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Abstract. We present a novel view synthesis method based upon latent
voxel embeddings of an object, which encode both shape and appearance
information and are learned without explicit 3D occupancy supervision.
Our method uses an encoder-decoder architecture to learn such deep
volumetric representations from a set of images taken at multiple view-
points. Compared with DeepVoxels, our DeepVoxels++ applies a series
of enhancements: a) a patch-based image feature extraction and neu-
ral rendering scheme that halves the 2D U-Net parameter numbers, and
enables neural rendering at high resolution; b) learned view-dependent
feature transformation kernels to explicitly model perspective transfor-
mations induced by viewpoint changes; c) a recurrent-concurrent aggre-
gation technique to alleviate single-view update bias of the voxel embed-
dings recurrent learning process. Combined with d) a simple yet effective
implementation trick of frustum representation sufficient sampling, we
achieve significantly improved visual quality over the prior deep voxel-
based methods (33% SSIM error reduction and 22% PSNR improvement)
on 360◦ novel-view synthesis benchmarks of diffuse objects.

1 Introduction

A physical scene is far more complex than any number of images of it, so one
cannot just “reconstruct it.” The question of how to evaluate a model of a scene
depends on whether one has access to additional sensors (e.g. tactile), or prior
knowledge (e.g. scale of objects). In the absence of any side information, the most
fundamental measure of quality of a model built from data is its ability to predict
data that the model can generate [1, 2]. Hence, view synthesis can be thought
of as a fundamental step in building and evaluating models of physical scenes
from images. There are also practical ramifications of novel-view synthesis to
video compression, graphics rendering and reinforcement learning. Before deep
learning, novel-view synthesis was either approached as a pipeline of motion
estimation, sparse reconstruction, topology estimation, meshing, and texture
mapping [3], or directly by resampling the plenoptic function [4]. More recently,
Sitzmann et al. [5] proposed DeepVoxels – an approach employing a 3D grid
of persistent features integrated over input images along with 2D lifting and
projection networks.
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Fig. 1. Rendering results of our model DeepVoxels++ have sharper details (e.g. text,
fine-grained shapes) and fewer artifacts (e.g. aliasing, holes) than DeepVoxels [5].

We learn 3D voxel embeddings of object shape and appearance based on
image patches, whose pose can be directly controlled to generate novel views at
high resolution. Our method is based on DeepVoxels [5], but with significantly
improved rendering quality leveraging a series of improvements and a simple yet
effective implementation trick of 3D embeddings sampling. Specifically, Deep-
Voxels++ is different from DeepVoxels in four aspects:

1. Low-complexity patch modelling. We adopt a patch-based training and
inference scheme that halves the 2D U-Net parameters used in image feature
extraction and neural rendering. It also reduces the complexity of large image
context modeling (e.g. 512×512×3 full image vs. 128×128×3 small patch) and
thus enables image modeling as well as rendering at high resolution in sliding
window manner.

2. View-dependent voxel feature transformations. Viewpoint changes can
cause perspective transformations in the observed images (see Fig. 3). We di-
rectly learn view-dependent feature transformation kernels in the lifting/projection
steps to model such perspective effect. We transform the features from input
patches to the 3D voxel embeddings and then from the voxels to output patches
based on the relative voxel-camera poses. We demonstrate this idea on objects
of diffuse reflection, delicate shapes and limited training views.

3. Recurrent-concurrent voxel feature aggregation. We aggregate 3D
voxel embeddings utilizing both recurrent gated-fusion and concurrent max-
pooling. It differs from existing works which treat multi-view images as a se-
quence and solely rely on recurrent networks [6, 5, 7]. Our method increases sur-
face coverage of an object during each iteration of voxel feature aggregation
and improves data utilization rate. For example, our model learned using 1/3
training data outperforms DeepVoxels [5] using the full data.

4. Frustum representation sufficient sampling. Sampling the 3D voxel
embeddings into a frustum of the target pose is a critical step in decoding the
learned volumetric representation into a rendered image. We empirically found
that sufficient frustum sampling is a simple yet effective implementation trick
to alleviate the issue of limited voxel resolution, reduce blurring artifacts, and
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preserve sharp details. It enforces the voxel feature learning process which in
turn helps encode fine-scale details in the learned 3D voxel embeddings.

Overall, our approach DeepVoxels++ improves over DeepVoxels upon the
visual quality of novel-view rendering at various poses (by up to 33% SSIM error
reduction and 22% PSNR performance boost). We use the same 360◦ novel-view
synthesis benchmarks as DeepVoxels [5], which contain 512×512 color images of
delicate shapes/textures and diffuse reflectance. In contrast, other object based
novel-view synthesis methods [8–11] mainly use the 256×256 ShapeNet images
that consist of mostly mono-color flat surfaces and do not evaluate novel-view
rendering results at 360◦ densely sampled poses. Finally, to add interpretability
of our model, we conduct ablation studies to reveal the impact of our several
enhancements in delivering this enhanced rendering quality.

2 Related work

Our work is related to multiple fields in 3D computer vision and graphics: image-
based modeling, deep learning for view generation, 3D representation learning
and neural-rendering, and deep learning with feature structure constraints. We
mainly review papers in these areas.

Image-based modeling Image-based modeling and rendering techniques
[3] are the early approaches to the novel view synthesis problem. Modern ap-
proaches, such as [12–14], are able to obtain high-quality results even for chal-
lenging scenarios with hand-held cameras. However these methods usually re-
quire multiple steps to (soft) reconstruct the object or learn image blending
weights, and therefore they are prone to accumulative errors. They do not take
full advantage of large scale multi-view datasets for 3D latent embedding learn-
ing and (adversarial) image generation training from the learned embeddings.

Deep learning for view generation With the advent of deep convolu-
tional neural networks (CNNs), data-driven methods are gaining popularity for
novel view generation [15, 16, 8, 17, 18, 9, 10, 19, 20, 5, 21–24]. The early methods
overlook inherent 3D object structures/constraints and rely heavily on optical
flow estimation [8] and generative adversarial networks [17, 18]. The former can
maintain fine details in generated images while the latter are good at handling
large pose changes for view synthesis. There are also hybrid approaches that
combine the benefits of both sides [9, 10]. A common limitation of these meth-
ods is that they lack a geometrically persistent 3D representation of the object
and thus tend to produce inconsistent images across output poses [5, 25].

3D representation learning and rendering 3D representation learn-
ing and neural-rendering with deep networks is a problem studied in 3D Deep
Learning. Various approaches have been proposed using point clouds [26], im-
plicit neural functions [21], voxel grids [27], multi-plane images [19, 20, 23, 28],
and etc. We follow the line of work using voxel grids [27, 6, 11, 5] which offer
a geometrically persistent structure to integrate visual information across mul-
tiple poses around the object. In particular Sitzmann et al. [5] demonstrate



4 T. He, et al.

Fig. 2. DeepVoxels++ pipeline. Red: view-dependent patch feature extraction from V
views. Blue: 3D voxel embeddings aggregation with recurrent gated-fusion and concur-
rent max-pooling. Green: view-dependent image patch rendering. Full network archi-
tectures are in the supplementary material. The networks are trained jointly with L1

image reconstruction losses upon rendered views.

promising results for novel-view rendering utilizing a learned deep voxel rep-
resentation. In this work, we achieve significantly enhanced visual quality for
360◦ novel-view synthesis than [5] via a series of enhancements on feature ex-
traction/transformation/aggregation, and a simple yet effective implementation
trick of voxel embeddings sufficient sampling when rendering images.

Learning with feature structure constraints Our work is also related
to the emerging direction of introducing explicit structure constraints upon deep
features to data-driven deep network models [29–32]. For example, Worrall et
al. [30] impose a 3×3 rotation matrix constraint on high-dimensional features
by length dividing and sub-vector multiplication to learn an interpretable rep-
resentation for rotation/scaling factors. In this work, we propose to learn voxel
feature transformation kernels conditioning on the relative voxel-camera poses.
The learned kernels are used to model perspective transformations of the ob-
served/rendered images induced by viewpoint changes under diffuse reflectance.

3 Method

Our model, DeepVoxels++, learns latent 3D voxel embeddings using color im-
ages of an object from multiple viewpoints. Our deep network architecture can
be perceived as: an encoder-decoder with a geometrically consistent voxel feature
space as the latent representation. As shown in Fig. 2, the architecture comprises
three stages that are trained jointly by 2D view prediction without any 3D oc-
cupancy supervision: (encoder) view-dependent feature extraction from image
patches, (bottleneck) recurrent-concurrent aggregation of lifted features to form
the latent 3D voxel embeddings, (decoder) view-dependent patch rendering. At
test time we only need the learned 3D voxel embeddings (bottleneck) and the
view-dependent patch neural-rendering network (decoder) for 360◦ novel-view
synthesis. Namely, we do not require any reference input image. Because the
shape and appearance information of the target object has already been en-
coded into the learned volumetric features.
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The training data of each object consists of M multi-view images {Ii, gi}Mi=1,
where Ii : D ⊂ R2 is a 512×512×3 color image captured at a pose gi ∈ R4×4.
The pose can be computed by structure-from-motion (SFM) [33, 34]. At training

time, the multi-view images are sampled into tuples of
{
Si, T

0
i , T

1
i

}M

i=1
. During

each training step, the networks are updated with L1 image reconstruction losses
upon the predicted target views {(T̂ 0

j , T̂
1
j )}Vj=1, accepting multiple source images

{Sj}Vj=1 as input. Our approach aggregates information from V (e.g. 1, 4, 8,
and etc.) views concurrently during training, making use of 3D-GRU and max-
pooling at the bottleneck stage. This training methodology is to ensure large
coverage of the object surface within each recurrent-concurrent step of 3D voxel
embeddings aggregation. A degenerate case is DeepVoxels, which only conducts
recurrent aggregation (strictly V = 1); i.e. without concurrent consideration of
views. The previous training strategy induces single-view observation caused la-
tent voxel feature update bias, and thus has low data utilization efficiency. For
example, DeepVoxels++ learned using 1/3 training data outperforms DeepVox-
els using the full data.

3.1 View-dependent patch feature extraction

To learn deep 3D voxel embeddings from multi-view images, we first sample
image patches from training images in sliding window manner. We then extract
2D feature maps from the set of image patches and accumulate these features in
voxel space of pre-defined resolution, via view-dependent feature lifting.

Patch feature extraction We subdivide each source image Si into small-size
patches {Pn

i }Nn=1 via a sliding window with overlaps. Whilst early neural ren-
dering papers used the ShapeNet dataset of 256×256×3 images [11, 9, 10], we
use the recent, higher resolution 512×512×3 DeepVoxels dataset [5] which po-
tentially requires more GPU memory to model/synthesize. Patches are encoded
via a 2D U-Net with skip connections for feature extraction: Pn

i 7→ Fn
i . For very

large images, if GPU memory sizes prohibit training on all N patches at one

pass, we can sample a subset {Pn
i }N

′

n=1. In our experiments, we randomly sam-
ple 80% patches, but note the possibility of sampling heuristically e.g. sampling
patches containing high-frequency/fine-scale content more frequently [35]. Com-
pared with the full-image based prior methods, the patch-based scheme enables
DeepVoxels++ to learn (and render) images of high resolution.

View-dependent feature lifting We first run SFM and compute the point
cloud centroid in order to define s×s×s cubic voxels for aggregating feature patch
lifting obtained voxel-shape features Xi ∈ Rc×s×s×s. By aligning the centroid
with the voxel center and determining a suitable voxel scale, we get a voxel space
tightly enclosing the object point clouds. Next, we project each voxel onto the

feature patches {Fn
i }N

′

n=1 and conduct differentiable bi-linear feature sampling to
get the lifted voxel features. The projection operation, approximated via a pin-
hole camera model, is also differentiable. Note that the intrinsic matrixK ∈ R3×3
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Fig. 3. A voxel that encodes a parallelo-
gram pattern looks different at two poses
due to perspective projection effects un-
der diffuse reflectance.

Fig. 4. Pseudo-depth maps visualized us-
ing estimated frustum visibility values.
Our results are sharper than DeepVoxels
and have less artifacts.

wrt. the image patches Pn
i has to be rectified to get Kr in order to correctly

map world-coordinate locations onto the extracted feature patches Fn
i . Because

an image patch and its corresponding feature patch have different sizes.

Kr =

αfx αcx
βfy βcy

1

 (1)

where (fx, fy, cx, cy) belong to K. Kr is the rectified intrinsic matrix used in
voxel projection, and (α, β) are (width, height) ratios between Fn

i and Pn
i .

The voxel space used to accumulate the lifted features Xi is typically of low
resolution (e.g. 32×32×32). Therefore, each voxel can be considered to model a
local surface region of the object, as illustrated in Fig. 3. It explains the motiva-
tion for perspective projection effect modeling by voxel feature transformations
during the lifting (and projection) steps. We achieve this by applying learned
convolutional feature transformation kernels A(·) ∈ Rc×c×1×1×1 on the lifted
features Xi.

X̄i = A(G(gi)) ~Xi (2)

where X̄i ∈ Rc×s×s×s are the transformed features and ~ represents 3D con-
volution operation. As shown in Fig. 2, the kernel estimation network A(·) is
implemented as several 3D convolution layers that take relative voxel-camera
poses G(gi) ∈ R6×s×s×s as input and estimate convolutional feature transfor-
mation kernels. The reason why G(gi) is a 3D shape tensor is because each entry
of it consists of the relative voxel-camera translation and the camera pose ro-
tation vector. Note that voxels has different relative voxel-camera translations
but share the same camera rotation vector. We adopt this encoding format of
relative voxel-camera poses based on empirical studies.
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Fig. 5. Novel-view synthesis results of DeepVoxels++ on objects with large viewpoint
changes and complex shape/texture patterns. Our model is proposed for diffuse objects
but we also show a few preliminary results on objects with specularities and shadows.

3.2 Recurrent-concurrent voxel feature aggregation

The lifted and transformed features X̄i from one source image Si only provide
a single-view observation of the object at pose gi. To learn holistic 3D voxel
embeddings Z ∈ Rc×s×s×s we need to integrate features extracted from all the
training views, which have about 500 images and thus cannot be aggregated into
the voxels at one time. We address this challenge by aggregating {X̄k

j }Vj=1 from
V different views within each iteration (indexed by k) of voxel representation
updates, via both recurrent gated-fusion and concurrent max-pooling. Note that
the prior methods only integrate features from a single-view into Z at each
feature update iteration, and therefore suffer from single-view observation bias.
Our aggregation approach provides a large surface coverage of the object during
each voxel representation update and improves data utilization rate. This enables
our model, DeepVoxels++, to use less data and still achieve better rendering
quality than DeepVoxels.

Recurrent gated-fusion We first use 3D-GRU [7] to separately fuse each
single-view obtained X̄k

j into the holistic 3D voxel embeddings Zk−1 that are

obtained from the previous training iteration: Zk
j = GRU(X̄k

j , Z
k−1). Namely,

the 3D object representation Z is modeled as the hidden voxel embeddings of
3D-GRU and will be recurrently updated when more views come in. At the first
round of voxel representation aggregation, we initialize Z0 with zeros. However,
within each step of voxel embedding update, recurrent gated-fusion only aggre-
gates features from a single-view observation. To tackle the problem of single-
view update bias, we further utilize a multi-view based max-pooling operation
upon the 3D voxel embeddings.
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Concurrent max-pooling Now we need to aggregate a set of deep voxel em-
beddings {Zk

j }Vj=1 obtained separately by recurrent gated-fusion from V > 1

views. Inspired by Multi-view CNN [36], we use the max-pooling operation: Zk =
Max(Zk

1 , Z
k
2 , ..., Z

k
V ). Max(·) means applying max-pooling operations along the

first dimension (i.e. the feature channel) of the 3D voxel embeddings Zk
j ∈

Rc×s×s×s. The obtained latent voxel representation Zk (i.e. the 3D-GRU hid-
den embedding at the k-th iteration) will be passed into the next iteration of
recurrent-concurrent voxel feature update until the end of training.

3.3 View-dependent patch rendering

Rendering a target image T|gm from the 3D voxel embeddings Z
(k)
(j)

4 at any given

pose gm around the object involves three steps: view-dependent frustum feature
sampling, depth dimension reduction and patch-based neural rendering.

View-dependent frustum sampling For each target camera pose gm, we
define a d×h×w frustum space to enclose the s×s×s cubic voxels where the vol-
umetric embeddings Z are saved. We emphasize that while voxels are usually of
low spatial resolution (e.g. 32×32×32) due to GPU memory size constraint, the
rendering visual quality from these deep voxel embeddings can be substantially
improved by sufficient frustum sampling. Namely, we utilize large 2D sampling
sizes h×w (e.g. 128×128 vs. 32×32). The depth axis d is collapsed when render-
ing image patches. We found that this is a simple yet effective implementation
trick for deep voxels-based high quality view synthesis. Ablation studies in the
experiments section support this argument (see Fig. 7 and Tab. 3). Specifically,
we can map the frustum into the voxel space by inverse-perspective projection
and sample the transformed voxel features Z̄ ∈ Rc×s×s×s by differentiable tri-
linear interpolation.

Z̄ = B(G(gm)) ~ Y (Z) (3)

where Y (·) is a 3D U-Net that further refines the 3D voxel embeddings Z. As
shown in Fig. 3, we need to conduct voxel feature transformations at both lifting
and projection steps due to the corresponding perspective projection effect in
the observed/rendered images. Thus, similar to Eq. 2, we use a kernel estimation
network B(·) to directly take the relative voxel-camera poses G(gm) ∈ R6×s×s×s

as input and estimate convolutional feature transformation kernels. B(·) is also
implemented as several 3D convolution layers. The sufficiently sampled frustum
features from Z̄ are denoted as F|gm ∈ Rc×d×h×w. Note that, as per Eq. 1, we use
a rectified camera intrinsic matrix when conducting inverse-perspective projec-
tion for frustum representation sufficient sampling. In this case, scaling factors
(α, β) are (width, height) ratios between the frustum and the target image.

4 During training gradients are back-propagated to Zk
j . At test time we use the con-

verged Z for rendering. We use Z for convenience from here.
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Fig. 6. 3D voxel embeddings aggregation:
only-recurrent vs. recurrent-concurrent.

Fig. 7. Frustum representation sampling
sizes: small (32×32) vs. large (128×128).

Depth dimension reduction Rather than directly utilizing the frustum repre-
sentation F|gm for patch neural-rendering, we follow [5] and first collapse it into

depth dimension reduced features H|gm ∈ Rc×h×w by weighted average feature
pooling upon the depth dimension: H|gm = Avg[F|gm ⊗ O(F|gm)]|dim=1. Here
Avg[·]|dim=1 indicates weighted average feature pooling along the second dimen-
sion (i.e. depth) of the c×d×h×w input tensor.⊗means element-wise multiplica-
tion with broadcasting between F|gm ∈ Rc×d×h×w and O(·) ∈ R1×d×h×w. O(·) is
implemented as a 3D U-Net with skip connections, whose output can be treated
as frustum visibility estimation wrt. a viewpoint gm and adds interpretability
to the rendering process. Because it enables the computation of pseudo-depth
maps which explain several rendering artifacts of the prior methods (see Fig. 4).
Specifically, inaccurate visibility estimation, induced by incorrectly up-weighting
(in)visible surfaces and empty space within the frustum, can cause DeepVoxels’
rendering artifacts like aliasing and holes.

Patch-based neural rendering The final step of the model is to render patches
from H|gm . Recall that during the encoder stage, we explained the benefits of
patch-based feature extraction (subsec. 3.1). During the decoding step we conduct
patch-based neural rendering, for the same purposes of utilizing fewer 2D U-
Net parameters, reducing the complexity of large image context modeling and
being able to model/render images at high resolution. Similar to patch-based
feature extraction, we subdivide H|gm into small-size feature patches {hn}Nn=1

by a sliding window with overlaps, and then conduct patch neural rendering
using a 2D U-Net with skip connections: hn 7→ Pn. At training time, we apply
random sampling to retain N

′
feature patches (e.g. 80% of N) to save GPU

memory. We use L1 image reconstruction losses upon rendered image patches to
enable joint training for the complete network architectures as shown in Fig. 2.

L(P̂n, Pn) =

∑N
′

n=1

∑
a,b

∥∥∥P̂n
a,b − Pn

a,b

∥∥∥
1

N ′ ∗D
(4)
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Table 1. 360◦ novel-view synthesis benchmark of objects with diffuse reflectance.
Higher values of PSNR and SSIM indicate better rendering quality. Our method Deep-
Voxels++ surpasses DeepVoxels and other competing methods by large margins.

Vase Pedestal Chair Cube Mean
Method PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

Nearest Neighbor 23.26 / 0.92 21.49 / 0.87 20.69 / 0.94 18.32 / 0.83 20.94 / 0.89
Tatarchenko et al. [39] 22.28 / 0.91 23.25 / 0.89 20.22 / 0.95 19.12 / 0.84 21.22 / 0.90
Worrall et al. [30] 23.41 / 0.92 22.70 / 0.89 19.52 / 0.94 19.23 / 0.85 21.22 / 0.90
Pix2Pix [40] 26.36 / 0.95 25.41 / 0.91 23.04 / 0.96 19.69 / 0.86 23.63 / 0.92
Neural Volumes [41] 20.39 / 0.84 36.47 / 0.99 35.15 / 0.99 26.48 / 0.96 29.62 / 0.95
DeepVoxels [5] 27.99 / 0.96 32.35 / 0.97 33.45 / 0.99 28.42 / 0.97 30.55 / 0.97
Ours 32.91 / 0.98 38.93 / 0.98 40.87 / 0.99 36.51 / 0.99 37.31 / 0.99

Fig. 8. Normalized azimuth-elevation PSNR maps on Cube. More objects are visu-
alized in supplementary. Horizontal: [0◦, 360◦] azimuth. Vertical: [0◦, 100◦] elevation.
Black dots are the training poses. Colored spiral lines are the test pose trajectories.
Red color means large PSNR value and blue means small. These plots showcase smooth
viewpoint interpolation paths between training views (i.e. black dots), showing consis-
tent improvement over DeepVoxels across different novel views.

where P̂n is a rendered image patch and Pn is a ground-truth patch. (a, b) are
pixel indices within an image patch and D is the pixel number of a patch. At test
time, we composit all N rendered patches {P̂n}Nn=1 into the target image raster,
and crop overlapped regions. The stitched patches comprise the final 512×512
color rendered image T̂|gm .

3.4 Implementation details

We implement our approach using PyTorch [37]. The networks are trained with
the ADAM optimizer [38] using an initial learning rate of 0.0004. For differ-
ent benchmark objects, we use the same set of hyper-parameters and stop the
training at 400 epochs, which takes about 4 days. However, to outperform the
prior deep voxels-based methods we only need to train on 1/3 data (as shown
in Tab. 6) and therefore we are able to reduce the training time to around 1
day, while DeepVoxels’ training takes about 3 days on the full training dataset
and its results are much worse. More details of our network architectures can be
found in supplementary.
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Table 2. Better rendering quality can be achieved when more multi-view images V are
aggregated in each round of recurrent-concurrent latent 3D voxel embedding updates.

V Vase Pedestal Chair Cube Mean PSNR

1 27.99 32.35 33.45 28.42 30.55
4 30.30 34.64 35.97 31.97 33.22
8 29.45 35.54 37.79 31.65 33.61

4 Experiments and Discussion

We evaluate DeepVoxels++ on 360◦ novel-view synthesis benchmarks against
several competing methods: a Nearest Neighbor baseline, Tatarchenko et al. [39],
Worrall et al. [30], Pix2Pix [40], Neural Volumes [41], SRN [21] and DeepVox-
els [5]. To add interpretability of our model, we also conduct ablation studies to
reveal the impact of our series of enhancements in achieving this performance
improvement.

4.1 Dataset and metrics

For fairness of comparison, we use the same dataset and evaluation metrics
(e.g. the Structural Similarity Index (SSIM), the Peak Signal-to-noise Ratio
(PSNR)) as DeepVoxels [5]. The dataset contains 512×512 color images of del-
icate shapes/appearance (e.g. pedestal, vase) and diffuse reflectance. For each
object, the dataset has about 500 training images and 1000 test views as ground
truth. The test views are densely sampled from a 360◦ spiral curve enclosing the
object at different angles and distances, for evaluating smoothness and fidelity as
the viewpoint changes. This contrasts with recent object based novel-view syn-
thesis papers which mainly use the 256×256 ShapeNet image dataset. ShapeNet
lacks the aforementioned appearance complexity, and does not evaluate novel-
view rendering results at densely sampled test poses. Though not the purpose
of our method, we also show a few results on objects with specular reflectance
and shadows in order to shed light on future work.

4.2 Evaluating 360◦ novel view synthesis

Once trained on multi-view images of an object, our approach no longer requires
those views at test time as reference-view input; a requirement of some recent
methods [8–10]. Rather, we can directly use the learned 3D voxel embeddings Z
that encode object shape and appearance to render high-resolution images from
novel views. Tab. 1 shows our method DeepVoxels++ to outperform DeepVoxels
[5] by 22% PSNR improvement and 33% SSIM error reduction. Both DeepVoxels
and Neural Volumes [41] are based on (deep) voxel representations. Our method
also surpasses a recent implicit neural representation method SRN [21] but it
only reported mean results: 33.03 PSNR, 0.97 SSIM. We further visualize nor-
malized azimuth-elevation PSNR maps in Fig. 8 to prove that our improvement
is due to consistently improved rendering quality across 1000 dense test views of
the object, not caused by over-fitting at certain viewpoints that are close to the
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training data. This capability to smoothly interpolate between training views at
high fidelity contrasts with DeepVoxels.

Figs. 1 and 5 present rendering results on diverse objects. While the com-
peting methods and our approach are proposed for and benchmarked on objects
of diffuse reflectance, in the visualizations we also show some preliminary re-
sults on specular reflectance and shadow modeling. Our rendered images con-
tain sharper details and fewer rendering artifacts such as blur, aliasing and holes
than DeepVoxels, which we attribute to several features of our method. For ex-
ample, Fig. 6 shows that recurrent-concurrent voxel aggregation can help reduce
artifacts. Because it addresses single-view observation bias by increasing object
surface coverage during each training iteration. Moreover, Fig. 7 indicates that
frustum representation sufficient sampling is helpful in sharp details rendering
because it alleviates the problem of limited voxel spatial resolution by enforc-
ing strong supervision on 3D voxel embeddings (i.e. rich gradient signals). The
computed pseudo-depth maps in Fig. 4 also explain some artifacts of the prior
DeepVoxels method. Specifically, inaccurate visibility estimation, induced by in-
correctly up-weighting (in)visible surfaces and empty space within the frustum,
can cause view synthesis problems like aliasing and holes.

4.3 Ablation studies

Voxel feature aggregation Previous deep voxel methods [6, 5] use 3D-GRU [42,
43] for image-based modeling by adopting a structured voxel space as the hidden
embedding and treating hundreds of multi-view images of an object as a video
sequence. However, this type of single-view based sequential update manner can
cause inefficiency and bias of 3D voxel embeddings learning. Because it imposes
an ordering on viewpoints and biases training when only a single-view observa-
tion is aggregated during each recurrent step. Inspired by Multi-view CNN [36],
we address these challenges by conducting voxel feature aggregation at two differ-
ent dimensions jointly: recurrent gated-fusion and concurrent max-pooling. This
provides a large surface coverage of the object during each iteration of voxel
feature updates and improves data utilization rate. Results in Tab. 2 verify our
arguments. Fig. 6 further demonstrates that our aggregation method helps to
reduce DeepVoxels’ rendering artifacts such as aliasing and holes. Better ren-
dering quality and faster training can be achieved with more views aggregated
by max-pooling in each round of voxel feature updates, which is most effective
when view number increases from 1 to 4 and starts to become less effective when
it reaches 8 views. Thus, in our benchmark results we use 4 views considering
the trade-off between performance gains and GPU memory size constraints.

Frustum sufficient sampling To decode the learned 3D voxel embeddings
and render an image at a target pose gm, we need to first project the deep
voxel features into a frustum. As explained in subsec. 3.3 the projection proce-
dure essentially is feature sampling from the voxel space to the frustum space.
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Table 3. Frustum representation sufficient sampling from the low spatial resolution
deep voxels can substantially improve the 360◦ novel-view synthesis performance.

Sampling sizes h×w Vase Pedestal Chair Cube Mean PSNR

32×32 27.16 27.93 32.99 27.35 28.86
64×64 30.30 34.64 35.97 31.97 33.22

128×128 32.62 38.75 38.73 35.35 36.36

Table 4. Our patch-based scheme reduces the complexity of large image context mod-
eling and improves the rendering results. It also halves the 2D U-Net parameters for
image feature extraction and neural rendering.

2D U-Net parameters (M)
Method Mean PSNR Feature extraction Neural rendering

Full-image 36.36 92.2 108.9
Patch 36.99 40.3 56.9

Table 5. Comparisons between without/with voxel feature transformations. With the
learned feature transformation kernels, we achieve better performance on objects of
delicate shapes (e.g. pedestal, chair) and limited training views (e.g. 30 images).

Method Vase Pedestal Chair Cube Mean PSNR

Without 26.05 29.84 28.89 25.19 27.49
With 25.76 30.83 29.45 25.43 27.87

Tab. 3 and Fig. 7 show that while voxels are usually of 32×32×32 low spa-
tial resolution due to GPU memory constraints, sufficient frustum sampling can
substantially improve the visual quality of rendered images with sharper details
than DeepVoxels. The frustum representation sampling sizes are determined by
height/width of the depth dimension reduced frustum feature maps. We use
128×128 sampling sizes in our main results. Frustum representation sufficient
sampling is a simple yet effective implementation trick that addresses the low
voxel resolution problem. One explanation is that though voxels have low spa-
tial resolution, they contain high dimensional latent 3D embeddings, encoding
objects’ appearance and shape information. Meanwhile, the differentiable trilin-
ear interpolation-based frustum sufficient sampling enforces strong supervision
on the deep voxel features (i.e. rich gradient signals), and eventually helps to
encode more fine-scale details into the learned latent 3D embeddings.

Low-complexity patch modeling The patch-based training/inference scheme
has multiple advantages over the previous full-image based one, which are also
demonstrated in other problems like point-cloud upsampling [44] and image
restoration [45]. Besides reducing the complexity of modeling large image context
and therefore improving fine-scale patch synthesis quality (as shown in Tab. 4),
our approach requires only half the 2D U-Net parameters used in image fea-
ture extraction and neural rendering of prior methods due to small-size input.
Furthermore, the patch-based scheme enables us to model and render images of
high resolution at low GPU memory cost, whereas full-image based methods are
not easily trainable with high resolution images.
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Table 6. Our 1/3 data trained model can surpass full data trained DeepVoxels [5] by
large gaps in mean PSNR. The results indicate that DeepVoxels++ is data efficient.

Training data sizes
Method full 1/3 1/16 1/48

DeepVoxels 30.55 28.09 26.06 19.35
Ours 37.31 33.34 27.87 20.71

View-dependent voxel feature transformation Fig. 3 illustrates how 3D
voxel embeddings that encode shape and appearance of an object’s local surface
plane can be mapped to different patterns, due to the corresponding perspec-
tive projection effect induced by viewpoint changes under diffuse reflectance.
Such perspective transformation in the observed/rendered images is explicitly
modeled by us leveraging learned feature transformation kernels from relative
voxel-camera poses. In contrast, previous methods rely on voxel volume changes
caused by vantage point changes to infer view-dependency. But voxel volume
differences are constrained by low voxel spatial resolutions and only implicitly
reflect viewpoints. Tab. 5 shows that explicit voxel feature transformation mod-
eling is critical for objects with delicate shapes (e.g. pedestal) and limited train-
ing views (e.g. 30 images), where voxel volume changes are less continuous and
less effective to model the corresponding perspective transformation caused by
viewpoint changes under diffuse reflectance.

Number of training views While DeepVoxels requires around 500 multi-view
images to learn faithful 3D voxel embeddings of an object, DeepVoxels++ can
learn to synthesize high fidelity novel views even with a limited number of train-
ing images. In Tab. 6, we experiment on full-size, 1/3, 1/16 and 1/48 train-
ing data. Our method outperforms DeepVoxels in all conditions, demonstrating
promising results for real-world applications where only few images are available
for 3D object representation learning and novel view synthesis. For example,
camera rig-based image capture systems. The improved data utilization rate is
attributed to our recurrent-concurrent 3D voxel embedding aggregation method,
as it alleviates single-view observation bias and therefore multi-view features can
be extracted/accumulated into voxels efficiently.

5 Conclusion and Limitations

We have proposed a novel view modeling and rendering technique that learns
latent 3D voxel embeddings from multi-view images of an object without 3D oc-
cupancy supervision. Our approach, DeepVoxels++, outperforms previous deep
voxel-based methods by large margins on 360◦ novel-view synthesis benchmarks.
We show that our novel view synthesis results contain more fine-scale details and
less rendering artifacts than DeepVoxels [5]. We also conduct multiple ablation
studies to show the impact of our series of improvements in achieving this en-
hanced rendering fidelity.

Although the benchmark mainly evaluates objects with diffuse reflectance,
our proposed method of learning voxel feature transformation kernels potentially
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can also model other view-dependent effects (e.g. specularity) besides image-
plane perspective transformations of diffuse surfaces. We demonstrate some pre-
liminary visual results for specularity and shadow modeling in Fig. 5 and the sup-
plementary video demo. But it is worth considering extending the current dataset
with objects of non-Lambertian reflectance and conducting evaluations under
various lighting situations. Novel-view rendering for non-rigid objects leveraging
dynamic volumes is another challenging and important problem. In brief, future
work could consider various scenarios that are not explicitly modeled or exten-
sively evaluated by the current deep voxel-based methods, such as lighting and
specular reflectance, multi-object scenes, dynamic objects and so on.
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