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ABSTRACT

‘We present a scalable semantic video concept detection framework,
applied to automated metadata annotation (video logging) in a broad-
cast production environment. Video logging demands both accu-
rate and fast concept detection. Whilst research often focuses on
the former, the latter is essential in practical scenarios where days
of footage may be shot per broadcast episode and production is
dependent on immediate availability of metadata. We present a
hierarchical classification framework that delivers benefits to both
through two contributions. First, a dynamic weighting scheme for
combining video features from multiple modalities enabling higher
accuracy detection rates over diverse production footage. Second,
a hierarchical classification strategy that exploits ontological rela-
tionships between concepts to scale sub-linearly with the number of
classes, yielding a real-time solution. We demonstrate an end-to-
end production system incorporating chronological and semantic
browsing with our detection framework. Demo video included.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Video Logging

General Terms

Computer Vision

Keywords

Video Concept Detection; Concept Ontology; Multi-modal fusion.

1. INTRODUCTION

The emergence of ‘shoot to cloud’ as a paradigm for broadcast pro-
duction promises cost efficiencies through the immediate availabil-
ity of content to downstream studio production. Video shot on-set
is streamed from cameras to cloud infrastructure, where web-based
studio applications enable users to collaboratively create digital
content. Production metadata, ‘logged’ at the time of capture, is
essential to making sense of the deluge of video content acquired
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during a shoot; downstream production cannot proceed without
it. Unfortunately contemporary practice remains reliant upon pen-
and-paper for such ‘video logging’. Metadata describing the visual
content within each shot is manually generated, and often manually
re-keyed into digital form stalling an otherwise live pipeline.

Recent advances in the field of Computer Vision, have yielded a
step-change in the performance of image classification that for the
first time approaches practical requirements for automated meta-
data annotation [12]. Despite significant progress in tackling di-
verse datasets of static imagery [12, 6], video classification has
been explored only very recently for domain-constrained footage
(e.g. datasets of sports video [11]). A key challenge in translating
these early successes to diverse, general video ‘in the wild’, is the
consideration of multiple feature modalities in order to discriminate
between diverse content classes.

The contribution of this paper is a scalable, real-time framework
for video logging that incorporates multiple feature modalities for
content classification. Our key technical contributions are:

1. Class scalability: Visual concept detection requires a bank
of classifiers to be evaluated for each image at test-time, typ-
ically either through one-vs-all or one-vs-one support vector
machines (SVMs) scaling respectively with O(c) or O(c?) in
the number of classes. Recently the ensemble of exemplar-
SVM (EE-SVM) framework [14] has shown greater robust-
ness to content diversity (appearance variability) but at expo-
nential complexity O(e") in both the number of classes and
training exemplars. Manual video logging relies upon con-
cretely defined ontologies for mark-up, which we leverage
in our automated approach to perform hierarchical decision
offering a sub-linear test-time complexity of O(logc) neces-
sary for real-time processing.

2. Multi-modal fusion: Dynamic per-class balancing of mul-
tiple visual features, comprising primary features (such as
SIFT) as well as contextual features such as visual gist, cam-
era motion and foreground-background segmentation to max-
imise discrimination within each branch of the concept on-
tology. Prior approaches to video classification have relied
upon multi-kernel learning (MKL) or per-element weighting
within random decision forests (RDFs). Neither has been
shown to scale sub-linearly and the latter typically responds
poorly to appearance diversity (a problem compounded when
considering multiple feature modalities).



Classification is performed using spatio-temporal features local to
keyframes detected within the video stream, and aggregated as a
post-process over any temporal interval (typically on a whole-clip
basis for logging) using morphological sieving. An interactive vi-
sualization enables both chronological and concept-based browsing
of the resulting metadata-enriched content.

We demonstrate the proposed system on diverse real-world pre-
production (‘rushes’) footage, contrasting performance against a
state-of-the-art baseline using Vector Quantization of dense SIFT
features. We demonstrate performance gains both in terms of ac-
curacy and efficiency using our combined hierarchical and multi-
modal fusion approach.

2. RELATED WORK

Despite many years of intensive research, semantic video concept
detection remains an open Computer Vision challenge. Significant
advances have been made in the past decade, driven by competitive
benchmarks such as the TRECVid, VideoOlympics and PASCAL
challenges where impressive performances have been returned on
datasets of increasing size and complexity.

Significant advances in generalised concept detection arrived ap-

proximately a decade ago, through the combination of gradient-

domain features and codebook quantization referred to as the ‘bag

of visual words’ (BoVW). Initially explored for image similarity

(retrieval) applications [18, 7], the BoVW representation was rapidly
adopted for concept detection through incorporation of supervised

classifiers e.g. support vector machines (SVMs) [8, 17]. Variations

on the three core stages of this pipeline (feature extraction, repre-

sentation, classification) have been extensively explored for image

classification. Frequently SIFT or SURF features (over luminance

and/or chroma channels) are detected sparsely, or more commonly

now sampled densely for the first stage. Various quantization strate-

gies for the second stage have been explored including nearest-

neighbour codeword assignment (BoVW) [8], soft-assignment vari-

ants of BoVW based on k-NN, sub-quantization of each cluster

(VLAD) [2], and encoding of parametric distance to per-codeword

Gaussian Mixture Models (Fisher Vector variants) [16]. Third stages
of leading techniques almost universally focus on SVMs which for

concept detection are multi-class arrangements of various forms

e.g. one-vs-all [1]. Cascading hierarchies of SVMs comprising

low-level features at leaf nodes, combining into successively higher

level conceptual layers of classifiers have been shown to scale well

for video classification tasks. Note that such cascaded approaches

differ from that of our ontological hierarchy [19]. Although not

within the scope of our fully automatic scenario, many user-assistive
(semi-interactive) retrieval and classification video systems have

also been proposed.

Recently multitudes of simpler classifiers have been combined in

novel ways, via randomized decision forests and ensemble of exemplar-

SVMs (EE-SVM) [14]. The latter have shown good generalization
performance over wide variations in appearance, since each ex-
emplar is effectively a class within detectable concepts effectively
super-classes of these. Unfortunately eSVMs exhibit exponential
complexity in the number of classifiers wrt. both concept count
and training dataset size. Most recently this has resulted in run-
time optimization strategies for efficient pruning of eSVMs to re-
duce the number of classifiers to be tested [15]. Nevertheless these
approaches do not reduce complexity and with single image clas-
sification times of several seconds an extension to streaming video

is not yet realistic. With the advent of ontology structured large-
scale image datasets (ImageNet) new opportunities exist to exploit
semantic relationships between concepts during detection. Ferrari
et al. briefly explored this idea through experiments in hierarchical
classification for ImageNet [9], and we follow in this spirit explor-
ing not only ontologically aware classification (for video) but also
dynamic weighting of feature modalities in order to distinguish lo-
cally occurring concepts within that hierarchy. Significant progress
has been made in the last couple years using deep learning to train
both classifier and learn optimal features for classification simul-
taneously. Contemporary approaches using Convolutional Neural
Networks (CNNs) have delivered a step change in accuracy for im-
age recognition as end-to-end classifiers [12], although often SVMs
are also employed to classify features pulled from the fully con-
nected early stages of the network [6]. However these approaches
have yet to be proven on video outside tightly constrained domains
e. g. sports footage [11].

A substantial divide exists between performance on research lab
datasets versus the class and appearance diversity exhibited by video
content encountered ‘in the wild’. Barriers to adoption include
not only accuracy levels but also speed, with sophisticated clas-
sification techniques often requiring substantial training and/or test
times that prohibit real-time application. Unfortunately both barri-
ers must be overcome for practical application in a video logging
scenario. The volume of content acquired on typical shoot (several
days of rushes for a half hour TV drama), coupled with the financial
impetus to accelerate downstream production, is currently answer-
able only via real-time manual annotation as the camera rolls. As
digital production moves towards an immediate availability ‘shoot
to cloud’ model, these practical barriers to automated meta-data
creation must be overcome.

3. SCALABLE CONCEPT DETECTION

We now describe our scalable system for video concept detection.
First we outline the feature extraction process, through which mul-
tiple complementary visual features are distilled from ingested footage
(Sec. 3.1). We then describe how the hierarchical concept ontology
accompanying the footage can be leveraged to both train the sys-
tem, and perform efficient classification (Sec. 3.2). The mechanism
by which the visual features are weighted and combined is then ex-
plained (Sec. 3.3). Classification is performed on a per key-frame
basis (for K regularly sampled keyframes per clip), but can be ag-
gregated on a clip-level for more convenient browsing in our sys-
tem. We briefly outline our aggregation strategy to form clip-level
classification (Sec. 3.4).

3.1 Feature Extraction

Video is ingested to our system downsampled to QVGA (320 x
240) resolution prior to extracting the following features on a per
key-frame basis.

3.1.1 Segmentation

We first apply motion segmentation to determine foreground and
background regions within each key frame. Optical flow vectors
[4] are computed densely between the key frame and its previous
frame, and global scene motion subtracted in order to produce a
camera ego-motion compensated flow estimate. We refer to this
flow field as V(¢). Camera motion is approximated by computing
the inter-frame homography between the same pair of frames us-
ing robust estimation (RANSAC) over the optical flow correspon-
dences. Thresholding |V(z)| at high and low values yields a fore-
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Figure 1: Illustrating the spatial grid of average flow vectors
used to construct our contextual camera motion descriptor.
Discriminative responses are shown for four common camera
motions.

ground and background mask for each frame. Morphological clo-
sure is performed to remove salt and pepper noise from the masks.
Thus we are able to compute the following features over the full-
frame (FF), foreground (FG), and background (BG) regions.

3.1.2 Dense SIFT

Dense SIFT features are extracted using a three pixel (3px) spacing
over four spatial scales, deemed to be optimal over this resolution
of footage via prior experimentation [5]. We found that 3px spac-
ing provided 5% accuracy (mAP) boost on our public comparison
(Caltech-101) dataset vs. 8px spacing, and 2px spacing provided
no benefit and increased the computation cost dramatically. Simi-
larly, a single scale approach was 5% worse than using four SIFT
scales (4,6,8,10 over just 4).

Vector quantization is performed using k-means clustering over 10
million features randomly sampled from our dataset, where code-
book size of k = 600 was found to give best results. A spatial pyra-
mid histogram is then computed as in [13], with L = 2. However,
unlike with [13] and under the guidance of [5], no normalisation
is used since the frame size is equal and all histograms sum to
the same number of extracted features. The BoVW histograms are
computed for all three of the segmentation cases (FF, FG, BG) with
only SIFT features within the appropriate mask used to build the
spatial pyramid histogram.

3.1.3 Contextual camera motion

The presence of visual concepts is often correlated with the pres-
ence of other contextual information in the scene. For example,
certain camera movements are like in the presence of certain se-
mantic concepts. We allow for the learning of these correlations
by encoding context in several ways, starting with global camera
motion. This is encoded independently for FF, FG and BG regions.

We divide the region into a 5 x 5 spatial grid. For each grid cell,

V(t) > € are quantised into one of eight orientation bins to create a
histogram of oriented flow. The histograms from each grid square
are then concatenated together to create a 200-dimensional motion
histogram, which is then L, normalised. All bins are set to zero for
grid squares where the vast majority of V(¢) < € to prevent noise
from skewing the results with unreliable flow orientation. Fig. 1
illustrates the dominant response different camera movements gen-
erate within each cells and thus may be discriminated by the motion
descriptor.

3.1.4 Colour Features

Another valuable form of context is global illumination and colour
cast within a frame. We compute a global colour histogram (GCH)
in CIELab space, within each of the four spatial quadrants of the
frame. The GCH quantises the chroma channels of the space into
16 bins (luminance is disregarded for robustness) resulting in a 128
dimensional global colour descriptor. The GIST descriptor is ad-
ditionally computed, using the public implementation provided by
[10]. Again the descriptors are calculated over the FF, FG and BG
regions independently.

3.1.5 Facial Grid

A 9-dimensional descriptor was also extracted by counting the num-
ber of faces detected in each square of a 3-by-3 spatial grid. Faces
are detected using the multi-scale Haar cascade approach due to Vi-
ola and Jones [20]. The descriptor is calculated independently over
FF, FG and BG regions.

3.2 Hierarchical Path Finding

Multi-class video concept detection is performed via a bank of
SVM classifiers . for a concept set C = {cy,...,c,}, the outputs
of which are aggregated to make an overall classification decision
D, for a multi-modal feature set F = {F,!,..., F™} extracted local
to key frame /;. In the commonly used one-vs-all classifier arrange-
ment for SVMs, the decision is the maximum probability concept
detected over the classifier bank:

D, (F) = argmax y.(F). (1)
ceC

We aim for a decision D,(F(I;)) = ¢,VI € G(c) for all frames in
ground-truth annotated test set G(c) C Iy, for category c. Classifier
Xc 18 trained using a similarly annotated training set 7'(c).

There are two disadvantages with this commonly used framework
[5]. First, it scales linearly i.e. O(|C|). Second, it does not cap-
italise on ontological relationships within C i.e. . is trained us-
ing positive T and negative F~ exemplars drawn from T'(c) and
T(C\ c¢) respectively. There is opportunity for exploiting these se-
mantic relationships; for example if D; can be determined with high
certainty to be a vehicle then a subsequent classification into cat-
egories car, bus, truck, etc. can be made using a classifier more
precisely trained over imagery from that sub-branch of the video
ontology.

We therefore constrain training according to ontological relation-

. Tp — .
ships, where a each concept ¢;” € C has a parent concept p = c;

where ¢ is a dummy concept introduced to indicate the root node

(and outcome Y = 0). Classfier J; is trained using ' drawn from
node ¢; and descendents c;', clj
drawn from the remainder of 7T'.

and so on recursively — with 7~
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Figure 2: Classification decision for a frame of ‘StudentTV’ performed using our hierarchical path finding approach. Only 3 SVMs
are tested in the best-first traversal versus 23 SVMs for a linear one-vs-all strategy. Values for . computed during traversal are

noted beside each node.

At test-time the hierarchy is exploited to reduce the number of
classification decisions, presenting a substantial efficiency saving
over a one-vs-all strategy to classifying each of K keyframes within
lengthy pre-production video clips.

A working set VV maintaining outcomes (concept-probability pairs)
of classifications at the perimeter of the explored hierarchy is cre-
ated, initially containing {0, xo} for the root node. Classification
of a given frame I; begins by extracting feature set F (see Sec. 3.1)
and measuring . (F) for c?'p for p = 0. The classification out-
comes {c, Xc+ Xp} are added to WV and outcomes ¥, removed from
W. Exploration of the hierarchy is then advanced one node at a
time, each time selecting classifier /. for evaluation and addition
to W where:

¢’ = argmax D; (. (F)). )

Fig. 2 illustrates the resulting best-first traversal of the ontology for
a classification performed for a frame of pre-production footage
from ‘StudentTV’ (Sec. 4.1). Classification halts at the first (most
promising) leaf node reached for the quantiative results presented
here, but in our user interface (Sec. 4.4) the top few results can be
visualised e. g. using all leaves. In the best case O(log|C|) classi-
fiers will be tested, and at worst O(|C|). Note that although prior
work has observed closer visual distances between ontological sib-
lings (e.g. over ImageNet [9]) such relationships have not previ-
ously been exploited for efficient video classification.

3.3 Multimodal Fusion

Our system adopts a late fusion strategy to combining features across
multiple modalities, enabling per-class control over the relative im-
portance of each modality. Consequently . is determined by a
weighted combination of linear classifiers . ;

m

1
Xe = % ZD(COCJWC,[)- 3)

i=1

for each h; we use a linear SVM using the chi-squared kernel map-
ping with parameter A = 10~3 and maximum training iteration
count of 5 x 10%, using the VLFeat implementation.

Weights @, ; are determined on a per-class and are learned over
T(c). First, eq. 3 is evaluated for a particular sub-classifier i i.e.
with @, ; unity and all other weights zero. All training data for
concepts at level ¢ or below within the hierarchy are fed through
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Figure 3: Illustrating the relative weights of the five features
dynamically learned on a per-node basis within the hierarchy
to perform multi-modal fusion in our system.

Xc- Decision score ). will be positive or negative for each train-
ing frame, and this is determined to be a true positive (TP), or a
true (TN) or false (FN) negative according to the training markup
for the classifier Y, ; operating over a specific modality. The dis-
criminatory power of that modality for concept ¢ is estimated via
the average of its True Positive Rate (TPR) and Positive Prediction
Value (PPV):

N TP(c,i)
TPREeD) = S pen+ FNED" @

N TP(c,i)
PPV(ed) = et FPed) ®)
o) — TPRED+PPV(ei) ©

2

The weights are normalised such that };_; m@, ; = 1 and recorded
for use in the hierarchical classification.

3.4 Aggregation for clip classification

Classification is performed for each video frame independently,
which is important in our pre-production scenario where individual
video clips can be up to several minutes long. However for brows-
ing folders (‘bins’) of video files, and to apply standard bench-
marking methodologies, it is necessary to combine frame based
decisions to deliver a single representative clip-level classification.



Figure 4: Visual précis (top) of the ‘StudentTV’ dataset used in
our evaluation, comprising 45 concepts (23/22 fore/background
respectively) and 1040 video clips of up to 30 minutes duration.
The ontologies for background (middle) and foreground (bot-
tom) are illustrated.

Morphological sieving [3] is used to smooth the classification de-
cision signal y.(F;) for each concepts independently over time ¢,
preserving large contiguous blocks of detections over time without
the loss of high-frequency information at the start and end of such
blocks. The sieving is performed over all K key frames of the clip
being classified.

4. RESULTS AND DISCUSSION

We evaluate the proposed cloud video classification system over
three datasets of varying complexity (subsec. 4.1) reporting per-
formance in terms of both accuracy and efficiency. Table 1 sum-
marises the results obtained. For purposes of future comparison
the latter is benchmarked using a single node of Amazon S3 clus-
ter, with an Intel Xeon Processor E5-2670 and 16GB RAM.

All experiments were run with three repetitions of cross-validation
over a random train-test split on each dataset, with each split com-
prising a even ratio of 30 training:test examples for each concept.

4.1 Evaluation Datasets

Large corpora of annotated pre-production video are challenging to
obtain; the largest public video datasets for object classification fo-
cus primarily on a single domain (e. g. Youtube Sports [11]) which

not only lack subject diversity but are not representative of the un-
finished and lengthy pre-production clips we address. We have col-
lected and annotated two datasets from real-world broadcast pre-
production and post-production to both measure performance and
illustrate this distinction.

The primary dataset ‘StudentTV’ used in this evaluation is a large
1040 video dataset comprising one week of raw pre-production
(‘rushes’) footage shot during Fresher’s Week on a University cam-
pus location, and comprising both ‘A roll” (principal subject matter)
and ‘B roll’ (contextual footage) content. The average duration of a
clip is 40 seconds, however some clips are up to 30 minutes long. A
visual précis of this footage is presented in Fig. 4 alongside a con-
cept ontology accompanying the dataset. The ontology is divided
into foreground and background branches, which contain a total of
45 (23 and 22 respectively) leaf-node concepts within a hierarchy
up to 5 concepts deep and comprising 54 decision nodes. To en-
able detailed evaluation we examine foreground and background
performance separately.

Two smaller datasets are also compared against, for the purpose
of additionally characterising performance of the hierarchical and
multi-modal fusion aspects of the system. First, a smaller video
dataset ‘Hospital’ is included for purposes of scalability compar-
ison with StudentTV. The dataset comprises 98 videos of post-
production footage of a TV hospital drama, each clip being of av-
erage duration 5 seconds. The concept ontology for this footage is
flat (i. e. depth 1) comprising only 4 concepts. Second, for the pur-
poses of comparing multi-modal fusion over a public benchmark
we analyse the Caltech-101 image dataset, which is supplied with
101 concepts which we organised into an ontology with hierarchy
2 levels deep.

4.2 Classification Accuracy

Fig. 5a summarises the performance in terms of accuracy (mean
average precision) over all three datasets, both for the full system
and for restricted configurations of the system with various compo-
nents disabled in order to show their contribution. In all cases the
evaluation has been run at the clip level i. e. using the aggregation
post-process of subsec.3.4 to integrate the individual classifications
made for K key frames within each clip (we use K = 5 for all ex-
perimental values reported).

We experiment with combinations of the following cases of re-
striction: 1) disabling the hierarchical path finding, effectively flat-
tening the ontology to a hierarchy a single layer deep (FLAT); 2)
disabling the dynamic weight calculation for the multi-modal fu-
sion, and adopting a uniform weighting instead (UNIFORM); 3)
disabling the foreground/background segmentation (NOSEG) us-
ing features from the FF region (subsec. 3.1.1) rather than the FG or
BG regions independently; 4) disabling all features except for SIFT
(SIFTONLY). The combination of these restrictions yield our base-
line SIFT / Vector Quantization system for the purposes of com-
parison. The combination of these restrictions, excluding FLAT,
represent hierarchical path finding over the BASELINE.

4.2.1 Accuracy over ‘StudentTV’
The highest performing configuration of the system over ‘StudentTV’
was the full system without any segmentation pre-process (Stu-
dentTV:NOSEG), resulting in overall 58.8% MAP (60.1% and 57.7%
respectively for background and foreground concept groups). This
represents a significant improvement (close to doubling of perfor-
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Figure 5: (a) Accuracy (mAP) of the proposed system over three datasets: ‘StudentTV’, "Hospital’, *’Caltech-101’. Refer to Sec. 4.2
for meaning of abbreviations which relate to system configurations. Confusion matrices summarising per-class performance of the
proposed system over the foreground and background classes of the ‘StudentTV’ dataset.

Test Configuration StudentTV-BG StudentTV-FG Hospital Caltech-101
Accuracy (%) Nodes | Accuracy (%) Nodes | Accuracy (%) Nodes | Accuracy (%) Nodes
BASELINE 44.0+1.9 23.0 31.1+2.7 22.0 70.8+0.0 4.0 12.8+0.1 101.0
BASELINE+HIER 459+1.2 9.3 22.5+1.8 12.0 70.8+0.0 4.0 15.0+0.9 423
FLAT 55.8+5.1 23.0 47.7+1.5 22.0 71.7+4.7 4.0 30.7+1.0 101.0
NOSEG 60.1+3.9 10.0 57.7+4.0 12.0 73.6+2.0 4.0 318+15 47.0
UNIFORM 46.1+4.8 9.7 27.2+4.7 11.7 70.3+4.1 4.0 25.5+0.9 453
FULL 56.3+5.0 10.0 50.1+7.5 12.0 71.7+4.7 4.0 318+1.5 47.0

Table 1: Accuracy (mAP) of the proposed system over three datasets: ‘StudentTV’, Hospital’, ’Caltech-101’. The number of
classification nodes visited within the hiearchy is also reported. Refer to Sec. 4.2 for meaning of abbreviations which relate to system

configurations.

mance) over the SIFT/BoVW baseline implementation (StudentTV:BASEkdMHgntation based on motion cues underperforms on average ver-

which scored 37.1% (44.0% and 31.1% respectively). The confu-
sion matrices presented in Fig. 5 (b,c) characterise the performance
of the system on a per category basis.

We evaluated the impact of the hierarchical path finding on accu-
racy, by flattening the ontology to a hierarchy a single layer deep
(StudentTV:FLAT). Compared to the full system, performance of
StudentTV:FLAT dropped slightly by 2.4% and 0.5% for back-
ground and foreground respectively, demonstrating a small accu-
racy benefit through use of the hierarchical scheme. Although the
main purpose of the hierarchical search was to reduce number of
SVM comparisons, rather than boost accuracy, the latter may have
arisen due to the reduced scope for distraction caused by the reduc-
tion. The more focused training sets created through consideration
of the hierarchy when identifying per-class positive and negative
examples may also deliver some benefit.

Disabling the dynamic weighting and running the system with uni-
form priority across all features for all classes (StudentTV: UNI-
FORM) resulted in overall MAP of 36.9% (46.1% and 27.2%, for
foreground and background respectively) representing a significant
drop in performance versus the dynamically weighted results and
similar performance to BASELINE, within tolerance. This shows
that simply adding more features to a classification system alone
does not appreciable improve the performance, rather careful atten-
tion must be paid to the fusion strategy. The result clearly illustrates
the benefit of setting per-class feature weightings automatically at
training time, rather than prescribing a single global weighting of
features for the dataset.

The proposed system shows significant accuracy benefit versus the
baseline for the most challenging dataset, StudentTV. Whilst ac-
curacy is increased via our two core contributions (hierarchy and
multi-modal fusion) the proposed use of foreground/background

sus StudentTV:NOSEG. Despite the separation of ontologies and
use of FG/BG regions over FF did not, as might intuitively be ex-
pected, produce higher results (despite features for separate FG and
BG regions being available). Fig. 6 (top) visualises the relative per-
class performance of StudentTV vs. StudentTV:NOSEG, which
combined with the larger standard deviation of the former, indicates
that some classes benefit from significant performance increases
using segmentation (especially in the background ontology). Many
of the best performing classes under segmentation contained dis-
tinct, fast moving objects (e. g. sports clips) which appear to fare
well under the motion segmentation technique used (Fig. 6, bot-
tom).

4.2.2  Accuracy over ‘Hospital’ and ‘Caltech-101’
Accuracy over smaller datasets was evaluated to provide an indica-
tion as to the scalability of the system (‘StudentTV’ vs. ‘Hospital’)
over production footage, and against a standard image classifica-
tion dataset (’Caltech-101"). For the latter, motion features could
not be included in the multimodal fusion, though a performance
boost almost doubling the mAP is observed when the remainder of
the feature bank is included and dynamically weight. Where few
concepts exist and the ontology is flat (‘Hospital’) or shallow and
simplistic ("Caltech-101") there is little benefit in our hierarchical
path finding approach — although, as with ‘StudentTV’, there is
some minor benefit over the BASELINE of a few percent.

4.3 Classification Efficiency

4.3.1 Performance over ‘StudentTV’
For the StudentTV dataset the average time taken to classify a video

clip for the best performing system configuration (StudentTV:NOSEG)

was 22.5 seconds (23.2 and 21.6 seconds respectively for the back-
ground and foreground ontologies). Given an average clip length
of 30 seconds, the classification speed averages out at slightly bet-
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Figure 6: Top, Middle: Confusion matrices showing relative
performance of using segmentation or not on a per-class basis.
Bottom: Motion-based foreground segmentations of good and
poor performing classes.

ter than real-time (but note that classifications are aggregated from
key-frames only). The performance of the full system including
segmentation drops to slightly lower than real-time at 36.4 seconds
due to the computational overhead of the motion-segmentation al-
gorithm.

Table 1 summarises the number of SVM comparisons made on av-
erage per classification, which gives best indications on the scala-
bility of the system with the number of classes. On average, ap-
proximately half the number of node evaluations must be made
in order to reach a classification decision when using the hierar-
chical path finding. In FLAT cases (including the BoVW BASE-
LINE) all nodes must be investigated (under the one-vs-all frame-
work) to reach a classification decision. This represents a doubling
in performance for our test scenario. We note that the test-time
complexity of our hierarchical strategyis O(logn) in the best case
and O(n) in the most pessimistic (in terms of the number of node

Figure 7: Screens from the prototype commercial shoot-to-
cloud system into which our proposed algorithm was inte-
grated. Three forms of visualisation may be used to view clas-
sification results for ingested content: 1) Graph ‘mind-map’
view showing clips sharing concepts; 2) List view; 3) Colour
heat-map view with accompanying tag cloud, showing per key-
frame classification on a timeline that enables seeking for con-
cepts over longer clips of ‘rushes’ pre-production footage.

evaluations scaling with number of classes). We would anticipate
the benefit of this technique to tend to well below half for signif-
icantly larger ontologies, or ontologies deeper than that accompa-
nying ‘StudentTV’.

4.3.2  Performance over ‘Hospital’ and ‘Caltech-101’
Similar to ‘StudentTV’ the hierarchical path finding approach re-
sults in around one half as many node evaluations for ‘Caltech-101’
despite a simpler ontology of only 2 concepts deep. Again, minor
improvements in accuracy are observed; the hierarchical path find-
ing is successful even though the hierarchy is shallow. No perfor-
mance benefit is seen without a hierarchical ontology (‘Hospital’)
as the system degenerates to a ‘one-vs-all’ comparison, although
accuracy benefits are present through fusion of the multi-modal fea-
tures.

4.4 Content Visualisation

Our classification algorithm was integrated into a prototype com-
merical ‘shoot to cloud’ infrastructure on Amazon S3. Fig. 7 il-
lustrates three forms of content browsing interface available via
web interface. Three types of visualization are available, drawing
upon the metadata tags generated by our automatic video concept
detection technique. First, a mind-map enabling clips to be nav-
igated through semantic relationships established by shared con-
cepts. Second, a classical list view showing the most likely clas-
sification of each clip in the clip bin. Third, a colour based heat-
map and tag cloud showing the most probable classifications on a
per-keyframe basis over time. The latter enables rapid seeking for
target concepts within pre-production rushes footage, which can be
relatively long (up to 30 minutes per clip for ‘StudentTV’) relative
to the 1-2 second shots typically handled by research systems that



focus upon post-production content.

S. CONCLUSION

We have presented a novel video concept detection system inte-
grated within a prototype shoot-to-cloud video infrastructure, and
evaluated its performance over a challenging > 1000 video dataset
of pre-production (‘rushes’) footage. Two additional smaller datasets
were compared against for reference. Two novel technical contri-
butions have been presented:

First, a hierarchical path finding algorithm that significantly re-
duces the number of classification decisions that must be made for
each frame of content. By adopting an efficient best-first traver-
sal of the concept ontology the number of classification decisions
in our system scales O(logn) with the number of concepts, and
linearly with the number of frames processed. We demonstrate in-
gestion and classification times approximately equal to the length
of the clip, enabling real-time data rates on average and making our
system practical for shoot-to-cloud scenarios. Moreover, the train-
ing of classifiers using ontologically local concepts appears to yield
a secondary benefit through a minor improvement in classification
accuracy.

Second, the fusion of multiple feature modalities (e.g. colour, tex-
ture, motion, face presence) is proposed using dynamically learned
importance weightings for each modality at each node of the classi-
fication hierarchy. Increases in performance are shown using a fu-
sion of multiple modalities over single feature (SIFT) classification,
and these are most significant for the large, diverse ‘StudentTV’
dataset where greatest benefit is also shown for the dynamic learn-
ing of weights on these features.

‘We have also investigated the possibility of using motion segmenta-
tion to extract foreground and background regions from the video,
and to classify foreground and background concepts independently
within those regions. Whilst a several classes showed improve-
ments in accuracy via this technique, the overall average perfor-
mance dropped slightly with larger standard deviation. Inspection
of the automatic segmentation masks on best and worst perform-
ing classes indicates that performance is correlated to segmentation
quality, which given the reliance upon motion in this case produced
fragmented regions for near-stationary objects. A clear direction
for future work is to explore alternative appearance-based segmen-
tation algorithms to overcome this issue.
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