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a b s t r a c t 

We present a neural architecture search (NAS) technique to enhance image denoising, inpainting, and 

super-resolution tasks under the recently proposed Deep Image Prior (DIP). We show that evolutionary 

search can automatically optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP 

network, which serves as a content-specific prior to regularize these single image restoration tasks. Our 

binary representation encodes the design space for an asymmetric E-D network that typically converges 

to yield a content-specific DIP within 10–20 generations using a population size of 500. The optimized 

architectures consistently improve upon the visual quality of classical DIP for a diverse range of photo- 

graphic and artistic content. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many common image restoration tasks require the estimation 

f missing pixel data: denoising and artifact removal, inpainting, 

nd super-resolution. Usually, this missing data is estimated from 

urrounding pixel data, under a smoothness prior. Recently it was 

hown that the architecture of a randomly initialized convolutional 

eural network (CNN) could serve as an effective prior, regularizing 

stimates for missing pixel data to fall within the manifold of nat- 

ral images. This regularization technique referred to as the Deep 

mage Prior (DIP) [1] , exploits both texture self-similarity within an 

mage and the translation equivariance of CNNs to produce com- 

etitive results for the image restoration tasks mentioned above. 

owever, the efficacy of DIP is dependent on the architecture 

f the CNN used; different content requires different CNN archi- 

ectures for excellent performance and care over meta-parameter 

hoices, e.g., filter sizes, channel depths, epoch count [2] . 

This paper contributes an evolutionary strategy to automati- 

ally search for the optimal CNN architecture and associated meta- 

arameters given a single input image. The core technical contribu- 

ion is a genetic algorithm (GA) [3] for representing and optimizing 

 content-specific network architecture for use as the DIP regular- 

zer in image restoration tasks. DIP depends upon a hand-designed 

NN structure as a prior image reconstruction (as noted in the 
� This article was recommended for publication by M Kim. 
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riginal DIP paper). Therefore, DIP is only useful with a human in 

he loop, optimising the CNN to get good results. We show that 

uperior results are achieved through architecture search versus 

tandard DIP backbones (or random architectures). We contribute a 

ell-designed binary search space for NAS to automate this, mak- 

ng DIP practical for all 3 tasks originally proposed: in-painting, de- 

oising, and upscaling, and finding architectures that outperform 

ach of the hand-tuned examples for all images in the original 

IP paper. Figure 1 contrasts the output of classic DIP [1] with 

ur neural architecture search (NAS-DIP). Unlike image classifica- 

ion, to which NAS has been extensively applied [4–7] , optimizing 

rchitecture encoder-decoder (E-D) networks for image reconstruc- 

ion tasks is under-researched. Under DIP, an E-D network (whose 

rchitecture we seek) is overfitted to reconstruct the input image 

rom a random noise field, acquiring a generative model of that 

mage’s structure. Parallel work in GANs [8] has shown that ar- 

hitectural design, particularly of the decoder, is critical to learn- 

ng a sufficient generative model and that such architectures are 

ontent-specific. 

Further, we demonstrate that – whilst the optimized architec- 

ures are content-specific – common DIP architectures are evolved 

or common visual styles of an image; for example, DIP for im- 

ge reconstruction of painterly images shared similar backbones 

shown later in Fig. 5 ). This unique insight enables clustering of vi- 

ual style without supervision. It is exploited practically to speed- 

p the search via warm-start for known content types. For exam- 

le, if an image is detected as a painting, then the search space 

an be initialized to a known good distribution for painterly styles. 

his is important, as a common challenge with NAS methods is 

hat they are generally slow to converge. 

https://doi.org/10.1016/j.cag.2021.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2021.05.013&domain=pdf
mailto:a.gilbert@surrey.ac.uk
https://doi.org/10.1016/j.cag.2021.05.013
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Fig. 1. Neural Architecture Search yields a content-specific deep image prior (NAS- 

DIP) to enhance DIP for image restoration tasks e.g. denoising (top) and inpainting 

(bot.). 
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Our novel technical contributions are as follows: 

1. Representation and method for evolutionary neural architec- 

ture search of encoder-decoder architectures for DIP, leverag- 

ing a state-of-the-art perceptual metric to guide the optimiza- 

tion [9] . This enables DIP to be applied fully automatically , 

rather than relying on hand-tuning of the DIP architecture for 

each image (as [1,2] ). 

2. State of the art DIP results (PSNR/SSIM) for all 3 of the tasks 

(inpainting, denoising, up-scaling) proposed in the original DIP 

paper [1] , beating the hand-optimized DIP architectures pro- 

posed [2] . 

3. Demonstrating the content- style dependency of DIP architec- 

tures , which opens an efficient route to the application of our 

work, initializing NAS using pre-identified distributions of ar- 

chitectures for particular content styles. 

. Related work 

Neural architecture search (NAS) seeks to automate the de- 

ign of deep neural network architectures through data-driven op- 

imization [10] , most commonly for image classification [5,11] , but 

ecently also object detection [11] and semantic segmentation [12] . 

AS addresses a facet of the automated machine learning (AutoML) 

13] problem, which more generally addresses hyper-parameter op- 

imization and tuning of training meta-parameters. 

Early NAS leveraged Bayesian optimization for MLP networks 

14] , and was extended to CNNs [15] for CIFAR-10. In their seminal 

ork, Zoph and Le [16] applied reinforcement learning (RL) to con- 

truct image classification networks via an action space, tokeniz- 

ng actions into an RNN-synthesised string, with reward, driven 

y validation data accuracy. The initially high computational over- 

ead (800GPUs/4 weeks) was reduced while further enhancing ac- 

uracy. For example, by exploring alternative policies such as prox- 

mal policy optimization [17] or Q-learning [18] , RL approaches 

ver RNN now scale to contemporary datasets, e.g. NASNet for Ima- 

eNet classification [11,19] and was recently explored for GAN over 

IFAR-10 [20] . Cai et al. [21] similarly tokenizes the architecture 

ut explore the solution space via sequential transformation of the 

tring via function-preserving mutation operations on an LSTM- 

earned embedding of the string. Our work also encodes architec- 

ure as an (in our case, binary) string but optimizes via an evo- 

utionary strategy rather than training a sequential model under 

L. Evolutionary strategies for network architecture optimization 

ere first explored for MLPs in the early nineties [22] . Genetic al- 
189 
orithms (GAs) were used to optimize both the architecture and 

eights [23,24] , rather than rely upon back-prop to reduce the 

A evaluation bottleneck; however, this is not practical for con- 

emporary CNNs. While selection and population culling strategies 

4,5,7,25] have been explored to reduce computational costs in de- 

eloping high performing image classification networks over Ima- 

eNet. Similarly, a Super-Net based one-shot NAS [26] uses a multi- 

ath sampling strategy with rejection to greedily filter the weak 

aths. 

Our work contributes to the much sparser body of research op- 

imizing E-D networks [27,28] . It is unique in that we explore im- 

ge restoration architectures via GA optimization, and as such, our 

rchitecture representation differs from prior work, including very 

ecent, contemporaneous work [29] . 

Single image restoration has been extensively studied in clas- 

ical vision and deep learning, where priors are prescribed or 

earned from representative data. A common prior to texture syn- 

hesis is the Markov Random Field (MRF), in which the pair- 

ise term encodes spatial coherence. Several inpainting works 

xploit MRF formulations of this kind [30–32] , including meth- 

ds that source patches from the input [33] or multiple external 

34,35] images, or use random propagation of a few good matched 

atches [36] . Patch self-similarity within single images has also 

een exploited for single image super-resolution [37] and denois- 

ng. The DIP [1] (and its video extension [38] ) exploit translation 

quivariance of CNNs to learn and transfer patches within the re- 

eptive field. Very recently, single image GAN [39] has been pro- 

osed to learn a multi-resolution model of appearance, and DIP 

as been applied to image layer decomposition [40] . Our work 

argets the use cases for DIP proposed within the original pa- 

er [1] , namely super-resolution, denoising, and region inpaint- 

ng. Generative Adversarial Networks (GANs) are more widely used 

or inpainting and super-resolution [41,42] by learning structure 

nd appearance from a representative corpus image data [43] , in 

ome cases explicitly maintaining both local and global consistency 

hrough independent models [44] . Our approach and the DIP ap- 

roach differs in that we do not train a network to perform a spe- 

ific task. Instead, we use an untrained (randomly initialized) net- 

ork to perform the tasks by overfitting such a network to a single 

mage under a task-specific loss using neural architecture search. 

. Architecture search for DIP 

The core principle of DIP is to learn a generative CNN G θ (where 

are the learned network parameters e.g. weights) to reconstruct 

 from a noise field N of identical height and width to x , with pix-

ls drawn from a uniform random distribution. Ulyanov [1] propose 

 symmetric encoder-decoder network architecture with skip con- 

ections for G θ , comprising five pairs of (up-)convolutional layers 

ith varying architectures depending on the image restoration ap- 

lication (denoising, inpainting or super-resolution) and the image 

ontent. A reconstruction loss is applied to learn G θ for an image 

 : 

∗ = arg min 

θ
θ‖ G θ (N ) − x ‖ 

2 
2 . (1) 

Our core contribution is to optimize not only for θ but also for 

rchitecture G using a genetic algorithm (GA), guided via a percep- 

ual quality metric [9] , as now described. For clarity, we use ‘epoch’ 

o refer to a network architecture training cycle proposed by NAS. 

e use ‘generation’ to refer to an iteration of the genetic algorithm 

GA) used to discover those architectures. 

.1. Network representation 

We encode the space of encoder-decoder (E-D) architectures 

rom which to sample G as a constant length binary sequence, 
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Fig. 2. Architecture search space of NAS-DIP(-T). The Encoder-Decoder (E-D) network G (right) is formed of several E-D Units ( U n ) each with an Encoder E n ) and Decoder 

D n paired stage (zoomed, left) represented each by 7 bits plus an additional 4 N bits R n to encode gated skip connections from E n to other decoder blocks in the network. 

Optionally the training epoch count T is encoded ( Section 3.1 ). Under DIP images are reconstructed from constant noise field N by optimizing to find weights θ thus 

overfitting the network to input image x under reconstruction loss e.g. here for denoising ( Eq. (3) ). 
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epresenting N paired encoder-decoder units U = { U 1 , ..., U N } . Fol-

owing [1] , G is a fully convolutional E-D network and optimize 

or the connectivity and meta-parameters of the convolutional lay- 

rs. A given unit U n comprises encoder E n and decoder D n convo- 

utional stages denoted E n and D n respectively each of which re- 

uires 7 bits to encode its parameter tuple. Unit U n requires a to- 

al 14 + 4 N bits to encode, as an additional 4 N -bit block for the

nit, encodes a tuple specifying the configuration of skip connec- 

ions from its encoder stage to each of the decoder stages i.e both 

ithin itself and other units. Thus, the total binary representation 

or an architecture in neural architecture search for DIP ( NAS-DIP ) 

s N(14 + 4 N) . For our experiments, we use N = 6 but note that the

ffective number of encoder or decoder stages varies according to 

kip connections. Figure 2 illustrates the organization of the E-D 

nits (right) and the enlarged detailed architecture of a single E 

nd resultant 3 D units (left). Each unit U n comprises the following 

inary representation, where super-scripts indicate elements of the 

arameter tuple: 

E s n ∈ [0 , 1] (1 bit) a binary indicator of whether the encoder 

tage of unit U n is skipped (bypassed). E 
f 
n ∈ [0 , 7] (3 bits) encod-

ng filter size f = 2 E 
f 
n + 1 learned by the convolutional encoder. E h n 

 [0 , 7] (3 bits) encoding number of filters h = 2 E 
h 
n −1 and so chan-

els output by the encoder stage. D 

s 
n ∈ [0 , 1] (1 bit) a binary in-

icator of whether the decoder stage of unit U n is skipped (by- 

assed). D 

f 
n ∈ [0 , 7] (3 bits) encoding filter size f = 2 D 

f 
n + 1 learned

y the up-convolutional decoder stage. D 

h 
n ∈ [0 , 7] (3 bits) encod- 

ng number of filters h = 2 D 
h 
n −1 and so channels output by the de-

oder stage. R n ∈ B 

4 N (4N bits) encodes gated skip connections 

s [ ρ1 
n , ..., ρ

N 
n ] ; each 4-bit group ρ i 

n ∈ [0 , 15] determines whether

ated skip path r i n connects from E n to D i and if so, how many

lters/channels (i.e skip gate is open if r i n = 0 ). 

NAS-DIP-T. We explore a variant of the representation encod- 

ng maximum epoch count T = 500 ∗ (2 t − 1) via two additional 

its coding for t and thus a representation length for NAS-DIP-T 

f N(14 + 4 N) + 2 . 

Symmetric NAS-DIP. We also explore a compact variant of the 

epresentation that forces E n = D n for all parameters, forcing a 

ymmetric E-D architecture to be learned and requiring only 10 

its to encode U n and compare to asymmetric architectures in 

ection 4.2 . 

.2. Evolutionary optimization 

DIP provides an architecture specific prior that regularises the 

econstruction of a given source image x from a uniform random 

oise field N . Fixing N constant, we use a genetic algorithm (GA) 

o search architecture space for the optimal architecture G 

∗ to re- 
190 
over a ‘restored’ e.g. denoised, in-painted or upscaled version ˆ x of 

hat source image: 

ˆ 
 = G 

∗
θ ∗ (N ) . (2) 

As simulate the process of natural selection by breeding suc- 

essive generations of individuals through the processes of cross- 

ver, fitness-proportionate reproduction, and mutation. In our im- 

lementation, such individuals are network configurations encoded 

ia our binary representation. Figure 3 illustrates NAS-DIP conver- 

ence for inpainting task on BAM! [45] . The left illustrating the In- 

ut (top) and converged (bottom) result at generation 13, together 

ith samples of the top, middle and bottom performing architec- 

ure results. 

Individuals are evaluated by running a pre-specified DIP im- 

ge restoration task using the encoded architecture. We consider 

estoration tasks (denoising, inpainting, super-resolution) in which 

n ideal ˆ x is unknown (is sought) and so a proxy must guide the 

A search. In lieu of this ground truth we employ a trained percep- 

ual measure ( Section 3.2.1 ) to assess the visual quality generated 

y any candidate architecture by training G 

∗
θ
(N) via backpropaga- 

ion to minimize a task specific reconstruction loss: 

 de −noise (x ; G ) = min 

θ
|| G θ (N ) − x || 2 2 . (3) 

 in −paint (x ; G ) = min 

θ
|| M(G θ (N )) − M(x ) || 2 2 . (4) 

 upscale (x ; G ) = min 

θ
|| D (G θ (N )) − x || 2 2 . (5) 

Where D is a bi-linear downsampling operator reducing its tar- 

et to the size of x and M(. ) is a masking operator that returns

ero within the region to be in-painted. 

We now describe a single iteration of the GA search, which is 

epeated until the improvements gained over the last few genera- 

ions are marginal (the change in both average and maximum pop- 

lation fitness over a sliding window fall below a threshold). 

.2.1. Population sampling and fitness 

We initialize a population of K = 500 possible network config- 

ration solutions uniformly sampling B 

N (14+4 N ) to seed initial ar- 

hitectures G = { G 1 , G 2 , ..., G K } . The visual quality of ˆ x under each

rchitecture is assessed via the pairwise perceptual measure (LPIPS 

core) [9] against the source image as a proxy for individual fit- 

ess. We explored several scores from the GAN literature including 

nception Score [46] and Frechet Inception Distance [47] but found 

air-wise LPIPS to improve convergence of NAS-DIP. 
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Fig. 3. NAS-DIP convergence for inpainting task on BAM! [45] . Left: Input (top) and converged (bottom) result at generation 13. Right: Sampling the top, middle and bottom 

performing architectures (shown in respective rows) from a population of 500 architectures, at the final (1st, middle) and final (13th, rightmost) generations. Inset scores: 

Fitness selection is driven using LPIPS [9] ; evaluation by PSNR/SSIM. 
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1 http://www.cs.tut.fi/ ∼foi/GCF-BM3D/index.html#ref _ results 
Architectures that produce higher quality outputs are more 

ikely to be selected for the next generation of solutions. Pop- 

lation or network configuration diversity is encouraged via the 

rocess’s stochasticity and a random mutation into the offspring 

enome. We apply elitism; the bottom 5% network configurations 

r population is culled, and the top 5% pass unperturbed to the 

ext generation – the fittest individual in successive generations is 

hus at least as fit as those in the past. The middle 90% is used to

roduce the remainder of the next generation. Two network con- 

gurations or individuals are selected stochastically with a bias to 

tness p(G i ) = f (G i ) / 
∑ K 

j=1 f (G j ) , and bred via cross-over and mu-

ation ( Section 3.2.2 ) to produce a novel offspring for the succes- 

ive generation. This process repeats with replacement until the 

opulation count equals the previous. 

.2.2. Cross-over and mutation 

Individuals are bred via genetic crossover; given two constant 

ength binary genomes of form G { (E 1 , R 1 , D 1 ) , ..., (E N , R N , D N ) } ∈
 

N (14+4 N ) , a splice point S = [1 , N] is randomly selected such that

nits from a pair of parents A and B are combined via copying of 

nits U N<S from A and U N≥S from B. Such cross-over could generate 

yntactically invalid genomes, e.g., due to tensor size incompatibili- 

ies between units in the genome. During the evaluation, an invalid 

rchitecture evaluates to zero, prohibiting its selection for subse- 

uent generations. 

Population diversity is encouraged via the stochasticity of se- 

ection and introducing a random mutation into the offspring 

enome. Each bit within the offspring is subject to random flip 

ith low probability p m 

; we trade-off this rate against convergence 

n Section 4.2.2 . 

.2.3. Efficient deployment 

Architectures discovered by NAS-DIP are visualized in Fig. 5 , 

sing t-SNE projection in the architecture space ( B 

N (14+4 N ) ) for a 

olution population at convergence (generation 20) for a repre- 

entative inpainting task for which symmetric E-D network was 

ought. This grouping within the style genre classes demonstrates 

hat the NAS-DIP is able to inpaint within a broad range of styles. 

he evolutionary optimization process typically converges within 

0 epochs, resulting in more robust candidate architectures within 

he search space. 

We observe that similar kinds of visual content repeatedly re- 

ult in similar clusters of architecture emerging from the NAS; 

ig. 5 visualizes 80 best performing networks for inpainting BAM! 
191 
rtworks of identical content (flowers) but exhibiting eight differ- 

nt artistic styles. Each image has been run through NAS-DIP under 

oss Eq. (4) . This result reinforces our main scientific contribution 

f automatic discovery of CNN architectures for DIP via evolution- 

ry NAS. However also presents a practical route to engineering an 

fficient deployment of our technique, which, like all NAS, requires 

engthy search times (in the order of a few hours) to find the best 

rchitectures for a given image and reconstruction task. 

We cache the results of NAS-DIP for images of several visual 

tyles (we use the 8 BAM! style classes defined in [35] ). We use

his distribution of architectures to seed the initial population 

ather than random sampling, based on the visual content being 

econstructed. Following [45] we train a ResNet50 classifier with 

ean Average Precision of (98.6, 97.3, 100.0, 98.5, 97.1, 89.5, 98.6, 

7.4) for classes (3D, comic, graphite, oil, pen ink, photo, vector art, 

atercolor) respectively to decide on the relevant initial distribu- 

ion of architectures, which can then be fine-tuned using just one 

poch of NAS evolution in just 1-2 min; representative output is 

ncluded in Fig. 6 . 

. Experiments and discussion 

We evaluate the proposed neural architecture search technique 

or DIP (NAS-DIP) for each of the three image restoration tasks pro- 

osed in DIP [1] : image inpainting, super-resolution, and denoising. 

.1. Datasets 

NAS-DIP works by optimising over a single image, for the 

atasets, we evaluate over a number of public datasets: 1) 

laces2 [48] ; a dataset of photos commonly used for inpainting 

test partition sampled as [44] ); 2) Behance Artistic Media (BAM!) 

49] ; a dataset of 8 media styles, test partition as [35] ; 3) 9 de-

oising images and 11 inpainting images both from 

1 as used by 

n the DIP work [1] ; 4) Set14 [50] dataset for 4x Super resolu- 

ion also used in the DIP work [1] . the dataset of images used 

o evaluate the original DIP algorithm. Where baseline comparison 

s made to images from the latter, the specific network architec- 

ure is replicated according to Ulyanov et al. [2] and the authors’ 

ublic implementation. Results are quantified via three objective 

etrics; PSNR (as in DIP) and structural similarity (SSIM) [51] are 

http://www.cs.tut.fi/~foi/GCF-BM3D/index.html#ref_results
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Fig. 4. Evaluation of proposed NAS-DIP (and variants) vs classical DIP [1] , for inpainting, denoising and 4 × super-resolution on the Library, Plane and Zebra images of the 

DIP dataset. 

Table 1 

Per-dataset performance of NAS-DIP (asymmetric) versus DIP, over the dataset proposed in DIP, also BAM!, Places2. 

Dataset Task PSNR ↑ LPIPS ↓ SSIM ↑ 
DIP NAS-DIP DIP NAS-DIP DIP NAS-DIP 

BAM! [45] inpainting 16.8 19.76 0.42 0.25 0.32 0.62 

Places2 [44] inpainting 12.4 15.43 0.37 0.27 0.67 0.90 

11 Images 1 [1] inpainting 29.92 30.40 0.11 0.07 0.84 0.89 

9 Images 1 [1] denoising 29.22 30.42 0.09 0.07 0.87 0.91 

Set14 [50] super-res x4 27.00 28.45 0.15 0.11 0.87 0.91 

Table 2 

Detailed quantitative comparison of visual quality under three image restoration tasks for the DIP dataset. Comparison between the architecture presented in the original 

DIP for each image, with the best architecture found under each of three variants of the proposed method: NAS-DIP, NAS-DIP-T, and NAS-DIP constrained to symmetric E-D 

( Section 3.1 ). Quality metrics: LPIPS [9] (used in NAS objective); and both PSNR and SSIM [51] as external metrics. 

Task Image PSNR ↑ LPIPS ↓ SSIM ↑ 
DIP Sym Asym Asym DIP Sym Asym Asym DIP Sym Asym Asym 

NAS-DIP NAS-DIP NAS-DIP-T NAS-DIP NAS-DIP NAS-DIP-T NAS-DIP NAS-DIP NAS-DIP-T 

inpainting Vase 18.3 29.8 29.2 30.2 0.76 0.02 0.01 0.02 0.48 0.95 0.96 0.95 

Library 19.4 19.7 20.4 20.0 0.15 0.10 0.09 0.12 0.83 0.81 0.84 0.83 

Face 33.4 34.2 36.0 35.9 0.078 0.03 0.01 0.04 0.95 0.95 0.96 0.95 

denoising F16 23.1 25.8 25.7 25.9 0.15 0.096 0.09 0.07 0.85 0.90 0.92 0.94 

Snail 12.0 12.6 12.2 12.7 0.11 0.12 0.09 0.06 0.61 0.52 0.74 0.84 

super-res Zebra 4x 25.7 26.2 25.6 26.0 0.19 0.13 0.14 0.14 0.67 0.51 0.75 0.72 

Zebra 8x 20.6 22.6 21.96 22.6 0.57 0.29 0.19 0.20 0.28 0.34 0.48 0.47 
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sed to evaluate against ground truth, and the perceptual metric 

LPIPS) [9] used as fitness score in the GA. Note that during train- 

ng, we optimise over the LPIPS metric as the fitness score of can- 

idate networks and therefore the main performance metrics are 

SNR and SSIM, which are not used within the optimisation pro- 

ess. 

.1.1. Training details 

We implement NAS-DIP in Tensorflow, using ADAM and a learn- 

ng rate of 10 −3 for all experiments. For NAS-DIP, the epoch count 

s 20 0 0; otherwise, this and other metaparameters are searched 

ia the optimization. To alleviate the evaluation bottleneck in NAS 

which takes, on average, 2-3 min per architecture proposal), we 

istribute the evaluation step over 16 Nvidia Titan-X GPUs capa- 

le of each evaluating two proposals concurrently for an average 

AS-DIP search time of 3-4 h total (for an average of 10–20 gen- 

rations to convergence). Our DIP implementation extends the au- 

hors’ public code for DIP [1] . Reproducibility is critical for NAS- 

IP optimization; the same genome must yield the same percep- 
192 
ual score for a given source image within the generations. In addi- 

ion to fixing all random seeds (e.g., for batch sampling and fixing 

he initial noise field), we take additional technical steps to avoid 

on-determinism in cuDNN through the avoidance of atomic add 

perations in image padding present in original DIP code. If differ- 

nt initial seeds were used, there was little difference found in the 

nal results, as generally, the populations converged within the 20 

enerations to the same/similar results. 

.2. Network representation 

We evaluate three variants of the architecture representation 

roposed in Section 3.1 : NAS-DIP, NAS-DIP-T (in which epoch count 

s also optimized), and a constrained version of NAS-DIP, forcing 

 symmetric E-D network. For all experiments, N = 5 enabling E- 

 networks of up to 10 (up-)convolutional layers with gated skip 

onnections. Performance is evaluated using PSNR for comparison 

ith original DIP [1] and SSIM and the LPIPS score used to guide 

AS is also reported. Table 2 provides direct comparison on im- 
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Fig. 5. NAS-DIP content specific architecture discovery: t-sne visualization of dis- 

covered architectures in B N (14+4 N ) inpainting artwork from BAM! [45] (7 BAM styles 

+ DIP photograph); common visual styles yield a common best performing archi- 

tecture under NAS-DIP. 

a

a

n

t

[

a

n

F

a

a

h

o  

e

B

e

w  

D

r

F

Fig. 6. In-painted results (source/mask left, output right) of 7 BAM styles + DIP 

photograph for proposed NAS-DIP content specific architecture discovery. 
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ges from Ulyanov et al. [1] ; visual output and convergence graphs 

re shown in Fig. 4 . Following random initialization, relative fit- 

ess gains of up to 30% are observed after 10–20 generations, af- 

er which performance converges to values above the DIP baseline 

1] in all cases. 

For both inpainting and denoising tasks, asymmetric networks 

re found that outperform any symmetric network, including the 

etworks published in the original DIP for those images and tasks. 

or super-resolution, the symmetric network is found to exceed 

symmetric networks and constraining the genome in this way 

ids in discovering a performant network. In all cases, it was un- 

elpful to optimize for epoch count T , despite prior observations 

n the importance of tuning T in DIP [1] . Table 1 broadens the

xperiment for NAS-DIP, averaging performance for three datasets: 

AM! with 80 randomly sampled images, ten from each of the 

ight styles; Places2 with a 50 image subset included in [44] ; DIP 

ith 7 images used in [1] . For all 3 tasks and all 3 datasets, NAS-

IP discovers networks outperforming classic DIP [1] . Additional 

esults of the denoising and 8x super-resolution can be seen in 

ig. 8 
ig. 7. Result of varying mutation (bit flip) rate p(r) ; improved visual quality (left, zoo

verage of 4 bit flips per offspring. Convergence graph for each image (right). 
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.2.1. Perceptual user inpainting study 

We conducted a study via Amazon Mechanical Turk (AMT) 

o compare NAS-DIP performance versus the classic DIP baseline. 

ighty random images sampled from BAM! (10 per 8 styles) were 

isplayed next to each result in a random arrangement presented 

o 5 participants, yielding 400 annotations. Participants were asked 

o ‘identify the highest quality image’ without sight of the ground 

ruth. A consensus threshold of 3 out of 5 (majority vote) was used 

o disregard results that failed to reach consensus. Our approach 

ignificantly outperforms the existing baselines DIP with results 

choing Table 1 trends, with 80.9% preference for NAS-DIP. 

.2.2. Evaluating mutation rate 

Population elitism requires a moderate mutation rate p(r) to 

nsure population diversity and so convergence, yet raised too 
m recommended) is obtained with a mutation rate of p(r) = 0 . 05 equating to an 
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Fig. 8. Example denoising and super-resolution results for. 
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Fig. 10. Qualitative comparison of NAS-DIP inpainting vs. 3 (trained) baselines; 

PatchMatch [36] , ImgComp [44] , Style-aware [35] . Zoom to view. 

Table 3 

SSIM result comparison between NAS-DIP and baselines over Places2 results in [44] . 

SSIM, higher is better. 

Method 

IM [52] PM [36] CE [53] GL [44] Asym NAS-DIP 

SSIM 0.76 0.88 0.74 0.89 0.90 
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igh convergence occurs at a lower quality level. We evaluated 

p m 

= { 0 . 01 , 0 . 02 , 0 . 05 , 0 . 10 } observing that for all tasks, a bit flip

robability of 5% (i.e. an average of 4 bit flips per offspring for 

 = 5 ) encourages convergence of the highest fitness value. This 

orrelates to the highest visual quality according to both PSNR 

nd SSIM external metrics. Figure 7 provides representation visual 

utput alongside convergence graphs. In general, convergence is 

chieved in 10–20 generations taking a few hours on a single GPU 

or a population K = 500 . 

.3. Content aware inpainting 

To provide a qualitative performance of the Content-Aware in- 

ainting, we compare our proposed approach against several cur- 

ent baselines: PatchMatch [36] , a recent GAN inpainting work that 

ses millions of training images [44] , and the Style-aware inpaint- 

ng [35] . We compare against the same baselines using scenic pho- 

ographs in Places2, Fig 10 presents a visual comparison over the 
ig. 9. Comparing structure and depth of best vs. worst discovered architectures at conve

omparison) for each of the 3 tasks. Architecture space ( B N (14+4 N ) ). 

194 
mage set included in [44] with the same mask regions, and the 

uantitative results are presented in Table 3 . while the Places2 line 

n Table 1 indicates the quantitative performance of the approach 

n the Places2 dataset images. 

.4. Discovered architectures 

The distribution of architectures discovered by NAS-DIP for a 

ingle representative image is visualized in Fig. 11 . Using t-SNE 

rojection in the architecture space ( B 

N (14+4 N ) ) for a solution pop- 

lation at convergence (generation 20) for a representative super- 

esolution task for which symmetric E-D network was sought. Dis- 

inct clusters of more robust candidate architectures have emerged 

ith distinct skip activations and channel widths, color coding 

ndicates fitness. This shows image quality to be conditioned on 

 complex mix of these parameters and not solely, for example, 

n network capacity (maximum channel width). While population 

t convergence is multi-modal, with no single converged network 

onfiguration identified. 

We evaluate multiple tasks for a single given image. 

igure 9 shows best and worst performing architectures, com- 

aring how characteristics of architectures differ for the three 

ifferent tasks of inpainting, super-resolution and denoising (note 

or fairness of comparison, we fix the E-D network to symmet- 

ic forcing the same layer count N = 5 for each task. Note that 

igher capacity networks are learned for inpainting. All successful 

etworks smoothly increase/decrease channel count with layer 

epth versus the more irregular arrangement of worse perform- 
rgence for a single image (fixed N = 5 symmetric E/D layer representation for fair 
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Fig. 11. t-SNE visualizations in architecture space ( B N (14+4 N ) ) for NAS-DIP, N = 5 symmetric network: Population at convergence is multi-modal (super-resolution). 
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ng networks. Compared to the default architectures in classic 

IP [2] there is an increase in skip connections and diversity of 

hannel depths that would be hard to tune manually. 

Next, we explore multiple images for a single given task. 

igure 5 visualizes, via t-SNE, the best performing architectures 

n B 

N (14+4 N ) for inpainting 80 images, sampled from BAM! [45] . 

he images contain similar content (flowers) but exhibit different 

tyles (10 each of 8 different styles). Each image has been run 

hrough NAS-DIP under loss Eq. (4) ; representative output is in- 

luded in Fig. 6 . The plot reveals style-specific clusters; pen-and- 

nk, graphite sketches, 3D graphics renderings, comics, and vector 

rtwork all form distinct groups while others, e.g., watercolor, form 

everal clusters. We conclude that images that share a common vi- 

ual style exhibit commonality in network architecture necessary 

o perform image reconstruction well. This suggests a future appli- 

ation for NAS-DIP beyond NAS to unsupervised clustering of style. 

. Conclusion 

We reported neural architecture search (NAS) for image re- 

onstruction under the recently proposed DIP [1] , learning a 

ontent-specific prior for a given source image in the form of an 

ncoder-decoder (E-D) network architecture. Following the success 

f evolutionary search techniques for image classification networks 

4,5] we leveraged a genetic algorithm to search a binary archi- 

ecture space. We demonstrated its efficacy for image denoising, 

npainting, and super-resolution. For the latter case, we observed 

 constrained version of our genome yielding symmetric networks 

xceeded that of asymmetric networks, which benefited the other 

wo tasks. In all cases, we observed the discovered networks’ per- 

ormance to significantly exceed classical DIP and the potential for 

ontent-specific architectures beyond image restoration to unsu- 

ervised style clustering. Future work could pursue explore fur- 

her generalizations beyond fully convolutional E-Ds to incorporate 

ooling and normalization strategies. 
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