
SEGGUARD: DEFENDING SCENE SEGMENTATION AGAINST ADVERSARIAL PATCH
ATTACK

Thomas Gittings⋆ Steve Schneider⋆ John Collomosse⋆†

⋆ Centre for Vision Speech and Signal Processing (CVSSP), University of Surrey. UK.
† Adobe Research, San Jose. USA.

ABSTRACT

Adversarial Patch Attacks (APAs) induce prediction errors by
inserting carefully crafted regions into images. This paper
presents the first defence against APAs for deep networks that
perform semantic segmentation of scenes. We show that a
conditional generator can be trained to produce patches on
demand targeting specific classes and achieving superior per-
formance versus conventional pixel-optimised patch attacks.
We then leverage this generator along with the segmentation
network as part of a generative adversarial network, which
trains the model to ignore the adversarial patches produced by
the generator, while simultaneously training the generator to
produce updated patches to attack the fine-tuned network. We
show that our process confers strong protection against adver-
sarial patches, and that this protection generalises to traditional
pixel-optimised adversarial patches.

Index Terms— Semantic segmentation, Adversarial
Patches, Adversarial Attack.

1. INTRODUCTION

Semantic segmentation is a fundamental computer vision task
underpinning applications such as robotics, autonomous driv-
ing, and medical imaging. Contemporary segmentation meth-
ods are enabled via convolutional neural networks (CNNs) and
so are prone to adversarial attacks; minor modifications to im-
ages that induce a significant change in the network prediction
[1, 2]. Adversarial attacks may be covert, via imperceptible
changes distributed across an image [2, 3], or overt via ad-
versarial patch attacks (APAs) that introduce visible changes
localised to a particular region or ‘patch’ [4, 5, 6]. The ma-
jority of adversarial attacks target CNNs trained for image
classification. Recently, APAs have been developed [7] for
models performing semantic segmentation, e.g.DDRNet [8],
BiSeNet [9] and ICNet [10]. Given the importance of semantic
segmentation networks it is vital that their robustness to these
adversarial patches is studied and improved. Additionally, se-
mantic segmentation provides a well defined context in which
to study APAs, since it is clear that a patch should have no
influence outside of the area it covers. Semantic segmentation
also enables the study of different forms of targeted attack,
such as insertion and deletion of objects in a scene.

This paper contributes the first training-time defence
against APAs that target semantic segmentation networks.

APAs targeting segmentation have been sparsely researched
and, consequently, few defences exist. Our core technical
contribution is to harness adversarial training to improve the
resilience of segmentation models at training time. Such
training need not be applied from scratch, enabling pre-trained
models to be fine-tuned via our method in order to confer
protection against APAs. Our training-time defence utilises
a conditional Generative Adversarial Network (cGAN) that
synthesizes patches to attack the segmentation network, whilst
simultaneously improving the resilience of that network
against those patches. The generator synthesizes adversarial
patches which successfully attack the network, forming a
second contribution of our work. We show that our framework
confers protection against APAs to the segmentation network
which generalizes beyond our own APAs. Therefore our two
core technical contributions are as follows:
1. Segmentation Defence We show that adversarial training
can be used to defend a semantic segmentation network against
adversarial patch attacks, and that the protection provided by
this extends to unseen state of the art attacks. We can achieve
this protection against untargeted attacks (those which aim to
decrease the mIoU of the model) and targeted attacks which
seek to insert a specified target class in to a scene.
2. Conditional Generative Patches We show that a con-
ditional patch generator can produce effective adversarial
patches against semantic segmentation networks, and that
these patches are more effective than the baseline in certain
settings. Existing methods of producing adversarial patches
train at the pixel level, with optimisation taking upwards of an
hour to converge, making them unviable to use in a training
loop to protect a model from attack. Hence we make use of
a conditional generator, which can produce the adversarial
patches via a forward inference pass, and be continuously up-
dated during training in order to produce patches that attack
the latest version of the segmentation model.

2. RELATED WORK

Adversarial Images are created by the strategic introduction
of small perturbations to real images, causing them to be mis-
classified. Early methods [1] were slow, but later methods
can produce adversarial examples in a single optimisation step
[2, 11].
Adversarial Patches [4] restrict the perturbation to a small
region of the image, but allow it to be arbitrary in magnitude.

Adversarial Image Undefended DDRNet SegGuard Defended DDRNet

Fig. 1. SegGuard provides protection against adversarial patch attacks (APAs) for semantic segmentation. An undefended
DDRNet (middle) is fooled when presented with an image containing an adversarial patch (left), detecting a large spurious region
of class ‘vegetation’, whereas our SegGuard Defended DDRNet (right) is only affected within the boundaries of the patch itself,
even correctly inferring the segmentation for some areas covered by the patch.

This allows for an attack that is printable and robust to affine
transformations. Gittings et al.[6] added deep image prior
regularisation, which creates patches that have a different ap-
pearance and could potentially elicit a different response from
a defended network. Eykholt et al.[5] introduced robust physi-
cal perturbations specifically targeting road sign classification.
Adversarial Patches for Object Detection and Segmenta-
tion. Liu et al.[12] created an adversarial patch for detection
causing all objects to be ignored, but the patch must be in-
serted digitally into the image, so it is not useful as a physical
world attack. Chen et al.[13] and Eykholt et al.[14] created
adversarial patches for object detection using stop signs.Nesti
et al.[7] created a real-world adversarial patch for Semantic
Segmentation, with versions designed to decrease the mIoU
of the segmentation, as well as to transform one specific class
into another..
Defences Against Adversarial Images. Szegedy et al.[1]
proposed the adversarial training, where adversarial examples
are created during the training of the model and then included
as part of the training data. For this method to be practical a
fast attack method must be available [2]. Kurakin et al.[15]
applied adversarial training to a large dataset. Papernot et
al.[16] introduced the distillation defence, which retrains the
network so that an attacker cannot backprop through it. Meng
and Chen [17] attempted to remove adversarial perturbations
at inference time, by using an autoencoder to project the input
onto the manifold of natural images. Others achieve similar
using a GAN [18].
Defences Against Adversarial Patches. There are relatively
few defences against adversarial patch attacks. Hayes [19]
created the first such defence, by creating a saliency map us-
ing guided backpropagation, which is then filtered to find any
localised regions of high saliency, which are then assumed
to be patches and inpainted. Naseer et al.[20] observed that
adversarial patches often form concentrated regions of high
gradient in an image. They apply localised gradient smoothing
(LGS), which blurs areas of high gradient when they are con-
centrated together in groups. Abdel-Hakim [21] introduced
the Ally Patch defence, which splits the image into multiple
small regions of interest, each of which is classified separately
and a vote is taken amongst the regions to decide on the final
classification. Since a patch is unlikely to appear in more than
one region, this reduces its impact. All of these inference-

time methods degrade the classification performance on clean
images and slow the speed of inference. Gittings et al.[22] ap-
plied adversarial training to patches, using a conditional patch
generator to allow the attack to be updated during training.

3. METHODOLOGY

In this work we study adversarial patch attacks on semantic
segmentation networks. The primary goal of these attacks
is to reduce the overall performance of the network, as mea-
sured by the mean Intersection Over Union (mIoU) over the
evaluation classes. In some experiments we further focus our
goal via targeted attacks. These can target the insertion or
deletion of a given target class, but in the main paper we focus
on insertion attacks. We restrict our attention to state of the
art real-time semantic segmentation networks, in particular
DDRNet [8], BiSeNet [9] and ICNet [10]. All the networks
used in this paper are trained on the Cityscapes dataset [23],
and designed for use in autonomous driving. Our defence is
inspired by Vax-a-Net [22], which is a training-time defence
against adversarial patches for image classification. The ar-
chitecture (Figure 2) synthesises patches using a conditional
generative network (G), and applies an adversarial training
process to update the generator while simultaneously training
the segmentation network (f) to build resistance to the patches.

3.1. Adversarial Patches for Semantic Segmentation

An adversarial patch for a semantic segmentation network f
is a patch p which is designed to cause f to perform poorly
on scenes containing p (e.g.Figure 1). Formally we define
A(p, x, l, t) to be the image x on which the patch p has been
applied at location l with affine transformation t. We call this
the application of p to x.

For our main experiments we sample l randomly from all
possible patch locations during both training and testing. This
choice is explored fully in the supmat. For t we randomly scale
the patch up or down by 20% and we do not rotate the patch.
During the training process the image x is sampled from the
full Cityscapes training set, in order to produce patches which
are as universal as possible.
Loss Function. To create our adversarial patches we use the
loss function proposed by Nesti et al.[7] with an adaptive value

Conditional Patch Generator (𝐺)

Noise
(𝑧)

Target
Class

(𝑐)

Patch Application (𝐴) Semantic Segmentation Network/ Discriminator (𝑓)

SampleReal
Images

Adversarial Image

Original Image (𝑥) Ground Truth (𝑦)

Output
ℒ(𝑓(𝐴(𝑥, 𝐺(𝑧, 𝑐), 𝑦)𝐴(𝑥, 𝐺(𝑧, 𝑐)

Patch (𝑝)

Fig. 2. Proposed architecture for defending semantic segmentation models against adversarial patches (APAs). The conditional
patch generator G synthesises patches targeting all 19 evaluation classes of Cityscapes [23]. We alternate training of f and G to
encourage the model resilience to unseen attacks.

of γ. Define N = {1, . . . ,H × W} to be the set of output
pixels, and Ñ = {1, . . . , H̃ × W̃} ⊂ N the pixels which
correspond to the adversarial patch. Then define the set of
pixels which are not part of the patch and which are currently
classified correctly according to target segmentation map y

Υ = {i ∈ N \ Ñ | fi(x̃) = yi}. (1)

Now we can define two terms for the loss function:

LM (f(x̃), y) =
∑
i∈Υ

LCE(fi(x̃), yi), (2)

LM̄ (f(x̃), y) =
∑
i∈Ῡ

LCE(fi(x̃), yi), (3)

where Ῡ = N \ Ñ \Υ and LCE is the standard cross-entropy
loss, so LM is the cross-entropy loss over the pixels which are
misclassified according to y, and LM̄ is over the remaining
pixels (excluding those covered by the patch). This enables us
to define an overall loss function Lp = γLM + (1 − γ)LM̄ .
The value of γ is adaptively defined by γ = |Υ|

|N\Ñ | , which
increases the number of misclassified pixels when there are
few, and improves their score when there are many.

To create an untargeted attack we set the target segmenta-
tion map y to be the ground truth segmentation map for x, and
then aim to maximise L. For an insertion attack targeting the
class c we set y to be a segmentation map consisting entirely
of class c, and minimise L. For a deletion attack targeting c
we redefine N to consist only of pixels which have ground
truth class c. Then set y to be the ground truth, and aim to
maximise L. This means that the adversarial patch is aiming
for pixels with ground truth class c to be misclassified, and all
other pixels are left unconstrained.

3.2. Patch Generation and Optimisation

Since a generator is only able to produce a limited selection of
output sizes, and requires significant architectural changes to

Fig. 3. Visualisations of adversarial patches sampled from
our conditional generator G trained to attack an undefended
DDRNet [8], targeting each evaluation class of the Cityscapes
dataset [23] in an insertion attack.

do so, we fix the size of patch output from the generator and
scale it to the appropriate size for application.

An unconditional patch generator G takes as its input an
N×100 noise vector z, where N is the batch size. In this paper
we explore networks of 5-7 up-convolutional layers, which
produce patches of size 64 × 64, 128 × 128, or 256 × 256
respectively. We also consider rectangular variants producing
patches of size 64 × 128, 128 × 256, and 256 × 512. Each
layer uses 4×4 up-convolutional filters, except for rectangular
variants which have 4 × 8 filters in the first layer. We use
leaky-ReLu activation and batch normalisation after each layer.
To make the generator conditional we add an N × 19 class
vector input c. We refer to the attack using the unconditional
generator as A-UGen, and the conditional A-CGen. In the
Supplemental Materials we explore the impact of generator
architecture on attack and defence performance. A-UGen

and A-CGen are both trained for 20 epochs using an ADAM
optimizer with a learning rate of 10−4.

Figure 3 shows the output of a conditional generator G
after it is trained to perform an insertion attack an undefended
DDRNet. Unlike adversarial patches for classification, the
patches do not obviously contain visual features from the
objects they are targeting, but the patches for different classes
are visually distinct. The distribution of colours skews heavily
towards bright and vibrant.

3.3. Discriminator and Training Methodology

The loss function for training f is defined as follows:

Lf = LB(x, y) + LB(A(G(z, c), x, l, t), y), (4)

where y is the ground truth. The first term tries to ensure that
clean images are correctly classified and the second is aiming
for images with adversarial patches to be correctly classified.
LB is a pixel-wise bootstrap cross entropy loss, where only
the 10% of pixels with the highest loss are included. We
also freeze all batch normalisation parameters of the network
during training.

Our network is trained in a similar manner to a Generative
Adversarial Network (GAN). The segmentation network that
we are defending takes the place of the discriminator in the
GAN architecture. Instead of the discriminator acting to make
the generator better, we are using the generator to produce
a more effective discriminator. When training the networks
we train alternately the discriminator and generator at each
iteration, in the manner of a standard GAN.

The generator is pre-trained for 20 epochs prior to training
the discriminator. After this the generator and discriminator
are trained together for another 50 epochs to provide protection
against adversarial patches. Both the generator and discrimi-
nator use Adam optimisers, the generator with a learning rate
of 10−4 and the discriminator 10−5.

4. RESULTS AND DISCUSSION

We evaluate the ability of our proposed SegGuard method to
defend against both seen and unseen adversarial patch attacks
(APAs), as well as its performance on clean images, com-
pared with two baseline defences. Additionally we evaluate
the attack performance of both conditional and unconditional
patch generators, compared with the baseline of a traditional
pixel-optimised patch attack.
Datasets. All models are trained and evaluated on the
Cityscapes dataset [23]. We use the 2,975 finely labeled
training images to train both our adverarial attacks and our
defended segmentation networks. We evaluate on the 500
validation images, and we consider only the 19 classes which
are labeled for evaluation.
Metrics. To measure segmentation performance we use met-
rics based on intersection over union (IoU). For a class c,
a lower value of IoU(c) indicates better segmentaton per-
formance on c. Hence when we measure the performance
of attacks a higher IoU indicates better performance, but

for defences a lower IoU is better. The usual way to cap-
ture the performance of a segmentation model is with the
mean IoU, which is defined by mIoU =

∑
c IoU(c). We

use this metric to evaluate models without any adversarial
attack, or with an untargeted attack. In the case of targeted
attacks, we consider two metrics which encapsulate the per-
formance of adversarial patches targeting each of the 19 eval-
uation classes into a single number. The first metric is the
mean mIoU, which is defined by mmIoU =

∑
t

∑
c IoU(c, t),

where IoU(c, t) is the IoU of class c when each image has
an adversarial patch targeting class t. The second metric is
defined by mcIoU =

∑
t IoU(t, t). This enables a focused

look at whether the attacks are achieving their specific goals,
since only the target class is considered for each patch. In all
cases we compute the IoU only over those pixels which are
not covered by the patch.
Baselines. We compare our attacks against the pixel-optimised
patch method of Nesti et al.[7], which we refer to here as A-
Patch. This also serves as an unseen attack for the evaluation
of defended models. We use patches of size 300 × 600. We
compare our defence against two baselines. The first (D-LGS)
is the local gradients smoothing method of Hayes, with the
only adjustment being to scale the image to compute the ar-
eas to smooth based on a 224 × 224 downsampled image,
which is then upsampled to apply the smoothing. The sec-
ond baseline (D-Patch) is inspired by the Ally Patch method
of Abdel-Hakim et al.[21]. We split the image in to 2 × 2
non-overlapping patches, rescale each of them to 1024×2048,
apply the segmentation network to each patch, then resize each
output and combine to create the full segmentation patch.
Implementation Details. All experiments were completed
using the open-source PyTorch library. The implementation
of the segmentation networks is from pytorch-semseg,
using weights pre-trained on cityscapes from the original au-
thors.

4.1. Pixel-Optimised Patch vs Generator Attack

Untargeted Attack. The left half of Table 1 compares the
performance of untargeted patches produced by the baseline
method A-Patch with those produced by our unconditional
patch generator (A-UGen), as well as a patch consisting of ran-
dom noise as a baseline (A-Noise). On DDRNet and BiSeNet
the best results are achieved by A-UGen. These attacks de-
crease the performance of the model by over 40 percentage
points when compared to A-Noise. For these networks A-
Patch, on the other hand, reduces the performance by less than
30 percentage points. For ICNet the performance of A-Patch
is better than A-UGen, reducing the performance by over 40
percentage points.
Targeted Attack. The right half of Table 1 compares the
overall performance of targeted insertion attacks. The attacks
we consider are A-Patch, A-UGen and A-CGen. For A-Patch
and A-UGen we train a separate patch/generator targeting
each of the 19 evaluation classes. For A-CGen we train a
single generator conditioned on the target class. For all three
networks the best performing attack on both metrics is A-
Patch. A-UGen and A-CGen both reduce mmIoU and mcIoU

Arch. Untargeted Metric Targeted
A-Noise A-Patch A-UGen A-Patch A-UGen A-CGen

DDRNet 0.76 0.53 0.26 mcIoU 0.16 0.27 0.31
mmIoU 0.46 0.58 0.59

BiSeNet 0.65 0.42 0.16 mcIoU 0.24 0.28 0.32
mmIoU 0.44 0.45 0.45

ICNet 0.73 0.30 0.49 mcIoU 0.28 0.35 0.37
mmIoU 0.63 0.66 0.69

Table 1. Average performance of Untargeted and Targeted At-
tacks with three kinds of optimisation: a pixel optimised-patch
(A-Patch), unconditional generator (A-UGen) , conditional
generator (A-CGen), and random noise (A-Noise)

Fig. 4. Comparison of targeted insertion attacks, broken down
by target class (zoom for detail). Each column corresponds to
a target class, and then each row is the IoU for a class when
the network is attacked with that patch. A value of 1 (white)
means that the patch did not change the performance on that
class, and 0 (black) means the IoU was 0 for that class.

significantly for all three networks, meaning they are useful
attacks in practice and likely suitable for use in SegGuard to
finetune a segmentation model. For a breakdown by class, as
well as a study of deletion attacks see the sup. mat.

In Figure 4 we break down the performance of targeted
insertion attacks by class. Each column represents a target
class and then each row contains the relative IoU for a particu-
lar target class when the model is attacked by a patch of that
target class. In this context relative IoU means that for each
class instead of reporting the IoU for that class directly, we
report it as a proportion of the IoU of that class in the original
model with no adversarial patch attacks applied. This makes
the impact of the patch attack on different classes clear even
when the classes had different IoUs initially. For DDRNet
and BiSeNet the class performance of A-UGen and A-CGen
patches is very similar. Targeting the same class results in very
similar IoUs across every class from both of these attacks. This
shows that the conditioning is respected and the generator is
effective at producing patches. This is useful because it allows

the creation of a patch targeting any of 19 classes on demand
from a single generator, and it also enables the defence which
is explored in a following section. On ICNet the diagonal is
not as strong for A-CGen as for A-UGen, showing that the
conditioning is not as effective, but away from the diagonal
A-CGen is more effective. We can also see that for all three
networks the A-Patch attack performs slightly better.

4.2. Defences

We examine the robustness of four defended networks, trained
with either a conditional insertion attack generator (D-CGen)
or an unconditional generator (D-UGen), and with the gener-
ator being either 7 layers and rectangular (L) or 5 layers and
square (S). All attacks are fully white box, i.e.the attacker has
access to the weights of the defended networks in the Seg-
Guard case, and knows the additional preprocessing that is
used for the baseline defences. Since D-Patch is fully differen-
tiable it is straightforward to attack in this setting. D-LGS is
not differentiable so we bypass the defence using BPDA [24].

Table 2 shows the performance of each method when faced
with targeted attacks, untargeted attacks, as well as no attack,
and a patch consisting of random noise (A-Noise). On the
images with no patch, our methods always achieve within 2%
of the Undefended performance. In several cases our networks
actually meet or exceed the performance of the undefended
network. The baseline methods both always perform worse on
clean images that our defended networks and the undefended
network. For A-Noise the story is similar, with our networks
performing similarly to the undefended network (or better in
some cases), and the baseline defences losing some perfor-
mance. When faced with A-UGen, the undefended method
drops significantly. The performance of the baseline defences
is in most cases not much better. Our defence can recover
the performance to be similar to images with no patch. For
A-Patch, the drop in performance from the attack is sometimes
not as large, but again the baseline defences fail to improve
performance much. The best performing method are again
ours. Against targeted A-Patch the best results for all three net-
works are achieved by D-CGen (L), which provides an almost
complete defence. The baseline defences provide almost no
benefit over the undefended network. Against A-CGen the best
performance is achieved by D-CGen (S), which should not
be surprising since this is the attack the network was trained
on. However D-CGen (L) still performs well with this attack.
Again the baseline defences provide minimal benefit.

4.3. Visualising Segmentation Results

Figure 5 shows representative segmentations. Our method can
correctly in-fill behind the patch, unlike other defences. The
two baseline defences produce lower accuracy segmentations
with artifacts visible. The baselines are successful at defending
against A-Patch, localising spurious class detections within
the patch. However for A-UGen, neither of the baselines keep
class ‘motorcycle’ within the confines of the patch, although
they reduce its spread vs. the undefended network. Our de-
fended network produces accurate segmentations outside of

Table 2. Mean intersection over union (mIoU) of defended networks tested with targeted and untargeted adversarial patches.

Arch. Defence
Untargeted Targeted

No Patch A-Noise A-Patch A-UGen A-CGen A-Patch
mcIoU mmIoU mcIoU mmIoU

DDRNet

Undefended 0.78 0.74 0.53 0.36 0.31 0.59 0.16 0.46
D-UGen (S) 0.77 0.75 0.63 0.72 0.62 0.73 0.23 0.60
D-UGen (L) 0.76 0.73 0.71 0.73 0.74 0.75 0.44 0.69
D-CGen (S) 0.77 0.76 0.61 0.75 0.76 0.77 0.27 0.62
D-CGen (L) 0.76 0.74 0.74 0.75 0.75 0.75 0.74 0.74

D-Patch 0.73 0.71 0.50 0.55 0.30 0.61 0.18 0.55
D-LGS 0.73 0.68 0.52 0.39 0.38 0.62 0.17 0.48

BiSeNet

Undefended 0.69 0.65 0.45 0.19 0.32 0.45 0.24 0.44
D-UGen (S) 0.69 0.66 0.55 0.60 0.52 0.61 0.42 0.59
D-UGen (L) 0.67 0.65 0.53 0.55 0.54 0.63 0.48 0.62
D-CGen (S) 0.69 0.67 0.63 0.66 0.67 0.68 0.57 0.66
D-CGen (L) 0.69 0.66 0.62 0.65 0.67 0.67 0.66 0.67

D-Patch 0.62 0.58 0.42 0.40 0.30 0.46 0.20 0.48
D-LGS 0.63 0.59 0.41 0.19 0.32 0.46 0.26 0.44

ICNet

Undefended 0.78 0.74 0.45 0.53 0.37 0.69 0.28 0.63
D-UGen (S) 0.79 0.77 0.59 0.69 0.53 0.74 0.37 0.72
D-UGen (L) 0.78 0.76 0.73 0.75 0.67 0.75 0.60 0.75
D-CGen (S) 0.79 0.78 0.69 0.77 0.78 0.78 0.65 0.76
D-CGen (L) 0.79 0.77 0.77 0.77 0.78 0.78 0.77 0.77

D-Patch 0.76 0.70 0.57 0.64 0.44 0.69 0.21 0.63
D-LGS 0.74 0.68 0.63 0.52 0.48 0.67 0.42 0.65

Undefended

D-UGen
(ours)

D-Patch

D-LGS

Input Image

No Patch A-Noise A-Patch A-UGen

Fig. 5. Visualisation of the segmentation output from our Seg-
Guard defended model vs an undefended model and baseline
defences (zoom for detail). Our method learns to ignore the
adversarial patches, and to inpaint the segmentation map for
the area which was covered by the patch, without degrading
the performance on clean images.

the patch area, and plausibly in-fills the patch.
Table 3 compares inference time vs. baselines. We process

a single batch of images, averaged across the 500 Cityscapes
validation images and 5 runs, with a batch size of 12. The
SegGuard defended network has the same speed as the original
network for all architectures, since it changes only the weights.
A-Patch does not add a significant time to the inference for
each batch, but requires batch size to be decreased by 4×,
meaning that significantly more memory is required to achieve

the same speed. A-LGS takes longer and is not feasible for
real time segmentation.

Table 3. Inference time (ms) / frame rate (fps) for networks
defended by SegGuard, vs. undefended and baseline defences

Arch. Undefended D-U/CGen D-Patch D-LGS

DDRNet 8.6/116 8.5/118 9.0/110 103/0.8
BiSeNet 14.0/73 14.0/73 14.0/70 1.2/0.8
ICNet 12.0/87 11.0/88 12.0/86 850.0/1.2

5. CONCLUSION

We proposed SegGuard1, the first training-time defence against
adversarial patch attacks for semantic segmentation networks.
We showed that our method achieves better results than two
baseline methods across multiple attacks, including those
which are unseen during the adversarial training process. We
achieve this while maintaining the performance of the network
on the clean data and without any modification to the network
architecture. Additionally our patch generator provides su-
perior attack performance on undefended networks for some
types of attack, as well as enabling the efficient production of
adversarial patches of many classes via conditional generation.
Future work will apply this method to different segmentation
models and datasets, and explore different attack modalities
such as the remote adversarial patch [25].

1Supplementary material for this paper is available at
https://sigport.org/documents/segguard-defending-scene-segmentation-
against-adversarial-patch-attack-supplementary

6. REFERENCES

[1] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob
Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013. 1, 2

[2] Ian J Goodfellow, Jonathon Shlens, and Christian
Szegedy, “Explaining and harnessing adversarial ex-
amples,” arXiv preprint arXiv:1412.6572, 2014. 1, 2

[3] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and
Pascal Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” in Proceedings
of the IEEE conference on computer vision and pattern
recognition, 2016, pp. 2574–2582. 1

[4] Tom B Brown, Dandelion Mané, Aurko Roy, Martı́n
Abadi, and Justin Gilmer, “Adversarial patch,” arXiv
preprint arXiv:1712.09665, 2017. 1

[5] Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li,
Amir Rahmati, Chaowei Xiao, Atul Prakash, Tadayoshi
Kohno, and Dawn Song, “Robust physical-world attacks
on deep learning visual classification,” in Proc. CVPR,
2018. 1, 2

[6] Thomas Gittings, Steve Schneider, and John Collomosse,
“Robust synthesis of adversarial visual examples using a
deep image prior,” in Proc. BMVC, 2019. 1, 2

[7] Federico Nesti, Giulio Rossolini, Saasha Nair, Alessan-
dro Biondi, and Giorgio Buttazzo, “Evaluating the robust-
ness of semantic segmentation for autonomous driving
against real-world adversarial patch attacks,” in Proc.
WACV, 2022, pp. 2280–2289. 1, 2, 4

[8] Yuanduo Hong, Huihui Pan, Weichao Sun, and Yisong
Jia, “Deep dual-resolution networks for real-time and
accurate semantic segmentation of road scenes,” arXiv
preprint arXiv:2101.06085, 2021. 1, 2, 3

[9] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,
Gang Yu, and Nong Sang, “Bisenet: Bilateral segmen-
tation network for real-time semantic segmentation,” in
Proceedings of the European conference on computer
vision (ECCV), 2018, pp. 325–341. 1, 2

[10] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jian-
ping Shi, and Jiaya Jia, “Icnet for real-time semantic
segmentation on high-resolution images,” in Proceedings
of the European conference on computer vision (ECCV),
2018, pp. 405–420. 1, 2

[11] Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Ad-
versarial examples in the physical world,” in Proc. ICLR
Workshops, 2017. 1

[12] Xin Liu, Huanrui Yang, Ziwei Liu, Linghao Song, Hai Li,
and Yiran Chen, “Dpatch: An adversarial patch attack
on object detectors,” arXiv preprint arXiv:1806.02299,
2018. 2

[13] Shang-Tse Chen, Cory Cornelius, Jason Martin, and
Duen Horng Chau, “Shapeshifter: Robust physical ad-
versarial attack on faster r-cnn object detector,” Proc.
Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, 2018. 2

[14] Dawn Song, Kevin Eykholt, Ivan Evtimov, Earlence
Fernandes, Bo Li, Amir Rahmati, Florian Tramer, Atul
Prakash, and Tadayoshi Kohno, “Physical adversarial ex-
amples for object detectors,” in Proc. USENIX Workshop
on Offensive Technologies, 2018. 2

[15] Alexey Kurakin, Ian Goodfellow, and Samy Bengio, “Ad-
versarial machine learning at scale,” Proc. ICLR, 2017.
2

[16] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh
Jha, and Ananthram Swami, “Distillation as a defense to
adversarial perturbations against deep neural networks,”
in Proc. IEEE Symposium on Security and Privacy, 2016.
2

[17] Dongyu Meng and Hao Chen, “MagNet,” in Proc. Comp.
and Comm. Security, 2017. 2

[18] Pouya Samangouei, Maya Kabkab, and Rama Chellappa,
“Defense-GAN: Protecting classifiers against adversarial
attacks using generative models,” in Proc. ICLR, 2018. 2

[19] Jamie Hayes, “On visible adversarial perturbations &
digital watermarking,” in Proc. CVPR Workshops, 2018.
2

[20] Muzammal Naseer, Salman Khan, and Fatih Porikli, “Lo-
cal gradients smoothing: Defense against localized ad-
versarial attacks,” in Proc. WACV, 2019. 2

[21] Alaa E Abdel-Hakim, “Ally patches for spoliation of
adversarial patches,” Journal of Big Data, vol. 6, no. 1,
pp. 1–14, 2019. 2, 4

[22] Thomas Gittings, Steve Schneider, and John Collomosse,
“Vax-a-net: Training-time defence against adversarial
patch attacks,” in Proceedings of the Asian Conference
on Computer Vision, 2020. 2

[23] Marius Cordts, Mohamed Omran, Sebastian Ramos,
Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson,
Uwe Franke, Stefan Roth, and Bernt Schiele, “The
cityscapes dataset for semantic urban scene understand-
ing,” in Proc. CVPR, 2016. 2, 3, 4

[24] Anish Athalye, Nicholas Carlini, and David Wagner,
“Obfuscated gradients give a false sense of security: Cir-
cumventing defenses to adversarial examples,” in Inter-
national conference on machine learning. PMLR, 2018,
pp. 274–283. 5

[25] Yisroel Mirsky, “Ipatch: A remote adversarial patch,”
arXiv preprint arXiv:2105.00113, 2021. 6

	 Introduction
	 Related Work
	 Methodology
	 Adversarial Patches for Semantic Segmentation
	 Patch Generation and Optimisation
	 Discriminator and Training Methodology

	 Results and Discussion
	 Pixel-Optimised Patch vs Generator Attack
	 Defences
	 Visualising Segmentation Results

	 Conclusion
	 References

