with identi-
cal temporal augmentation (note the superscript). This is in
contrast to the definition of ¢,,, where positive pairs were not
temporally aligned. As we will show in ablations, we found
temporal alignment to be important for cross-modal con-
trastive learning. The set of negatives is defined as NV =
{vj € Blj #i}U{a; € Blj # i} UNNggtm(af, Qa). ie.,
we consider both other audio and other video feature vectors
as negatives.

Multi-Modal Contrastive Objective. Our final contrastive
objective is composed of the following intra- and inter-
modal terms

LerL = E [loo(vi, Py NP+

Coa V], PP NPY) + Lan(af, PP NTY)) - (4)

Note that our final model does not contain an audio-audio
contrastive term. Indeed, we find that including such a term
analogous to /,,,, hurts the final feature performance in trans-
fer experiments (see ablations in Table 3). An illustration of
the intra- and inter-modal terms is given in Figrue 1.

Temporal Self-Supervision for Video and Audio

Aside from learning from the correspondence between audio
and video as proposed above, we also want to promote the
learning of temporal features in both domains through self-
supervised temporal reasoning tasks. These temporal pretext
tasks can be categorized into unitary intra-modal tasks and
pairwise intra- and cross-modal objectives (see Figure 2).

Intra-Modal Speed and Direction Classification. To cap-
ture short-term temporal video features we leverage the clas-
sification of temporal transformations as SSL objectives
(Jenni, Meishvili, and Favaro 2020). Concretely, we train
the model to predict whether videos are played forward or
backward and at which playback speed. The direction clas-
sification is a simple binary classification task per clip, and
either direction is equally likely during training. The speed

classification is posed as a classification task among 4 speed
classes (1x, 2x, 4%, and 8x speedup). The speed manipu-
lations are implemented via temporal subsampling, and all
the speed classes are equally likely during pre-training.

We propose to leverage such temporal supervision in the

audio domain in this work. We apply the temporal transfor-
mations to the 1D raw audio signal (analogous to the video
domain), i.e., we subsample the signal for speed manipula-
tions and reverse its direction before computing the spec-
trogram. In experiments, we also investigate an alternative
approach where we perform the temporal transformations
in the audio spectrogram (thus not manipulating the fre-
quency). Interestingly, we found that transforming the raw
audio waveform is much more effective, even when account-
ing for processing artifacts in manipulating the spectrogram
(see ablations in Table 2).
Intra- and Inter-Modal Temporal Ordering. To capture
the longer-term dynamics of videos we propose to also per-
form temporal learning tasks at the clip level by predicting
the order of two video clips. Besides performing such tem-
poral ordering solely on video (Jenni and Jin 2021; Xu et al.
2019; Kim, Cho, and Kweon 2019), we extend it to tem-
poral ordering of the audio tracks and cross-modal audio-
visual temporal ordering. Concretely, we pose the three-way
classification of two temporal signals into 1. correctly or-
dered, 2. overlapping, and 3. wrongly ordered. This task
is implemented by concatenating the representations of the
two time-signals along the channel dimension and feeding
it through a classifier, e.g., ¢ya([Fo(vs), Fu(a;)]) for video-
audio ordering. Likewise, we introduce classifiers ¢y, ¢qu,
and ¢, for video-video, audio-video, and audio-audio tem-
poral ordering.

Finally, we jointly optimize the network weights of the
audio and video branch on the combination of the tempo-
ral and contrastive objectives. Concretely, let LTrpvp =
Lopeed + Lirection + Lorder be the sum of all the losses
for the above temporal reasoning tasks. The final objective
is then given by

Lsst, = LcorL + ALTEMP, )

where we set A = 0.5.

Implementation Details

For our video encoder F,, we consider variants of the popular
3D-ConvNet architectures R3D (Hara, Kataoka, and Satoh
2018) and R(2+1)D (Tran et al. 2018). If not specified oth-
erwise, input video clips are assumed to contain 16 frames
of resolution 112 x 112 for R(2+1)D, 128 x 128 for R3D-
18, and 224 x 224 for R3D-34. Our audio encoder Fj, is
based on a standard ResNet-34 (He et al. 2016) architecture
in all experiments. Input spectrograms to the audio encoder
are resized to 224 x 224.

We train the models using the AdamW optimizer
(Loshchilov and Hutter 2017) with a weight decay set to
10~*. The learning rate follows a cosine annealing sched-
ule (Loshchilov and Hutter 2016) with a maximum learning
rate of 3-10~% and linear warm-up in the first training epoch.
By default, we train all the models with a batch size of 256.



Besides the temporal input transformations described
above (i.e., playback speed-+direction changes and temporal
cropping), we use the typical data augmentation recipe for
contrastive methods, i.e., horizontal flipping, color-jittering,
and random spatial cropping. We do not apply any augmen-
tations beyond the temporal ones for audio.

The projection MLPs v contain two hidden layers of size
1024 and output feature embeddings of size 256. The pre-
diction MLPs ¢ contain a single hidden layer with a hidden
dimension of 1024. We apply synchronized batch norm in
both MLPs (including the output of /) following prior work
(Chen et al. 2020b). The classification heads for the tempo-
ral self-supervision tasks follow a similar design to 1), except
that no batch norm is applied to the output in this case.

To evaluate models in transfer experiments, we average
predictions of multiple temporal and spatial crops. Likewise,
the features for linear probes and nearest-neighbor retrieval
are obtained by averaging multiple crops and standardizing
the resulting features using the training set statistics.

Experiments

Datasets. As a pre-training dataset we use Kinetics (Zisser-
man et al. 2017) in most of our experiments. The dataset
contains around 350K training videos categorized into 600
human action classes. For transfer experiments we consider
UCF101 (Soomro, Zamir, and Shah 2012) and HMDB51
(Kuehne et al. 2011) which are significantly smaller datasets
with human action annotations. We use these datasets to
evaluate the transfer performance of the video branch, both
via fine-tuning to action recognition and as fixed feature ex-
tractors for video retrieval. We evaluate the audio branch of
our model on ESC50 (Piczak 2015) in terms of environmen-
tal audio classification.

Augmented VGG-Sound. Finally, we use the test set of
VGG-Sound (Chen et al. 2020a) to evaluate both branches in
terms of their robustness to heavy content manipulation for
fingerprinting applications. Concretely we generate the fol-
lowing four augmented versions of the dataset by applying
different types of audio and video transformations (exam-
ples in parenthesis):

1. AugVGG-IP - ’In-Place” manipulations (V: noise, blur,
pixelization, emoji overlay; A: noise, clicks).

2. AugVGG-S - “Spatial” transformations (V: cropping,
padding, rotation; A: pitch shift, reverb, freq. filter).

3. AugVGG-T - "Time” transforms (V+A: speed, crops).

4. AugVGG-C - "Combined” (one of each type above).

We use the AugLy library for the dataset creation (Papakipos
and Bitton 2022). For fingerprinting evaluations, we re-
port recall at &k for these datasets where queries stem from
AugVGG-x and retrievals are computed on the clean test set.

Ablations

We perform extensive ablation experiments to investigate
the influence of the contrastive loss function design, the
various temporal self-supervision signals for audio repre-
sentation learning, and our combined audio-visual model.

On the Design of the Contrastive Loss. We perform exper-
iments with different variants of the general contrastive ob-

Table 1: Contrastive Loss Design. We explore different
configurations of the contrastive loss formulation in Eq. 1
in combination with temporal SSL when applied to video-
video learning (no audio is being used). We report nearest-
neighbor classifier accuracy on UCF101 and HMDBS51 and
recall @1 for robust video fingerprinting on VGG-Sound.

UCF101 HMDBS51 AugVGG-C

Experiment 1-NN 1-NN R@1
(a) w/o Q,, positives 61.5 32.5 65.5
(b) w/o @, negatives 63.9 34.0 65.1
(c) hard negatives 63.5 33.3 65.5
(d) easy negatives 62.9 34.8 65.1
(e) uniform w; 63.7 33.1 64.1
Baseline 65.3 35.3 65.5
(f) NNCLR 64.8 342 62.8
(g) SimCLR 53.9 29.2 61.1
(h) SimSiam 62.8 34.0 60.9

jective in Equation 1 and compare it to some popular exist-
ing baselines. For faster experimentation, we perform these
experiments on video only (we do not use the audio chan-
nel here) and pre-train the networks for 40 epochs. We use
an R3D-18 network architecture and perform the temporal
reasoning tasks among video clips in the experiments. We
compare the following variants and report results in Table 1:
(a)-(b) Positives and negatives from the memory bank. In
this case, we remove the nearest neighbors from the memory
bank as additional positives (a) or remove the negative sam-
pling from @, (b). We observe that both positives and nega-
tives from (),, demonstrate clear benefits, while the positives
provide more significant improvements, especially in action
retrieval performance.

(d)-(e) Difficulty of negatives. Instead of sampling nega-
tives starting from the median of nearest neighbors in the
memory bank, we start at the 90th percentile for hard nega-
tives in (c) and at the 20th percentile for easy negatives (d).
Both variants lead to inferior action retrieval performance,
and easy negatives hurt fingerprinting.

(f) Equal weighting of positives. Instead of the cross-view
similarity-based weighting of the positives, all five positive
examples contribute equally to the loss in this case. We ob-
serve a drop in the fingerprinting retrieval especially, possi-
bly due to decreased importance of the exact match in the
loss. This case is similar to the approach in (Koohpayegani,
Tejankar, and Pirsiavash 2021).

(g)-(i) Prior approaches. We replace our proposed loss with
existing prior approaches. NNCLR (Dwibedi et al. 2021) re-
places the embedding of one view with its nearest neighbor
in the memory bank. While this leads to good performance
in action retrieval, the performance for fingerprinting suf-
fers. We hypothesize that the lack of the exact match and the
lack of additional negatives are the main reason. Key differ-
ences to SIMCLR (Chen et al. 2020b) are 1. lack of near-
est neighbors, 2. lack of predictor MLP, 3. gradient back-
propagation through both views. SimCLR requires much
larger mini-batches to perform well, which is prohibitive on



Table 2: Temporal Self-Supervision for Audio Feature
Learning. We explore how the different temporal self-
supervision signals impact the audio representation perfor-
mance for downstream audio classification on ESC50 and
audio fingerprinting on VGG-Sound. The audio encoder is
pre-trained with temporal supervision and audio-audio con-
trastive learning (no RGB frames were used).

ESC50 AugVGG-C
Ablation Linear 1-NN R@1
(a) w/o speed 80.4 58.4 21.1
(b) w/o direction 79.0 56.7 21.8
(c) w/o order 80.6 58.5 21.5
(d) spect.-resize 71.0 50.8 19.3
(e) + rand. STFT-step  76.5 53.3 21.5
Baseline 82.2 61.0 21.9

video. Finally, SimSiam (Chen and He 2020) lacks any neg-
ative examples but is otherwise identical to (a). We can again
observe the importance of explicit negatives for the finger-
printing use case.

The Benefits of Temporal Self-Supervision for Audio. We
performed ablation experiments to demonstrate the differ-
ent temporal learning tasks’ effect on audio feature perfor-
mance. We only train the audio branch in these experiments
and combine the temporal tasks with an audio-audio con-
trastive term. Networks were again trained for 40 epochs on
Kinetics. In Table 2 (a)-(c), we report the performance of
models where each of the three temporal supervision sig-
nals is removed. We can observe that each task significantly
benefits feature performance, especially in downstream au-
dio recognition tasks. In ablation (d)-(e), the temporal speed
transformations are realized by resizing the audio spectro-
gram instead of subsampling the raw audio signal. We ob-
serve clear performance degradations in these cases, even
when randomizing the frame step of the STFT, which could
prevent some possible shortcuts due to resizing artifacts.
Combined Contrastive and Temporal Audio-Visual
Learning. Finally, we validate our combined audio-visual
model through experiments demonstrating the importance of
the inclusion (or exclusion) of the different contrastive and
temporal objectives and ablate model design variations. In
this set of experiments, we use an R(2+1)D-18 architecture
for the video encoder, and we again train the model for 40
epochs. Table 3 shows the results of the following experi-
ments:

(a)-(d) Training Objectives: We show the influence of the
different contrastive intra- and inter-modal objectives in (a)-
(c) and the addition of the temporal reasoning tasks in (d).
We observe that the cross-modal term brings the most bene-
fit, followed by including the intra-video term. Interestingly,
the exclusion of the intra-audio term performs better in all
cases. Finally, note how adding temporal self-supervision to
the contrastive objectives provides significant gains across
the board.

(e)-(f) Implementation Details: We further illustrate the
importance of using temporally aligned positives in the
cross-modal contrastive term in (e). We believe that the

Table 3: Audio-Visual Model Ablations. We perform ab-
lation experiments to demonstrate the influence of the dif-
ferent self-supervised learning signals in our approach (first
block) and various implementation details (second block).
The video encoder is evaluated in transfer to action recog-
nition on UCF101 and HMDBS51, and the audio encoder for
classification on ESC50. The fused audio-video feature is
used for fingerprinting on VGG-Sound.

UCF101 HMDB51 ESC50 AugVGG-C

Experiment 1-NN 1-NN 1-NN R@1
(a) w/o A-V CLR 61.0 322 62.9 73.8
(b) w/o V-V CLR 61.0 33.8 67.3 69.6
(¢c) w/ A-A CLR 69.1 374 68.3 78.1
(d) w/o temp.-SSL 67.5 374 67.4 78.6
(e) unaligned A-V 68.4 37.2 68.9 78.8
(f) shared @ 68.8 38.5 69.4 79.3
Baseline 70.7 40.5 69.0 78.1

model can leverage the temporal audio-visual correspon-
dence to better associate scene events with their sounds. Fi-
nally, in (f), we use only a single memory bank which we
feed with the averages of the features from both modalities.
Interestingly, this outperforms separate memory banks for
fingerprinting and audio recognition.

Comparison to Prior Work on Video SSL

We compare against prior self-supervised video representa-
tion learning methods in transfer learning experiments for
action recognition and retrieval on UCF101 and HMDBS51.
We train and evaluate two different video encoders in
these comparisons: 1. a smaller-scale experiment with an
R(2+1)D-18 trained at 112 x 112 and 2. a larger-scale ex-
periment with an R3D-34 trained at 224 x 224 resolution.
Transfer to Action Recognition and Audio Classification.
We compare on UCF101 and HMDBS51 action recognition
and ESC50 audio classification in Table 4, both with full
fine-tuning and linear probes when available. A fair com-
parison to and among prior works is difficult due to signif-
icant differences in pre-training datasets, network architec-
tures, input configurations, and training duration. We indi-
cate some of these factors that are known to impact perfor-
mance in the table. While there are prior works (Recasens
et al. 2021; Qian et al. 2020) reporting comparable perfor-
mance in some tasks, they either use larger architectures,
larger pre-training datasets, train for longer, or a combina-
tion of those. Our method is more efficient in comparison
while still achieving state-of-the-art performance. Notably,
when comparing the most common setting using R(2+1)D-
18 trained on Kinetics-400, we outperform the best prior re-
sults by +3.1%, +9.0%, and +5.7% on UCF101, HMDB51,
and ESC-50 respectively.

Video Retrieval Performance. We compare to the prior
state-of-the-art approaches TCLR (Dave et al. 2021), GDT
(Patrick et al. 2020), Robust-xID (Morgado, Misra, and Vas-
concelos 2021), and TE-CVRL (Jenni and Jin 2021) in video
retrieval benchmarks on UCF101 and HMDBS51 in Table 5.



Table 4: Action Recognition on UCF101 and HMDBS51 and Audio Classification on ESC50. We report action recognition
accuracy after full fine-tuning and linear probe evaluation. We indicate the pre-training dataset, resolution, the number of frames,
iterations (or epochs in brackets), and pre-training data modalities (V=RGB, A=audio).

UCF101 HMDB51 ESC50

Method Dataset Res. Frames 1It. [Ep.] Network Mod. FT Lin. FT Lin. Lin.
TE-CVRL (Jenni and Jin 2021) K400 112 16 [200] R(2+1)D-18 v 88.2 62.2

CVRL (Qian et al. 2020) K600 224 32 [800] R3D-50 \" 93.4 90.6 68.0 59.7

MMV (Alayrac et al. 2020) AS 224 32 500K R(2+1)D-18 V+A 91.5 839 70.1 60.0

BraVe (Recasens et al. 2021) AS 224 32 620K R(2+1)D-18 V+A 93.6 90.0 70.8 63.6

AVTS (Korbar, Tran, and Torresani 2018) K400 224 25 [90] MC3 V+A 858 56.9 76.7
XDC (Alwassel et al. 2019) K400 224 32 900K R(2+1)D-18 V+A 84.2 47.1 78.5
GDT (Patrick et al. 2020) K400 112 32 [200] R(2+1)D-18 V+A 88.7 57.8 78.6
AVID (Morgado, Vasconcelos, and Misra 2021) K400 224 32 [400] RQ2+1)D-18 V+A 875 60.8 79.1
Ours VGG-S 112 16 160K [240] R(2+1)D-18 V+A 90.9 86.8 702 559 87.9
Ours K400 112 16 200K [240] R(2+1)D-18 V+A 91.8 88.0 71.2 58.2 84.8
Ours K600 112 16 200K [150] R(2+1)D-18 V+A 922 903 722 626 864
Ours K600 224 16 400K [300] R3D-34 V+A 936 918 74.6 658 855
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10

1 10
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Figure 3: Video Fingerprinting Performance. We report instance retrieval performance under video content manipulation on
the different AugVGG variants. We show results using a video only (V), audio only (A), and a joint audio-visual model (A+V).

Table 5: Video Retrieval on UCF101 and HMDB51. We
report recall at k (R@Fk) for k-NN video retrieval. All meth-
ods use a R(2+1)D-18 network.

UCF101 HMDB51
Method R@1 R@5 R@20 R@1 R@5 R@20
TCLR 569 722 846 241 458 753
GDT 574 734  88.1 254 514 750
Robust-xID 609 794  90.8 308 558 797
TE-CVRL 642 81.1 92.6 33.1 608 841
Ours (R2+1)D-18) 80.6 904 96.4 449 704 87.6
Ours (R3D-34) 852 930 973 51.3 743 914

Queries stem from the test set, and retrievals are computed
on the training set of the respective dataset. A retrieval is as-
sumed correct when the class of query and retrieval agree.
We report recall at k for different nearest neighbors. Our
model outperforms prior methods by a considerable margin.
Video Fingerprinting Performance on AugVGG. Finally,
we report video retrieval performance under video manipu-
lations in Figure 3. We report recall at k for all four datasets
and three models: 1. fused audio and video features, 2.
video-only, and 3. audio-only. The fused embedding (con-
catenation of audio and video features) performs best in all
cases, followed by the video model. Surprisingly, AugVGG-
IP with in-place augmentations is most difficult, while per-
formance on AugVGG-S and AugVGG-T is close to perfect.
Audio-Visual Feature Fusion. We explore the fusion of the
aural and visual features learned through our approach for

Table 6: Modality Fusion. We explore the fusion of our
audio-visual features for downstream video classification.

Modalities VGG-Sound K600
Audio 39.1 15.7
Video 39.7 56.8
Audio+Video 53.9 58.4

downstream video understanding tasks. We compare linear
probe accuracy for audio, video, and fused features learned
on VGG-Sound and Kinetics-600 in Table 6. Interestingly,
combining both modalities improves not only the audio-
focused VGG-Sound benchmark but also the appearance-
focused classification task on Kinetics-600.

Conclusions

We introduced a novel method to learn video and audio rep-
resentations by exploiting temporal and audio-visual self-
supervision. To learn temporal features, our model learns
through time-related pretext tasks, which we extend to the
audio domain and the cross-modal setting. We propose a
novel contrastive loss design and a model with both intra-
and cross-modal contrastive objectives to learn from the
audio-visual correspondence in videos. Experiments demon-
strate that representations that integrate both temporal and
aural features achieve state-of-the-art video classification
and retrieval performance.
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