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Abstract

We present an image retrieval system for the interactive search of photo collections using free-hand sketches depicting
shape. We describe Gradient Field HOG (GF-HOG); an adapted form of the HOG descriptor suitable for sketch based
image retrieval (SBIR). We incorporate GF-HOG into a Bag of Visual Words (BoVW) retrieval framework, and
demonstrate how this combination may be harnessed both for robust SBIR, and for localizing sketched objects within
an image. We evaluate over a large Flickr sourced dataset comprising 33 shape categories, using queries from 10
non-expert sketchers. We compare GF-HOG against state-of-the-art descriptors with common distance measures and
language models for image retrieval, and explore how affine deformation of the sketch impacts search performance.
GF-HOG is shown to consistently outperform retrieval versus SIFT, multi-resolution HOG, Self Similarity, Shape
Context and Structure Tensor. Further, we incorporate semantic keywords in to our GF-HOG system to enable the
use of annotated sketches for image search. A novel graph-based measure of semantic similarity is proposed and two
applications explored: semantic sketch based image retrieval and a semantic photo montage.

Keywords: Sketch Based Image Retrieval, Bag-of-Visual-Words, ImageDescriptors, Matching.

1. Introduction

Digital image repositories are commonly indexed us-
ing manually annotated keyword tags that indicate the
presence of salient objects or concepts. Text-based
queries can concisely encode suchsemanticdata, but
can become cumbersome when representingvisual ap-
pearancesuch as complex object shape — language
concisely defines only a few stereotypical shapes. By
contrast, visual queries such as free-hand sketches are
an intuitive way to depict an object’s appearance. Yet
there has been comparatively little work exploring scal-
able solutions to sketch based image retrieval (SBIR) of
photo collections which can also endure a certain degree
of affine invariance.

A key challenge in SBIR is overcoming the ambiguity
inherent in sketch. The casual, throw-away act of sketch
query, coupled in some cases with limited user depic-
tive skill, often results in sketches that depart from their
target object — exhibiting variation in rotation, scale
and translation within the scene and often with the em-
bellishment or omission of strokes. Previous solutions
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have addressed this ambiguity by posing SBIR as model
fitting approach [1]; aligning the sketch to underlying
image data. This can be effective but involves a com-
putationally expensive per-record optimization that also
scales only linearly i.e.O(n) with dataset size. Other so-
lutions adopt a more traditional image retrieval pipeline,
griding the image and concatenating descriptors from
each cell to form a descriptor [2]. Such descriptors can
be scaled sub-linearly with appropriate search structures
(e.g. hierarchical search, orkd-trees), yet the advan-
tages in speed conferred by the simplicity of image divi-
sion are diluted by the lack of affine invariance inherent
in that approach.

Our work adopts a Bag of Visual Words (BoVW)
approach to SBIR, incorporating an adapted form of
the Histogram of Oriented Gradients (HOG) descriptor;
Gradient Field HOG (GF-HOG). BoVW is considered
to be the state of the art in Query by Visual Example
(QVE) image retrieval approaches. Over the past few
years, BoVW systems using photographic, rather than
sketched, queries regularly exhibit leading performance
and scalability in internationally recognized benchmark
tasks (PASCAL, ImageCLEF [3]).

At its essence the BoVW framework for QVE focuses
upon the identification of “visual words” within an im-
age, which are derived from texture local to detected

Preprint accepted to Computer Vision and Image Understanding, February 2013 February 14, 2013



interest points. The standard BoVW methodology is to
construct a frequency histogram that represents a count
of the visual words extracted from the image, and to use
that frequency histogram as a global image descriptor
in subsequent matching. Widespread success suggests
that this non-spatial distribution of texture is sufficient
for QVE using real imagery [4, 5]. Tailoring BoVW to
SBIR is challenging in two respects: sketches contain
little or no texture, and sketches are defined by the rela-
tive spatial positions of their constituent strokes. How-
ever, these are exactly the information abstracted away
by BoVW.

In this paper we describe in detail the GF-HOG de-
scriptor [6], and contribute a comprehensive evalua-
tion of the performance of GF-HOG within a BoVW
framework for SBIR. We perform a detailed evalua-
tion of GF-HOG/BoVW performance, exploring vari-
ous vocabulary sizes for BoVW and comparing against
standard gradient binning descriptors for photo-based
QVE (SIFT, HOG) and against approaches that have
in the past been experimented for sketch based match-
ing (Self-Similarity, Shape Context, Structure Tensor)
within the BoVW framework. We also experiment with
eight commonly used distance measures from norms to
metrics frequently used in text (“Bag of Words”) re-
trieval. The evaluation is performed over a dataset of
around 15k Creative Commons licensed photographs
from Flickr, containing 33 object categories and using
10 non-expert sketchers working “blind” i.e. drawing
in a realistic retrieval scenario without tracing the target
image, or otherwise having the target image in sight. A
timing analysis of the descriptors is also presented. We
also demonstrate a simple photo montage application
that enables users to composit sketch-retrieved objects
from our dataset. This application also demonstrates
how GF-HOG may be combined with RANSAC to lo-
calize the sketched object in retrieved images.

A further novel contribution of this paper is the fusion
of semantics and our GF-HOG shape description to en-
able scalable search using annotated sketches. Although
sketch can be a complementary query mechanism to text
for image retrieval systems, sketches alone are an inex-
act and ambiguous query specification. For example, a
query depicting a ball (circle) might also return pictures
of the moon and other circular objects. We tackle this
problem by combining shape retrieval with a measure
of semantic similarity based on tag co-occurrence. For
example, this enables us to search for a circle, within
the context of sports, or of space. The user annotated
tags for Flickr images represent semantic information
of the images. In this paper, a novel graph-based mea-
sure is proposed to compute the semantic similarity of
keyword tags, which is fused with the content similarity.
We demonstrate both semantic sketch retrieval (includ-

ing a quantitative analysis of performance) and a photo
montage system that enables sketch based composition
of graphics, with each iteration sketch based search tak-
ing into account the semantic context of previously re-
trieved images within the montage.

2. Related Work

Sketch query based retrieval system has been used
for searching trademarks [8, 9], technique drawings
[10, 11], documents [12], hand drawn image set or clip
arts [13, 14, 15]. These works often consider sketches
as a combination of strokes or geometry units and the
relation between them are used to represent the shape
for matching [16, 17, 18]. However, these techniques
can not be easily generalized to natural images.

The early nineties delivered several SBIR algorithms
capable of matching photographs with queries compris-
ing blobs of color, or predefined texture. These systems
were based primarily on global color histograms [7],
spatial patterns [19] or region adjacency [20, 21]. Ro-
bust color blob-based matching was later proposed us-
ing spectral descriptors, such as wavelets [22, 23] which
have more recently proven useful for more general im-
age retrieval using colour texture [24, 25].

Prior work, more closely aligned with our proposed
approach, has explored the sketching of line-art shape
depictions for SBIR [26] using edge maps to approx-
imate a sketch from a photograph prior to matching.
Matusiak et al. [27] applied curvature scale space
(CSS) [28] as a robust contour representation, although
this required a pre-process to first extract the contour.
By contrast, the majority of early sketched shape re-
trieval work focussed on the fitting of sketched contours
directly to the image. Bimbo and Pala [29] present a
technique which based on elastic matching of sketched
templates over edge maps in the image to evaluate sim-
ilarity. The degree of matching achieved and the elastic
deformation energy spent by the sketch to achieve such
a match are used to derive a measure of similarity be-
tween the sketch and the images in the database and to
rank images to be displayed. However the expense of
the optimization step to fit the model limits the scalabil-
ity of the approach, making it inappropriate for use in
interactive SBIR systems such as ours (Fig. 1). Ipet al.
[30] develop an affine invariant contour descriptor for
SBIR, based on the convex hull of the contour and the
curvature of a set of dominant points along the contour.
Edge orientation [31, 32, 33, 8] and angular partition-
ing [34] have also been used to describe contours.

Later approaches sought to combine global descrip-
tors for color (e.g. RGB histogram) with shape (e.g.
edge orientation histogram) as a depiction invariant
similarity measure for trademark image retrieval [31].
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Chanset al. [32] tokenize edge segments into a string
representation, encoding length, curvature, and relative
spatial relationships. A similar approach was used for
sky-line retrieval in [35]. Rajendran and Chang [33]
propose to extract edge signatures for both images and
sketch query, and compare their curvature and direction
histograms for shape similarity. This method utilizes
multiple scales to account for various levels of detail in
sketch query. Shih and Chen [8] extract features which
include invariant moments, the histogram of edge direc-
tions, and two kinds of transform coefficients that are
robust to geometric deformation, to describe represen-
tative objects in the task of trademark segmentation and
retrieval. Chalechaleet al. [34] employ angular-spatial
distribution of pixels in the abstract images to extract
features using the Fourier transform. The extracted fea-
tures are rotation and scale invariant and robust against
translation. Eitzet al. [2] propose a real-time SBIR
system that locates photos using a sketched depiction of
object shape. Eitzet al. divide the image into a regu-
lar grid and compute descriptors (either EHD [8] or the
Structure Tensor [2]) from each cell — concatenating
these to form a global image feature. However, as we
later show, this offers limited invariance to changes in
position, scale or orientation compared to our approach
and a number of other descriptors (e.g. Self Similar-
ity [36]) within a BoVW system. A scalable approach
to SBIR was presented very recently in MindFinder [37]
through spatial gridding of edge fragments (edgels) de-
tected within the image. The method is efficient, though
as with [2] exhibits limited robustness to translation as-
suming sketches to approximately occupy the same lo-
cation as the objects they depict.

Local descriptor matching using BoVW offers solu-
tions to affine invariance and first applied to sketch re-
trieval by the authors in [6], where the GF-HOG de-
scriptor was also proposed as an adaptation of HOG
amenable for SBIR in the BoVW framework. GF-HOG
is described in more detail within Section 3.2, and is
a depiction invariant descriptor computed local to set
pixels in the Canny edge map of an photo (or pixels
of sketch strokes). Brief comparisons are made in [6]
of GF-HOG to SIFT, HOG and Self Similarity over
various vocabulary sizes — a study that we elaborate
upon significantly in Section 6. Very recent work by
Eitz et al. [38] also explores standard HOG within a
BoVW framework; computing HOG at random points
in the image, and in another experiment over pixels of
a Canny edge map — the latter is dubbed S-HOG in
[38] and is aligned with the definition of EDGE-HOG
(multi-resolution HOG over Canny edges) used as a
baseline for comparison in [6]. S-/EDGE-HOG is re-
ported by both [38] and [6] to yield better performance
than Shape Context-like features. Our evaluation com-

Figure 1: Our interactive SBIR system enables searches imagecollec-
tions for matching shapes using free-hand sketched queries by non-
expert users.

pares S-HOG/EDGE-HOG to several other descriptors
including standard HOG, SIFT, Self Similarity, as well
as Shape Context. Furthermore, we explore a variety
of distance metrics, the selection of which is known to
significantly impact the outcome of a BoVW retrieval
system [4, 3].

Similar to our sketch based photo montage applica-
tion, [39] Chen et alet al. propose Sketch2Photo — an
interactive system in which keyword-annotated sketches
are used to retrieve and composit photograph fragments.
In that system, keywords trigger a Google Image search
which returns possible images — the sketch is used
only to crop the image using coarse shape matching via
Shape Contexts. The sketched shape itself is not used
for retrieval, nor is an integrated approach taken to fuse
shape and text into a single similarity score as with our
approach. Rather, the hybrid text-shape component of
our approach is more closely aligned with the hybrid
systems of Wanget al. the operation of which is out-
lined in [40, 41]. In [40] images are divided into local
patches and matched with the sketch query. Similarly
to [2] the matching has limited robustness of affine in-
variance. Tag similarity and content similarity is fused
linearly, where tag is set a higher priority. While in
[41], major curves of images are first detected, based on
which a curve-based algorithm is conducted to achieve
precise matching between sketch and image database.
However, the technique detail is not given in the pa-
per. The text and content models are worked as rerank-
ing conditions, where tag is the dominant search condi-
tion. In our system we leverage keyword co-occurrence,
a text matrix widely used in information retrieval, and
recommendation systems [42, 43] as well as in building
word ontologies [44] and improving the image anno-
tation performance [45]. Various methods of calculat-
ing keyword co-occurrence includes the Jaccard mea-
sure [46], the corrected Jaccard measure [46], measures
from the information-theory [46] and the confidence
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Figure 2: Visualizations of gradient fieldΘ derived from query
sketches and corresponding photographs, via processing steps of sub-
sec. 3.2.1.

score measure in association rule mining [47, 48, 42].
In this paper, we propose a graph based tag similar-
ity measure which extents the asymmetric score mea-
sure of [42] so that the similarity between two tags
considers not only the explicit co-occurrence but also
the implicit co-occurrence of keywords. Note that our
previous work [49] incorporating semantics for sketch
based video retrieval. Annotated sketches are used as
queries for video retrieval. Videos are first segmented
into spatio-temporal volumes and a histogram distribu-
tion of the pixel-wise labelling for each volume is com-
puted and matched with the annotation of the query
sketch. The similarity of motion, color and semantics
for each volume is merged by multiple the similarity
scores. Since there is no tag available for the video
dataset, semantic information are achieved by automatic
pixel-wise labelling.

3. Gradient Field HOG Descriptor

In this section we briefly outline the Histogram of
Oriented Gradients (HOG) descriptor, and how this is
adapted to create our Gradient Field HOG (GF-HOG)
descriptor.

3.1. Histogram of Oriented Gradients (HOG)
The HOG descriptor [50] is commonly applied in ob-

ject recognition, and human (e.g. pedestrian) detection
tasks. HOG is a window based descriptor computed lo-
cal to a detected interest point (or in some cases densely
sampled over all image points). The window is cen-
tred upon the point of interest and divided into a regular
square grid (n × n). Within each cell of the grid a fre-
quency histogram is computed representing the distribu-
tion of edge orientations within the cell. The edge ori-
entations are computed asarctan( δI

δy/
δI
δx) and quantized

into q bins. The histogram counts are concatenated to
form a q-D vector for each cell, which are again con-
catenated to form anqn2-D vector for the window. In
many implementations, several windows are sampled in
a non-overlappingw×w grid local to the key-point and
again concatenated to output the final descriptor.

In our experiments of Section 6, we compute the
HOG descriptor at multiple scales ofn = 5,10,15 and
fix w = 3,q = 9. The scale and window size are chosen
to have a reasonable coverage of the objects in the im-
ages, since all the images are sampled to size between
100 to 200. These parameters are comparable to the
recommended parameters (which we also use in this pa-
per) for the descriptors we compare with in section 6.
We do not compare this set of parameters to the oth-
ers and pick the best set. The descriptors are pooled
from multiple scales and used to construct a single code-
book for BoVW. The interest points chosen to compute
are local to detected Canny edges (in the case of pho-
tographs in the dataset) and local to pixels comprising
sketched strokes (in the case of sketched queries). We
note the practice of computing HOG over Canny edges
is referred to as EDGE-HOG in [6] and S-HOG in [38].

3.2. Gradient field HOG
Sketches are characterized by the relative positions

of their strokes, with little texture present (Fig. 6). To
extract a window-based descriptor local to a sketched
stroke, an appropriate window size should be chosen
— large enough to encode encode local spatial struc-
ture in the neighborhood, but not so large as to capture
too much content and lose discriminability. Automated
size selection is non-trivial and could quickly become
heuristic and tailored to particular content. We there-
fore adopt an more dynamic approach whereby the ori-
entations of strokes (or Canny edges, in the case of pho-
tographs) are interpolated from nearby strokes under a
Laplacian smoothness constraint, thereby labelling pix-
els that are not part of a stroke/edge and so have no
meaningful orientation. In all cases a pixel’s interpo-
lated orientation is most strongly influenced by the clos-
est strokes — so delivering a form of dynamic neighbor-
hood selection.

4



3.2.1. Constructing the Gradient field
In order to encode the relative location and spatial

orientation of sketches or Canny edges of images, we
represent image structure using a dense gradient field
interpolated from the sparse set of edge pixels.

We begin with a mask of edge pixelsM(x, y) = {0,1},
derived either from the mask of sketched strokes or from
the Canny edge map of a photograph. A sparse orien-
tation field is computed from the gradient of these edge
pixels:

θ[x, y] 7→ arctan

(

δM
δy
/
δM
δx

)

, ∀x,yM(x, y) = 1. (1)

We seek a dense fieldΘΩ over image coordinatesΩ ∈
R2 constrained such thatΘ(p) = θ(p),∀p∈ΩM(p) = 1.
The dense field should be smooth, and so we introduce
a Laplacian constraint by seeking theΘ that minimizes:

argmin
Θ

∫ ∫

Ω

(▽Θ − v)2 s.t. Θ|δΩ = θ|δΩ. (2)

which corresponds to the solution of the following
Possion equation with Dirichlet boundary conditions

△Θ = divv overΩ s.t.Θ|δΩ = θ|δΩ (3)

where div is the divergence operator andv is the guid-
ance field derived from the orientation field of the origi-
nal image. A discrete solution was presented in [51], by
forming a set of linear equations for non-edge pixels,
that are fed into a sparse linear solver to obtain the com-
plete field. Common applications such as image com-
pletion (“Poisson in-filling”) approximate△Θ = 0 using
a 3×3 Laplacian window: 4Θ(x, y) = Θ(x−1, y)+Θ(x+
1, y) + Θ(x, y− 1)+ Θ(x, y+ 1). However we obtained
better results in our retrieval application when approxi-
mating△Θ using a 5×5 window discretely sampling the
Laplacian of Gaussian operator (leading to a smoother
field):

△Θ(x, y) = −
1
πσ4

[

1−
x2 + y2

2σ2

]

e−
x2+y2

2σ2 . (4)

Images and sketches are padded with an empty border
of 15% pixel area. For typical images of∼ 200× 100
the linear system is solvable in∼ 100−150ms using the
TAUCS library on an Intel Pentium 4 [52]. Full timing
analyses are given in subsec. 6.4. Fig. 2 illustrates the
visual similarity between the gradient fields computed
from corresponding sketches and photographs.

3.2.2. Multi-scale Histogram of Gradient
We compute a set of HOG-like descriptors over the

gradient field by quantizing the field and establishing
a n × n grid (via the process of subsec. 3.1) local to

each pointM(x, y) = 1 (i.e. pixels comprising sketched
strokes, or in the case of database images, Canny edges).
We detect features withn = {5,10,15} and fix w = 3,
q = 9, yielding several hundred Gradient Field HOG
(GF-HOG) descriptors for a typical image. The use
of multiple scales is reminiscent of Pyramid HOG (P-
HOG) [53] but note that here we do not concatenate de-
scriptors at each scale to form a feature — rather we add
GF-HOG at each scale (n) to the image descriptor set.

4. Sketch Based Image Retrieval and Localization

The ‘bag of words’ model, first proposed for text doc-
ument retrieval, is now well established as a framework
for scalable image retrieval[4, 5, 54, 55]; so called ‘bag
of visual words (BoVW)’. In a typical BoVW frame-
work interest points are first detected [56] and repre-
sented by descriptors [57]. Unsupervised grouping is
performed over all descriptors, to generate a set ofk
clusters. Each cluster is a ‘visual word’, and the code-
book of visual words comprises the vocabulary of the
system.

In our system, the GF-HOG features are extracted
local to pixels of the Canny edge map. Features from
all images are clustered off-line to form a single BoVW
codebook viak-means (section. 6.3 presents results for
varyingk). A frequency histogramH I is constructed for
each image, representing the distribution of GF-HOG
derived visual words present in that image. The his-
togram is then normalized. At query time, a frequency
histogramHs is constructed from the query sketch by
quantizing GF-HOG extracted from the sketch using
the same codebook, and constructing a normalized fre-
quency histogram of visual words present. Images are
ranked according to histogram distanced(H I ,Hs) as de-
fined using one of the measures below.

4.1. Histogram distance measures

The distance measure between two frequency his-
tograms is often critical to the success of BoVW search
— and different similarity measures as cited as optimal
for different domains (e.g. activity recognition [58],
building search [5]). We briefly describe several most
widely used distance measures in table 1 to compute
the similarity between histogram of the query sketch to
those of the images in the dataset. These are the most
commonly used distance measures.H I andHs denote
the sketch and candidate image histograms respectively.
H(i) indicates the normalized count of theith bin, where
i = {1, ..., k}. The Mean Average Precision (MAP) result
curves of each distance measure are compared in Sec. 6
to justify a choice.

5



Figure 3: Example query sketch, and their top ranking results(ranking from left to right) over the Flickr15K dataset. Results produced using our
GF-HOG descriptor in a Bag of Visual Words (BoVW) framework with vocabularyk = 3500 and histogram intersection distance.

Table 1: Distance measures
Cityblock

∑k
i=1 |H

I (i) − HS(i)|

Cosine 1− (H I )T HS

|H I ||HS |)

χ2 ∑k
i=1( (H I (i)−HS(i))2

((H I (i)+HS(i)))

Histogram
∑k

i=1
∑k

j=1(ωi j min(HS(i),H I ( j))i),
Intersection ωi j = 1− |H(i) −H( j)|, where

H(i) is the visual word of theith bin.

4.2. Language models for retrieval

Following recent trends [5, 54, 59] we exploit the
text retrieval lineage of BoVW by evaluating language
models commonly used for text retrieval. These are im-
plemented via the Lemur text retrieval framework [60],
by synthesizing a text document containing a set of ar-
bitrary but tokens for each visual word present in a
database image or sketch. Lemur was then invoked to
compute the distance between a query document and a
candidate image document. Given a query sketch repre-
sented by histogramHS, and the database of N images
represented by histogramsH I

n,n = {1, ...,N}. The fol-
lowing models are used in our system, which are the
most widely used language models in multimedia re-

trieval.

Term weighting (tf-idf). Term weighting computes a
distance affording greater weight to rarer visual words
(terms), within the context of the image collection.
Term frequency (tf) is the ratio of a term’s (i.e. vi-
sual word’s) frequency over the others within an image.
Document frequencydf measures the frequency a term
appears across all document. The inverse document fre-
quencyidf evaluates the rarity i.e. importance of the
visual word id f (i) = log( 1

d f(i) ). The tf-idf measure is
then a product of a term’s frequency and importance.

Okapi-BM25. BM25 is a family of scoring functions
that take into account not onlytf-idf but also the length
(i.e. number of visual words) present.

InQuery. The InQuery (CORI) algorithm is based a
cascade of inference networks trained over the frequen-
cies of visual words present in the image collection us-
ing multiple regression passes. The similarity ofH I and
HS are evaluated by presenting the histograms as input
to the trained network; [61] contains further details.

Kullback-Leibler (K-L) divergence. Similar in spirit
to histogram intersection, K-L divergence is commonly
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used to measure the difference between pairs of prob-
ability distributions in information theory, and is here
used to measure the similarity betweenH I and HS:
dKL (HS,H I ) =

∑n
i=1 HS(i)logHS(i)

H I (i) .

4.3. Identifying sketched object position

In order to present retrieval results, and for our proto-
type photo montage application (in section 5.3.2), it is
desirable to identify the location of the sketched query
within the retrieved images.

Given a sketch and a retrieved image, we create a set
of putative correspondences between the GF-HOG de-
scriptors cut from both the sketch and the image. These
are matched in a nearest-neighbor manner within the de-
scriptor space via Lowe’s SIFT matching scheme[62]
i.e. if descriptor A in a sketch is assigned to B in the
image, then B must also be nearest to A for a valid
match [62]. To preserve affine invariance, no spatial in-
formation e.g. proximity is used when matching. The
repeatability of GF-HOG between sketches and photos
(Fig. 2) promotes good matches despite absence of tex-
ture, yet the local similarity of edges may limit matching
or create erroneous correspondences.

Typically a sketch is a mental abstraction of a shape,
and so any attempt at localization is likely to be an ap-
proximation. We apply Random Sampling and Consen-
sus (RANSAC) to fit the sketched shape to the image via
a constrained affine transformation with four degrees of
freedom (uniform scale, rotation and translation). Two
points of correspondence are required to uniquely define
such a transformation, termed a linear conformal affine
transform (LCAT).

Given a set of 2D putative correspondencesPS 7→

PI = {pi=1...m, ps=1...n}, our iterative search runs as fol-
lows. We randomly sample two pairs of correspon-
dences, deducing the LCAT (M). We then compute the
forward-backward transfer errorE(T;PS

m,P
I
n) using all

putative correspondences:

E(M) =
∑

{ps,pi }∈PS 7→PI

|ps − Mpi |
2 + |pi − M−1ps|

2 (5)

We iterate for up to 10,000 trials seeking to minimize
E(M).

5. Incorporating Semantics

Sketch queries can concisely specify target appear-
ance, yet the target semantics (e.g. butterfly, London)
are often more concisely specified using text. We can
therefore enhance our sketch based image retrieval and
photo montage systems by incorporating semantic in-
formation, using any keyword (tag) meta-data accompa-
nying images in the dataset (also harvested from Flickr).

5.1. Tag similarity

Word co-occurrence is one of the most commonly
used methods to measure the similarity between tag
pairs. In this paper, we adapt the co-occurrence based
tag similarity graph with the shortest path algorithm,
which is shown to improve the retrieval performance on
our dataset.

Given a vocabularyV = {w1, ...,wK} of K keywords
present within all image tags, the similarity of a pair
of keyword tags is commonly defined using tag co-
occurrence. In this work we adopt an asymmetric mea-
sure [42] indicating the probability ofwi appearing in a
tag-set, given the presence ofw j :

P(wi |w j) =
|wi ∩ w j |

|w j |
. (6)

We model the vocabulary as a directed graph{V,E}
where edgeE = p(wi |w j), see Fig. 5 (left). The
co-occurrence metric represents the probability of two
words co-occurring explicitly.

However, in the case of Flickr, the vocabulary is un-
constrained and different users may prefer different syn-
onyms to describe the same object. For example, the
words ‘sea’ and ‘ocean’ may not explicitly co-occur but
each may co-occur with common tags (e.g. ‘beach’)
which imply the two words ‘sea’ and ‘ocean’ have
a strong connection with each other, as well as with
‘beach’. Thus it is also necessary to consider the im-
plicit (transitive) relationship between words. Note that
although ‘WordNet’ [63] shows the semantic structures
of words and has been used for image retrieval, in our
case the words relation shown by WordNet could be too
broad for a particular subset of the world scenario.

We address this using Dijkstra’s algorithm to find
the shortest path between two nodes in the graph with
weights initially derived via eq. (6). We evaluate the
probability of a sink node (tag) given a source node
via the shortest path cost. Since path cost is a sum-
mation, yet successive transitions between tags (nodes)
imply a joint probability, we encode edge weights as
log-likelihoods. Figure 5 (right) illustrates how the tag
similarity graph is updated by this process.

Figure 5: Tag similarity graph. Similarity based on co-occurrence
metric (left) and the updated graph using the shortest path algorithm
(right).
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Figure 4: Sketch localization. Left: Localizing the query sketch within retrieved images using RANSAC/GF-HOG. Right: An interactive semantic
photo montage application driven by our BoVW retrieval system. Sketches are combined with context from the tags of previously retrieved images,
to suggest new elements for the montage. The sketch localization is harnessed to align the images for compositing at the appropriate position in the
montage.

5.2. Semantic similarity of images

We now describe how to measure the image similarity
in the semantic (tag) space. Multiple tags are typically
assigned to an image and so we must consider the sim-
ilarity of all pairings of tags when considering the se-
mantic similarity of two images. We compute the simi-
larity between two sets of tagsC1 = C1

1,C
1
2, ...,C

1
N and

C2 = C2
1,C

2
2, ...,C

2
M, corresponding to imagesI1 andI2

as:
∑M

m=1 maxn{p(C1
n|C

2
m)}

N
+

∑N
n=1 maxm{p(C1

n|C
2
m)}

M
(7)

wherep(C1
n|C

2
m) calculates the co-occurrence probabil-

ity of two tags via the shortest path techniques of sub-
Sec 5.1.

5.3. Combining sketch and text

We consider two different applications to integrate
semantic information into our SBIR system: (1) com-
bining keywords with a the free-hand sketch to create a
hybrid retrieval system, accepting anannotated sketch
as the input query; (2) a photo montage application
wherein objects are sketched and results picked from
a ranked list. Results are ranked according to similarity
with the sketch, but also according to semantic similar-
ity with retrieved objects already in the montage. The
set of existing keyword meta-data adds context to the
search.

5.3.1. Annotated sketches as queries
We incorporate semantic similarity into our interac-

tive SBIR application, enabling users to input a set of
keywords together with their hand drawn sketch. Fig. 13
illustrates the results of our hybrid approach, in which

the semantic similarity (eq. 7) and the sketch similar-
ity (table.1 and section 4.2) are combined via a sim-
ple weighted summation. Although our combination
method is simplistic, the results show marked semantic
improvement — for example comparing the results of
the pyramid and circle sketches of Fig. 2. The search for
a circle and London have returned images of the “Lon-
don Eye”, when our database contains many other circle
shape images as well as other images of London not ex-
hibiting circles. Similar observations are made of the
triangular sketch and the Paris Louvre Museum.

5.3.2. Semantic photo montage
We demonstrate our retrieval and localization algo-

rithms within a prototype system for photo montage
using sketched queries (Fig. 4, right). Shapes are
sketched, and selected from a retrieved list of results for
compositing onto a canvas at the position sketched.

The system is similar in spirit to Chenet al.’s
Sketch2Photo [39], except that we use sketched shape
to retrieve our images rather than running a keyword
search. Users sketch objects and select photos to insert
into the composition from ranked results on the right.
Upon selecting an image, the position of the sketch
shape is localized and the region of interest cropped and
composited into the sketch. Unlike Eitzet al.’s Photo-
Sketch [2] our GF-HOG enables matching invariant to
scale and position of sketched shapes, and also com-
bines the semantic keyword similarity score (eq. 7) to
guide retrieval.

As the montage is constructed by retrieving and com-
positing objects, a set of relevant keywords is accu-
mulated from the tags of images incorporated into the
montage. This tag list provides a supporting context
i.e. prior for subsequent sketch retrieval. The query
sketch and keyword list are submitted for retrieval as
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per Sec. 5.3.1 with the user able vary to balance their
search requirements via interactively varying the weight
between text and sketch. An example screen-shot of our
photo montage system is shown in Fig. 4 (b).

6. Experiments

We present a comprehensive performance evaluation
of GF-HOG within a BoVW framework, comparing
against state of the art descriptors for shape and vi-
sual search across a variety of conditions (distance met-
rics and vocabulary sizes) critical to the performance
of BoVW retrieval. We also investigate performance
degradation over affine deformation of the sketched
query, comparing to other state of the art descriptors.
Run-time characteristics of the offline descriptor extrac-
tion, and the online retrieval and localisation processes
are also discussed.

6.1. Dataset and queryset

We created a dataset of around 15k photographs
(Flickr15k)1 sampled from Flickr under Creative Com-
mons license. We search Flickr images by using query
tags that describe shapes (e.g. heart shape, andet.al.);
landmarks (e.g. Louvre, big ben, andet.al.); semantic
objects (e.g.horse, butterfly, andet.al.) and tags that de-
scribe a particular scene (e.g.beach, sun set, andet.al.).
The first 1000 returned images for each query are down-
loaded together with their metadata (tags). We man-
ually select images with a reasonable size of a mean-
ingfull object area. This leaves us with 14660 images
(denoted as the ‘Flickr15K’ dataset). The selected im-
ages exhibit significant affine variation in appearance
and in presence of background clutter. Those images
are then manually labelled into 33 categories based on
shape only to evaluate our SBIR system. Around 10%
of the set serves as noise i.e. not fitting any category.
Each of the shape categories could contain multiple se-
mantic objects. We further manually annotated five se-
mantic categories considering both shape and seman-
tics, according to the annotated sketch queries shown
in the first column of Fig. 13 to evaluate our semantic
SBIR system.

We recruited 10 non-expert sketchers to provide free-
hand sketched queries of the objects. The participants
comprised 4 undergraduate and 6 graduate volunteers
(5 male, 5 female) recruited from outside our research

1We undertake to release this dataset on the public web, alongwith
the source-code for our descriptor and the evaluation environment,
post-review.

Figure 6: A representative sample of our 330 query sketch set used in
evaluation, drawn by 10 non-expert participants.

group . All self-assessed their sketch skill level as av-
erage; this was the only criteria for candidate selec-
tion. In our study, participants were briefed with ex-
ample images for each category, and the sketches are
then drawn based on their memory. Participants worked
individually without sight of each others work. In some
cases this led to highly stylized representations of ob-
jects containing hallucinated detail not present in the
images themselves (Fig. 6). In total, 330 sketches were
generated i.e. one per category for each of the 10 par-
ticipants2.

This dataset (Flickr15k) is a novel large scale shape
dataset of natural images, with the semantic tags, the la-
belled categories and the 330 free-hand sketch queries.
It can be used as a benchmark for shape retrieval, clas-
sification and sketch based image retrieval.

6.2. Experimental setup

Whilst a variety of local descriptors such as SIFT,
SSIM, HOG have been successfully used in image re-
trieval and classification tasks [57], it is still unclear
how various local descriptors perform in SBIR. We now
compare proposed GF-HOG with SIFT [62], Self Sim-
ilarity (SSIM) [36], Shape Context [64], HOG [50] and

2The sketch query set will be publicly released post-review.
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the Structure Tensor (used for SBIR in [2]). The param-
eters for GF-HOG were described in Subsec. 3.2. We
now outline the parameters and setup used for the other
descriptors below. In all experiments, the photos and
the sketch canvas were pre-scaled so that their largest
dimension (e.g. width or height) was 200 pixels. For
each descriptor we compare against a publicly avail-
able, third-party authored reference implementation in
C/C++.

6.2.1. SIFT
We compute the SIFT [62] descriptor treating each

pixel of the edge map (for database images) or stroke
mask (for sketches) as a key-point. SIFT is computed
as described in [62, 65] within a 15× 15 window local
to the key-point. We used the University of Amsterdam
(UoA) C/C++ (binary) benchmark implementation of
SIFT [65], commonly adopted as a standard in interna-
tional benchmark trials e.g. ImageCLEF, TrecVID.

6.2.2. SSIM
Shechtman and Irani [36] propose Self-similarity

(SSIM) as an image descriptor invariant to depictive
style. Recently, Chatfieldet al. [66] report experiments
using SSIM in a BoVW framework to retrieve photos
using photo-realistic queries of shapes. SSIM is essen-
tially an auto-correlation via sum-of-square-difference
of a patch with its surrounding neighborhood. This cor-
relation surface is then transformed into a binned log-
polar representation. In our experiments, we compute
the SSIM descriptor over the edge map (for database
images) and sketched image. SSIM is computed using
a 5× 5 correlation window, over a larger 40× 40 neigh-
borhood. The SSIM correlation surface is partitioned
into 36 log-polar bins (3 angles, 12 radial intervals). We
used the defacto C/C++ reference implementation of
SSIM supplied by the Oxford Visual Geometry Group
(VGG) [67].

6.2.3. Shape Context
Shape Context [64] has been previously used to mea-

sure similarity, and establish correspondence, between
shapes (including sketched shapes) for example [39]
and so is evaluated here. A shape contour is represented
as a set of discrete points, and each pointp is described
by the set of vectors originating from itself to all the
other sample points on the shape. The histogram ofp of
these vectors is binned locally in log-polar space to yield
the shape context. We use the C/C++ (Matlab mex) im-
plementation supplied by the authors.

6.2.4. HOG (EDGE-HOG, S-HOG)
As discussed in subsec. 3.2.1 we compute the stan-

dard HOG descriptor over the same scale range as GF-

Table 2: Results of classical similarity measures

Descriptors Distance measures k MAP
GF-HOG Hist. I’sect 3500 0.1222

HOG Chi2 3000 0.1093
SIFT Chi2 1000 0.0911
SSIM Chi2 500 0.0957

ShapeContext Chi2 3500 0.0814
StructureTensor Chi2 500 0.0798

Table 3: Results of language model similarity measures

Descriptors Language models k MAP
GF-HOG Okapi 5000 0.08997

HOG Okapi 10000 0.06654
SIFT Okapi 6500 0.06244
SSIM Okapi 2000 0.06257

ShapeContext k-l divergence 500 0.04377
StructureTensor k-l divergence 500 0.0559

HOG, sampling over all edge (or stroke) pixels. This
practice was referred to as EDGE-HOG in [6] and
S-HOG in [38]. In addition to using identical mul-
tiple scales, the same windowing parameters are also
used. We use the C/C++ reference implementation of
HOG supplied with the open source OpenCV library
version 2.2, ported from the original code by Dalal and
Triggs [50].

6.2.5. Structure Tensor Descriptor
Eitz et al. [2] presented a grid based image matching

using structure tensor descriptor. Images and sketches
are decomposed intoa × b grid of cells. The structure
tensorT (I ) is computed densely over greyscale imageI
and averaged within each cell to form a descriptor:

T (I ) =

















δI
δx

2 δI
δx
δI
δy

δI
δx
δI
δy

δI
δy

2

















(8)

The descriptors from each cell are concatenated to
form an image descriptor. In our experiments we com-
pare both to this gridded approach to structure tensor
matching (using a 10× 10 grid), and to the use of struc-
ture tensor as a local descriptor within a BoVW frame-
work. In that latter case we compute the structure tensor
local to edge or sketch pixels using a 15× 15 window.
The structure tensor was implemented using the C/C++
OpenCV functionpreCornerDetect to compute the three
compound first derivatives of (8).

6.3. Comparative evaluation of GF-HOG

We perform BoVW retrieval using the proposed GF-
HOG descriptor, implemented in C/C++, comparing
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Figure 7: Performance (MAP) of our system vs. codebook size, compar-
ing six descriptors over Flickr 15K dataset using four classical distance
measures. From top to bottom: Cityblock distance; Cosine distance;χ2

distance; Histogram intersection distance.

Figure 8: Performance (MAP) of our system vs. codebook size, compar-
ing six descriptors over Flickr 15K dataset using four different language
retrieval models. From top to bottom: InQuery; kl; Okapi; tf-idf.

performance with an otherwise identical baseline sys-
tem incorporating our spectrum of alternative descrip-

tors. Average Precision (AP) is computed for each
query, and averaged over the query set to produce
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Figure 9: Average extraction time of six different features. Error bars
indicate one standard deviation.

.

Mean Average Precision (MAP) score from the result
rankings. MAP was computed using a widely used
implementation for MAP scoring distributed via the
TRECVID benchmark. Fig. 7 present these MAP scores
over a range of vocabulary (codebook) sizek, using
a variety of distance measures commonly used in the
Computer Vision and the Information Retrieval litera-
ture. As an additional non-BoVW baseline outside our
framework, we computed MAP for our 330 sketch set
using the recent SBIR system of Eitz et al. [2], yielding
a MAP score of 7.35%.

Examining all distance measures, we observe the rel-
ative performances of the different descriptors stabilizes
at vocabulary size of aroundk = 3000 for the “classi-
cal” distance measures and at aroundk = 4000 for the
distance measures derived from text retrieval. The best
performance is demonstrated using GF-HOG over the
χ2 and histogram intersection distances, with the MAP
results differing only to the third decimal place due to
performance deviation aroundk = 6000− 8000. City-
block (L1) distance indicates around 1% lower perfor-
mance than histogram intersection andχ2 tests, which
may prove a convenient trade-off in the implementation
of structures such askd−trees.

The trends of Figs. 7, 8 show for all distance mea-
sures a significant improvement in use of GF-HOG over
contemporary descriptors, with regular HOG (EDGE/S-
HOG) computed over multiple scales around 2% lower.
The best performance settings observed for each de-
scriptor are presented in Tables 2,3. Given a 33 category
dataset, the random response for comparison is expected
around 3% although as noted around 10% of the data
has no category so actual random response is around
2.7%. The Structure Tensor descriptor, when encoded
into a BoVW framework, performs poorly compared to

the griding based strategy of [2] and appears unsuit-
able for implementation in BoVW abovek = 500. This
may be due to the relative low-dimensionality of the
descriptor. Surprisingly the SSIM descriptor performs
relatively poorly compared to other more classical de-
scriptors (e.g. SIFT, HOG) not designed for depiction
invariant matching. It may be that the retrieval success
reported in a prior BoVW implementation of SSIM [66]
was reinforced by either the post-process localization
scheme based on Hough voting, or by the use of photo-
graphic rather than sketched queries. Although the rel-
ative performances of descriptors stays relatively con-
stant across the classical distance measures (Fig. 7), the
Shape Context appears to be more variable — though al-
ways out-performed by over 3% by gradient-orientation
based descriptors (SIFT, HOG, GF-HOG). Our findings
confirm the results in [6] and [38] in relation to higher
performance of EDGE/S-HOG (i.e. HOG over edges)
versus alternate descriptors, but indicate that gradient
field interpolation prior to HOG delivers a significant
benefit.

The language model based measures of distance are
computed via Lemur, and due to their increased algo-
rithmic complexity have produced more notably non-
linear MAP responses from the BoVW system (Fig. 8).
Nevertheless, across all three measures a clear ranking
of descriptors can be observed from Shape Context per-
forming most poorly (approaching random response as
early ask = 4000) to GF-HOG out-performing others.
However GF-HOG performance peaks at only around
7% MAP for these similarity measures, which appear
inferior to classical distance measures for all descrip-
tors.

Fig. 3 presents several queries from our evaluation
set, and their results over Flickr15k. The results cor-
respond closely to the sketched shape; despite BoVW
abstracting away spatial relationships between features,
the GF-HOG descriptor is able to capture this relative
spatial information prior to coding. Although there are
some explainable inaccuracies (e.g. between plane and
starfish) the clear majority of results are relevant, in-
cluding some interesting robust examples (mirrored im-
ages of the swan are returned).

6.4. Computational cost

Our experiments were performed on an Ubuntu 10.4
system with 2.2GHz Dual Core Intel Pentium 4 proces-
sor and 4 GB main memory supported by a 6144Kb
cache. We measured computational cost in three key
stages of our system: i) image feature extraction (pre-
processing), ii) image retrieval at query-time, iii) local-
isation of the sketched object within an image.
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Figure 10: Average retrieval time of using six different descriptors
with varying vocabulary sizek = [500,10000] using histogram inter-
section over Flickr15k. Error bars indicate one standard deviation.

6.4.1. Feature Extraction
Fig. 9 indicates the time taken to extract descriptors

from a single image, averaged over all images in the
Flickr15k dataset. The experiment was repeated for
each descriptor type. The resulting average times and
standard deviations do not include the common first step
(Canny edge extraction) which took on average 0.015s
per image. We observe GF-HOG to compare favourably
with ShapeContext and the much slower patch corre-
lation based approach of Self-Similarity. The simple
derivative (Structure Tensor) and gradient histogram
(HoG, SIFT) based descriptors are faster to compute on
average, but have been shown to yield lower accuracy.
Unsurprisingly HoG is much quicker to compute than
GF-HOG, since HoG is a sub-step within the GF-HOG
process. On average, 41% of GF-HOG execution time
is spent computing HoG, with the remainder used by the
TAUCS library to solve the sparse linear system neces-
sary to compute the gradient field.

6.4.2. Image Retrieval
As the BoVW image retrieval process is indepen-

dent of the descriptor used, comparable timings are ob-
tained for retrieval using each of the six descriptors.
Retrieval times averaged over all descriptor types are
shown in Fig. 10 for codebook sizes in rangek =
[500,10000], using the histogram intersection measure
over the Flickr15k dataset. Timing invariance to de-
scriptor type is reflected in the narrow error bars. Re-
trieval time scales approximately linearly withk. For
best performing accuracy we observedk = 3500 (Ta-
ble 2), for which retrieval time is on average 2.5s.

One advantage of our BoVW based SBIR system is
that the retrieval efficiency can be easily improved by
using techniques including hierarchical search, kd-tree,
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Figure 11: Average retrieval time of using different percentage of the
whole dataset size with vocabulary sizek = 3500 using Cityblock
distance based kd-tree. Error bars indicate one standard deviation.
Note the retrieval time shown in this graph only consider the matching
time, does not include the feature extraction of the query sketch.

Locality-sensitive hashing, inverse document indexing.
In this paper, we explore using the Cityblock distance
based kd-tree to improve the retrieval time, since the
Cityblock distance achieves comparable performance to
the best results achieved by the Histogram Intersection
distance (shown in Fig. 7) and its linear geometry na-
ture makes it easy to be adapted in the kd-tree index-
ing technique. A graph of the average retrieval time
with a varying percentage of the dataset is shown in Fig.
11, from which we can see the retrieval time increases
sub-linearly with the size of the dataset. In our exper-
iments of using Cityblock distance based linear search
the retrieval time increases approximately linearly with
the increasing database size. The total retrieval time
when searching the entire dataset using Cityblock dis-
tance based linear search is 0.88s. This shows the ef-
fectiveness of using kd-tree to improve the efficiency of
retrieval comparing with figure 11.

6.4.3. Object Localisation
The time taken to localise the sketched object within a

selected image is non-deterministic due to the RANSAC
process. The average time of localizing a single query
sketch within a single returned image, averages at
0.267s with standard deviation 0.027. The average time
spent to localize 50 query sketches within the corre-
sponding top retrieved result is 0.263s with standard de-
viation 0.039.

6.5. Affine invariance evaluation
In order to evaluate the robustness of the descrip-

tors we generated queries for nine translated, scaled
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Figure 13: Annotated sketches as queries. Some hand picked results from the top 15 returned results by using both sketch and text modalities
— compare the circle and triangle sketch to their equivalent sketch only searches in Fig. 3. The text provides additional semantic context that
supplements the shape description in the sketch.

and rotated version of each input sketch. The trans-
lated sketches are generated by translating the original
sketch by a random shift between [-0.8,0.8] multiples
of the width of the sketch canvas, and also in a random
direction. The scaled sketches are generated by scal-
ing the input sketch uniformly by a random factor in
range [0.6,1.4]. The rotated sketches are random rota-
tions (about the centroid of stroke pixels in the sketch) in
range [-20,20] degrees. In total we generated 24 affine
transformed version for each of the 330 query sketches
i.e. 7920 sketches in our query set.

Fig. 12 (a,b) shows the MAP results of the rotated and
scaled versions of the query sketches. As expected, the
greater the affine deviation of the sketch from the typi-
cal configuration of the target objects in each category,
the greater the performance (MAP) degradation for the
rotation and scaling. As the BoVW system abstracts
away translation, all configurations of our BoVW sys-
tem perform near-identically regardless of translation,
making the system naturally translation invariant. We
have therefore plotted in Fig. 12 only the response for
our non-BoVW baseline (structure tensor grid)[2]. In
that case, a translation of approximately 20% is suffi-
cient to drop MAP by 1% as content moves into neigh-
boring grid cells.

Based on our earlier observations regarding the MAP
performance of BoVW systems peaking aroundk =
3000, using histogram intersection distance, these con-
ditions were selected for use in the affine degradation
experiment. Regarding rotation, Fig. 12 (a) shows
that the MAP score of using any of the six descrip-
tors degrades when the query sketch is rotated, but the
rate of degradation for GF-HOG and the other gradient
based descriptors is approximately equal. However the
degradation for Structure Tensor (both with and with-

out BoVW) and for Shape Context is more pronounced.
Regarding scaling, enlarging of the sketch relative to its
original size produces greater degradation than size re-
duction in all cases. However the degradation of GF-
HOG is around twice as slow (loss of 0.5% per 10%
scale increase) versus SIFT and edge based HOG (1%
per 10% scale increase). Although some other descrip-
tors degrade more gracefully, their overall MAP perfor-
mance is less than half that of GF-HOG.

6.6. Annotated sketch queries for image retrieval
Fig. 13 shows examples of fusing sketches and text as

search queries. Although in some cases a sketch alone
is ambiguous (e.g. a circle) we can constrain the se-
mantics of the results by adding just one or two tags
as additional information. For example, compare the
circle and the pyramid queries tagged here with “Lon-
don” and “Paris” to the circle and pyramid sketches in
Fig. 3 with no semantic constraint. The relevant im-
ages (e.g. London Eye are returned. Our dataset con-
tains several examples of non-circular tagged London
(e.g. tower bridge, Big Ben) and non-pyramidal images
tagged Paris (including eiffeltower, the monument, and
some building architecture). In our system, we show
that a simple sketch together with a few ambiguous tags
could help users picture the object in their mind and
help them find the related results. This is particularly
helpful when users only have an abstract shape in their
mind with not detailed semantic information of an ob-
ject. Many times neither of the shape nor the limited
semantic information alone is sufficient, while the com-
bination or these two can help search for the particular
object.

Quantitative evaluation is also conducted to compare
our shortest path based tag similarity with the stan-
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(a)

(b)

(c)

Figure 12: Evaluating performance degradation over affine warp of
the query sketches, by (a) rotation; (b) scaling; (c) translation.

dard words coocurrence based tag similarity. Aver-
age precision-recall curves of the five annotated sketch
queries as shown in the first column in Fig. 13 are
shown in Fig. 14. From the curves we can see that
our proposed shortest path based tag similarity measure
achieves better performance on the top returned results.
The precision drops quickly after recall reaches around
25%, after which the two curves share a similar shape.
This may due to the poor quality of tags available for
Flickr images. However, for a large scale image re-
trieval system users are more interested to the top re-
turned results.
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Figure 14: Average precision-recall curves of the five annotated
sketch queries shown in the first column of Fig. 13.

Figure 15: Searching in context. A sketch of the characteristically
shaped Eiffel tower returns the expected result. The tags of the result
image are used as context in a subsequent sketch search for a pyramid.
Pyramidal images that share tags with the Eiffel Tower image (e.g.
“Paris”) are ranked higher.

6.7. Semantic context for retrieval and photo montage

Instead of using annotated sketch queries, section
5.3.2 represented our system to incorporate the seman-
tic information from search ontext. As demonstrated in
our photo montage system (Fig. 4b) the context supplied
by the tag set can also be drawn from the tags of other
images. A further example of a search considring the
semantic context is given in Fig. 15 where tags from the
previously retrieved images of the Eiffel tower are used
to constraint its successive search for triangular shapes,
resulting in an image of the Louvre pyramid both tagged
“Paris”.

7. Conclusion

We have described GF-HOG an image descriptor
suitable for Sketch based Image Retrieval (SBIR) in a
Bag of Visual Words (BoVW) framework. We have
undertaken a comprehensive performance evaluation of
GF-HOG under BoVW, comparing against several state
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of the art descriptors (SIFT, SSIM, Shape Context,
HOG, Structure Tensor) under a variety of conditions
(vocabulary size, distance measure, affine variation). In
all conditions we have demonstrated a superior MAP
performance of GF-HOG for the task of SBIR over our
Flickr15k dataset, averaged over 330 query sketches
drawn from memory by 10 non-expert users. Detailed
timing analysis has been conducted at all stages of the
retrieval pipeline; feature extraction, image compari-
son, and localisation. These experiments demonstrate
the improved accuracy of GF-HOG over other state of
the descriptors art across a multitude of distance mea-
sures and affine variations. These results contribute to
the SBIR community through aiding the selection of
appropriate local descriptors for sketch matching, and
the comparison of descriptor performance characteris-
tics. Publication of ourdescriptor source codeand the
manually annotated Flickr15k dataset forms a further
contribution to the SBIR community.

A photo montage system is implemented which use
GF-HOG to match, and enable the sketch query to be
localized within the retrieved images using a RANSAC
process. We use a four-parameter affine transform, the
matching results are used to create a prototype photo
montage application in which sketched objects will be
composited onto a canvas.

We have also demonstrated how appearance
(sketched queries) search may be enhanced by seman-
tics (metadata tags) to constraint searches to particular
semantic objects. An adapted tag similarity using
shortest path is proposed, which has shown improved
performance than the standard tag co-occurrence based
similarity measure. Although our method of combining
text and sketch is simplistic, it is sufficient to show the
power of combining text with sketch via our GF-HOG
framework. Future directions of this work will explore
more sophisticated combination schemes, for example
kernel canonical correlation analysis (KCCA) [68]
which has been used to good effect combining photo-
realistic and textual constraints outside the domain of
SBIR.

Although GF-HOG computed over Canny edge maps
has here been shown to outperform state of the art de-
scriptors for SBIR, research questions remain around
the selection of scale for first deriving the Canny edge
map. It may be possible to draw upon work on group-
ing regions for structure invariant matching [69], to se-
lect an appropriate set of scales for edge detection and
further improve retrieval accuracy. However we believe
such enhancements are not necessary to demonstrate the
robustness and performance of GF-HOG for SBIR, and
its potential for use in sketch based retrieval applications
such as sketch-text search and photo montage.
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Content-based matching of line-drawing images using the
Hough transform, in: International Journal on Document Anal-
ysis and Recognition, pp.24-5.

[14] Sousa, P., Fonseca, M. J., 2010. Sketch-Based Retrieval of
Drawings using Spatial Proximity , in: Journal of Visual Lan-
guages and Computing (JVLC) pp.69-80.

[15] Wang, C., Zhang, J., Yang, B., Zhang, L., 2011.
Sketch2Cartoon: composing cartoon images by sketching, in:
ACM Multimedia, pp. 789-790.

[16] Liang, S., Sun, Z., Li, B., 2005, Sketch Retrieval Basedon Spa-
tial Relations, in: CGIV, pp. 24-29.

[17] Leung, W. H., Chen, T., 2002. Retrieval of sketches based on
spatial relation between strokes, in: ICIP pp. 908-911.

[18] Fonseca, M. J., Ferreira, A., Jorge, J. A., 2009. Sketch-based
retrieval of complex drawings using hierarchical topology and
geometry, in: Comput. Aided Des., pp. 1067-1081.

[19] Qiu, G., 2002. Indexing chromatic and achromatic patterns for
content-based colour image retrieval. in: Pattern Recognition,
pp. 1675-1686.

[20] Ashley, J., Flickner, M., Hafner, J. L., Lee, D., Niblack, W.,
Petkovic, D., 1995. The query by image content (QBIC) system.
In: SIGMOD Conference. p. 475.

[21] Smith, J., Chang, S.-F., 1996. Visualseek: a fully automated
content-based image query system. In: ACM Multimedia. pp.
87-98.

[22] Jacobs, C. E., Finkelstein, A., Salesin, D. H., Aug. 1995. Fast
multi-resolution image querying. In: Proc. ACM SIGGRAPH.
pp. 277-286.

[23] Do, M. N., Vetterli, M., 2002. Wavelet-based texture retrieval
using generalized gaussian density and kullback-leibler dis-
tance. in: IEEE Trans. Image Processing, pp. 146-158.

16



[24] Pi, M. H., Tong, C. S., Choy, S. K., Zhang, H., 2006. A fastand
effective model for wavelet subband histograms and its applica-
tion in texture image retrieval.

[25] Choy, S.-K., Tong, C.-S., 2010. Statistical wavelet subband
characterization based on generalized gamma density and its ap-
plication in texture retrieval. in: IEEE Trans. on Image Process-
ing 19 (2), pp. 281-289.

[26] Sciascio, E., Mongiello, M., Mongiello, M., 1999. Content-
based image retrieval over the web using query by sketch and
relevance feedback. In: Intl. Conf. on Visual Information Sys-
tems. pp. 123-130.

[27] Matusiak, S., Daoudi, M., Blu, T., Avaro, O., 1998. Sketch-
based images database retrieval. In: International Workshop on
Advances in Multimedia Information Systems. pp. 185-191.

[28] Mokhtarian, F., Mackworth, A. K., August 1992. A theory
of multiscale, curvature-based shape representation for planar
curves. in: PAMI, pp. 789-805.

[29] del Bimbo, A., Pala, P., 1997. Visual image retrieval by elastic
matching of user sketches, in: PAMI, pp. 121-132.

[30] Ip, H. H. S., Cheng, A. K. Y., Wong, W. Y. F., Feng, J., 2001.
Affine-invariant sketch-based retrieval of images. In: Interna-
tional Conference on Computer Graphics. pp. 55-61.

[31] Jain, A. K., Vailaya, A., 1996. Image retrieval using color and
shape. in: Pattern Recognition, pp. 1233-1244.

[32] Chans, Y., Lei, Z., Lopresti, D., Kung, S. Y., 1997. A feature-
based approach for image retrieval by sketch. In: SPIE Storage
and retrieval for image and video databases.

[33] Rajendran, R., Chang, S., 2000. Image retrieval with sketches
and compositions. In: ICME. pp. 717-720.

[34] Chalechale, A., Naghdy, G., Mertins, A., 2005. Sketch-based
image matching using angular partitioning. in: IEEE Trans. Sys-
tems, Man, and Cybernetics, pp. 28-41.

[35] Tao, L., Yuan, L., Sun, J., 2009. Skyfinder: Attribute-based sky
image search. In: ACM Trans. Graph.

[36] Shechtman, E., Irani, M., June 2007. Matching local self-
similarities across images and videos. In: CVPR.

[37] Wang, C., Cao, Y., Zhang, L., 2011. Mindfinder: A sketch based
image search engine based on edge index. In: Proc. Comp. Vi-
sion and Pattern Recognition.

[38] Eitz, M., Hildebrand, K., Boubekeur, T., Alexa, M., 2010.
Sketch-based image retrieval: Benchmark and bag-of-features
descriptors. In: TVCG. Vol. 99.

[39] Chen, T., Cheng, M.-M., Tan, P., Ariel, S., Hu, S.-M., 2009.
Sketch2Photo: internet image montage. in: ACM Trans. Graph.
28 (5), pp. 1-10.

[40] Wang, C., Li, Z., Zhang, L., 2010. Mindfinder: image search by
interactive sketching and tagging. In: WWW. pp. 1309-1312.

[41] Cao, Y., Wang, H., Wang, C., Li, Z., Zhang, L., Zhang, L.,2010.
Mindfinder: interactive sketch-based image search on millions
of images. In: ACM Multimedia. pp. 1605-1608.

[42] Sigurbj̈ornsson, B., van Zwol, R., 2008. Flickr tag recommen-
dation based on collective knowledge. In: WWW. pp. 327-336.

[43] Wartena, C., Brussee, R., Wibbels, M., 2009. Using tag co-
occurrence for recommendation. In: 19th International Confer-
ence on Intelligent Systems Design and Applications. pp. 273-
278.

[44] Schmitz, P., 2006. Inducing ontology from flickr tags. In: Pro-
ceedings of the Collaborative Web Tagging Workshop.

[45] Escalante, H. J., Montes, M., Sucar, L. E., 2008. Improving au-
tomatic image annotation based on word co-occurrence, pp. 57-
70.

[46] Isaac, A., van der Meij, L., Schlobach, S., Wang, S., 2007.
An empirical study of instance-based ontology matching. In:
ISWC/ASWC. pp. 253-266.

[47] Agrawal, R., Imielinski, T., Swami, A., 1993. Mining associa-
tion rules between sets of items in large databases. pp. 207-216.

[48] Lipczak, M., 2008. Tag recommendation for folksonomies ori-
ented towards individual users. In: ECML/PKDD Discovery

Challenge Workshop.
[49] Hu, R., James, S., Collomosse, J. P., 2012. Annotated Free-Hand

Sketches for Video Retrieval Using Object Semantics and Mo-
tion, in: MMM, pp. 473-484.

[50] Dalal, N., Triggs, B., 2005. Histograms of oriented gradients for
human detection. In: CVPR. pp. 886-893.
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