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Fig. 1: Our proposed method in-paints regions in the principal (hero) camera view (top), using texture from
multiple cameras across a wide baseline. The resulting video frames (bottom) are completed using texture
unavailable in the principal view. Our approach handles moving camera, clutter and occlusion.

Abstract—We describe a non-parametric algorithm for multiple-viewpoint video inpainting. Uniquely, our algo-
rithm addresses the domain of wide baseline multiple-viewpoint video (MVV) with no temporal look-ahead in
near real time speed. A Dictionary of Patches (DoP) is built using multi-resolution texture patches reprojected
from geometric proxies available in the alternate views. We dynamically update the DoP over time, and a
Markov Random Field optimisation over depth and appearance is used to resolve and align a selection of mul-
tiple candidates for a given patch, this ensures the inpainting of large regions in a plausible manner conserving
both spatial and temporal coherence. We demonstrate the removal of large objects (e.g. people) on challenging
indoor and outdoor MVV exhibiting cluttered, dynamic backgrounds and moving cameras.

Index Terms—Computer Graphics, Inpainting, Multiple Viewpoint Video

1 I N T R O D U C T I O N

Multiple viewpoint video is becoming commonplace in film
and music video production, where shots are captured us-
ing multiple, wide-spaced, synchronised cameras for later
editing. Frequently it is desirable to edit such footage to re-
move objects; e.g., to remove an actor in a motion-capture
suit to be later replaced with an animated virtual character.

There is increasing work in image inpainting, including
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commercial inpainting products such as Adobe Photoshop’s
Content Aware fill [2]. However, there is far less progress
for video inpainting, which requires the copying or hallu-
cination of texture to fill the removed region and is cur-
rently manually performed through rotoscoping to create
per-frame ’clean plates’. Producing even short sequences
under this work-flow can require many person-months.

This paper presents the first video inpainting algorithm
for wide-baseline multiple viewpoint videos (MVV). We as-
sume a scene observed by multiple static (witness) cameras
and a moving or static principal (hero) camera. The goal is
to inpaint the unwanted object in the principal view, using
texture synthesised from any combination of the principal
or witness views at a frame a second, orders of magnitude
fast than other state of the art approaches, which can take
around 1500 to 4000 seconds a frame. The texture should
be visually plausible and exhibit coherence both spatially
(absent of visual discontinuities) and temporally (without
flicker).



Our proposed approach can peek behind large object oc-
clusions, to inpaint the scene even though the background is
never revealed to the principal camera. Figure 1 illustrates
our inpainting results; the edge of the sofa and white box
are never revealed in the video to the principal camera.

Our core technical contribution is an optimisation frame-
work through which appropriate texture, sampled from a set
of patches collated in a Dictionary of Patches (DoP) from
multiple available viewpoints, then selected and combined
to complete the missing region. The patches are optimised
over time by several factors including spatiotemporal coher-
ence, patch depth, view coherence, age, and historic popular-
ity of each patch. These constraints are used to determine
a globally optimal patch set for inpainting. Optimisation
adopts a multi-resolution strategy to expedite inpainting
further enhancing accuracy with a coarse to fine alignment
step.

2 R E L AT E D W O R K

Texture synthesis for image inpainting has been extensively
studied. Initially, approaches focused upon greedy per-pixel
iterative methods [5], later extended to global optimisation
by posing image completion as a pixel-labelling problem
[24]. Recently due to their ease of parallelism, per pixel sam-
pling and filtering has been re-explored [23]. They use the
redundancy of multiple frames in a video to inpaint areas.
Improved retention of the local structure can be achieved
by seamlessly quilting small patches sampled from else-
where in the same [9, 10] or visually similar images [15].
The re-projection of the 2D patches into 3D [11] allows
for more accurate correlation, we employ this principle of
re-projection for our MVV approach. Layered data driven
patch-based synthesis of Lightfield data has been examined
by Zhang [38], decomposing the central view into different
depth layers, and presenting it to the user for specifying the
editing goals.

Patch based image inpainting has been successfully ex-
tended to monocular video inpainting. A direct extension
of patches to small space-time cuboids was explored by
Wexler [37] adapting the greedy iterative completion of
[10], similarly enforcing local coherence through consider-
ation of adjacent (spatiotemporal) patches. The technique is
sensitive to fast object motion. However, Newson extended
and robustified the approach [27] providing the current state
of the art in video inpainting. Like this approach, they use
a shift-map principle to find the most coherent patches in
space and time. However we use the reconstructed geomet-
ric proxy based witness views to sample additional patches
from, and we also incorporate optimisation terms related
to the patch age, depth and freshness, in particular, to en-
sure recent coherent patches are incorporated. A generali-
sation to simple camera motion was proposed through fore-
ground segmentation in [28]. To deal with circumstances
in which background is not observed unoccluded during
the sequence, additional constraining assumptions on the

motion of the segmented foreground object are introduced,
e.g. cyclic motion [33]. While Huang [18] proposed to in-
paint the regions guided by constraints on planar structure,
and Darabi [8] incorporated geometric transformation of
the patches. Extending this Zhu [39] used similar images
from the internet to provide the source data, and inpaint
through point matching and warping of the images. Indi-
cating the importance of compensating for the appearance
variation due to perspective distortion from wide baseline
cameras. Extending the per-pixel inpainting approaches,
a space-time extension of shift-maps [30] was proposed
in [13] aligning the video frames via homographies and to
defining the occlusion-aware per-pixel flow. The method
is semi-automatic requiring user-input to determine oc-
clusion regions and uses multi-resolution matching over
space-time to reduce the complexity of the video inpaint-
ing. While there is also a similarity with monocular HDR
video reconstruction, infilling information from previous
frames through modelling pixel-level optical flow [22] or
temporally and spatially constrained patch based synthe-
sis [21]. While Huang [19] jointly estimated optical flow
and colour in the missing region to synthesise missing re-
gions in videos in a temporally coherent fashion.

Multiple viewpoint video (MVV) inpainting has received
little attention. Literature addresses only the narrow base-
line case, typically that of stereo pairs [16,25,32,34,35,40].
Given the small extent of the area to be filled, approaches ap-
proximate missing content by extrapolating adjacent colour-
depth information and performing patch matching over the
extrapolated pixels.

Thonat et al. [31] use structure from motion to re-project
the images and a coarse to fine patch based optimiser - the
integration of patch data over time to enhance temporal co-
herence is not possible as with our weighted dictionary of
patches. While in image synthesis, Hu [17] proposed Patch-
Net, a patch-based image representation for Interactive Im-
age Editing. PatchTable [4], proposed an index data struc-
ture to accelerate the access and representation the patches.
It performs offline precomputation (optimisation through
hashing and precomputed neighbour mapping), however,
we obtain the efficiency through online optimisation of the
patches, intelligently culling patches that are unused or ir-
relevant to the inpainting challenge.

3 M U LT I - V I E W P O I N T V I D E O I N PA I N T I N G

Fig. 2 provides an overview of the proposed wide base-line
MVV inpainting method. A coarse multi-planar model of
the scene geometry is computed via Delaunay triangula-
tion over recovered 3D positions of sparse feature points
matched between views (Fig. 2a). This geometric proxy is
a basis for reprojecting texture from the witness views to
the principal view containing the region to be inpainted
(Fig. 2b). A regular grid of overlapping patches is con-
structed over the area to be filled in the principal view. To
fill this grid, a dictionary of patches (DoP) comprising of



Fig. 2: Overview of the inpainting pipeline

sampled candidates from the principal and witness views
is used (Fig. 2c) The patch consists of visual (RGB pixel)
and generated depth information in x,y. The DoP is updated
over time and contains patches from previous frames. In-
terpreting the grid as a graph, where patches (nodes) are
connected in a lattice by adjacency, we use a Markov Ran-
dom Field (MRF) to assign patches from the DoP to the
grid. Assignments are made to encourage spatiotemporal
coherence, visual plausibility, and patch freshness (Fig. 2d).
Once converged, the region is inpainted with the assigned
patches (Fig. 2e).

3.1 In-painting Formulation

We consider a set of images It = {I1, ...In}, with overlap-
ping viewpoints comprising a single frame of an MVV se-
quence, where the principal or hero view Ih contains a mask
region Ωh for inpainting. Each frame It is processed in turn,
replacing Ωh using small patches from the image of tex-
ture of size h×w, sampled from any valid region of any
viewpoint Ic \Ωcc ∈I1..t .

We propose a global optimisation for inpainting Ωh, find-
ing the optimal combination of 2D visual texture patches
These patches represent vertices i ∈ V within a discrete
random field consisting of an undirected graph G = (V ,E )
while the edges E connecting neighbouring spatial vertices
i, j within the same time-step t and the neighbouring vertex
at t−1. Observing prior patch-based inpainting work [9,10]
and image statistics [12,29], we assume the choice of patch
for p is dependent in its immediate neighbours. The optimal
inpainting of Ωh is the label map x minimizing the energy
E(x) = D(x)+C(x), between D(x) the single vertex data
potential, and C(x) the spatio-temporal coherence i.e pair-
wise potential. We unpack this energy term in detail within
Sec. 3.4 (c.f. eq. 1).

3.2 Handling Dynamic Patches with depth

Patches of dynamic nonrigid objects such as people within
the scene are smaller than the static background. Therefore,

(a) Img to inpaint (b) without Depth (c) Using depth

Fig. 3: A courtyard frame, where without depth, the vase is
missed, and a silver box incorrectly inpainted.

the MRF optimisation can often seek to ignore them incor-
rectly for the greater global static background. We propose
to append an approximate depth map into the RGB image
to form a 4D image to incorporate and promote moving ob-
jects. The geometric proxy from the Delaunay triangulation
can be converted into an approximate depth map by using
the world 3D coordinates from the key points. The depth
value for each candidate patch is computed from the nearest
keypoint depth to provide an approximate value and visu-
alised as a depth image and appended to the three channel
RGB image

The depth PVH is essential to distinguish between mid
and background objects, but it can also enforce the inpaint-
ing of otherwise ignored small static objects. Fig 3b ignores
the depth and produces coherent inpainting but missing the
vase of flowers. However, Fig 3c considers the depth and
correctly inpaints the vase

3.3 Geometric Proxy
If all images in It had similar viewpoints, it would be pos-
sible to sample the DoP without little or no need for distor-
tion to correct the change in viewing direction. However,
the advantage of wide baseline MVV is the ability to ob-
serve background ‘behind’ the matted object from an alter-
nate view. For example to see behind the person in Fig 4a,
patches from the witness views such as Fig 4b, will provide



(a) (b)

Fig. 4: We exploit the benefits of wide-baseline MVV, con-
tent masked in (a) can be observed in (b)

the otherwise occluded detail.
Directly sampling rectilinear patches, e.g., of the sofa in

Fig. 4a would lead to heavy distortion that would increase
E(x). To reduce the energy and improve visual plausibil-
ity, we warp to correct for foreshortening when sampling
texture from witness cameras. We recover a rough low-
resolution proxy of the scene using sparse wide baseline
stereo [20]. The triangulation of sparse correspondences
derived from key-points detected in two or more views pro-
duces a depth estimate to generate a sparse 3D point cloud.
Resulting in a sparse set of 3D points which to be readily
converted into a mesh through Delaunay triangulation the
result is a view-dependent 3D reconstruction or ‘geometric
proxy’

For the kth image view, projective texture mapping
projects the image Ik onto the geometric proxy; per-view
3D mesh, this is then reprojected to the viewpoint of Ih ob-
taining the reprojected transformed colour image Ih

k in the
hth or principal image view.

3.4 MRF Optimisation

The overall process of inpainting the video is illustrated in
Algorithm 1.

Given a set of all grid vertices V = {i1, ..., in} and
pi ∈P , where pi denotes the patch label associated with
the ith patch, and fi is the frame the patch was sampled
from, to favour newer patches. The optimisation minimizes
an energy function E(x) = D(x)+C(x) that balances the
data term D(x) comprising the visual plausibility ψs of the
4D video + depth patch weighted by the freshness of the
patch ωi and C(x) the pairwise spatio-temporal smoothness
coherence ψi j weighted by the camera distance γi, j between
the patches with the labels pi and p j:

E(x) = ∑
i∈V

ωiψs(pi)+
1
|Ni| ∑

i∈V , j∈Ni

γi jψi j(pi, p j) (1)

Where N defines the set of the neighbouring patches in
space and time, to minimise the energy difference for spatial
temporal coherence between the candidate i and the node.
We first compute visual plausibility of the 4D RGB + Depth
patch to the corresponding grid cell using normalized sum

Algorithm 1: Inpainting of video, using wide base line
MVV

Data: Input MVV, mask region Ωh
Result: Inpainted hero Ih video
Go through the frames in the sequence
for t to n do

Grid Ih to identify nodes to optimise;
optimise for each vertex i
for i ∈ V do

1, Compute the freshness of the patch, ωi;
2, compute patch appearance and depth

similarity wrt the label, ψs(pi);
3, Identify patch coherency with respect to

spatio-temporal neighbouring patches,
ψi j(pi, p j);

4, Maintain the age of the Patch fi while
(t− fi)< τ do

Add patch to DoP;
Optimise E(x) = D(x) + C(x) (Eq. 1);

of squared differences (SSD).

ψs(pi) = ∑ ||Ωh� (S (pi)− Ih)||22 (2)

Where pi is the patch label for i and S (.) is the function
that returns a putative image containing only pi as non zero
pixel wise values, and Ωh is the mask, whose values are zero
in the inpainting target region and one otherwise, combined
with element-wise multiplication. This would mean that
when the node is completely within the inpainting target
region This visually plausible score is weighted by a factor
ωi inversely proportional to the freshness of the patch; a
combination of its age and when it was last used to inpaint
a frame. Description of this weighting is deferred to sub-
sec. 3.6. In addition to minimising the energy difference
between the candidate i and the node, the optimisation con-
siders spatial-temporal coherency with respect to the set of
neighbouring patches in space and time. N defines the set of
the neighbouring patches in space and time, and the coher-
ence is measured through the sum of square difference ψi j
of the pixel values in the overlap area between neighbouring
patches i, j in both time and space.

3.5 Multi-Resolution Patches
For maximal spatial coherence, ideally, the candidate patch
would completely intersect with the matte Ωh. However,

To approximate the desire for a single large candidate
patch, a constraint is incorporated into the energy function
that favours neighbouring patches from the same view de-
spite any scale changes. A visibility penalty γ is introduced,
reflecting a cost to proposing adjacent patches where there



is a large difference in viewing angle of cameras from
which those patches were sampled. The principal vectors
of the camera given the vertices, pi and p j are defined as ci
and c j respectively, therefore

γ(pi, p j) = 1+
1+ arccos(ci · c j)

|It |
(3)

Under this multi-resolution approach, iterative MRF op-
timizations (subsec. 3.7) are performed at increasing scale
s = [1...4]. Fig. 5 demonstrates inpainting as s increases.
As the MRF is solved at each scale, the patches of V se-
lected by the algorithm are composited into the principal
view Ih. The solved grid is composited one patch at a time,
working from the perimeter of the region Ωh inwards in a
greedy manner. Due to the use of a coarse geometric esti-
mate of the scene, it is possible for the most highly corre-
lated patches to be slightly misaligned with the hero view.
Therefore, we propose a recursive coarse to fine patch align-
ment. Each patch area to be inpainted is subdivided into
four sub-regions,

3.6 Dictionary of Patches (DoP)
As each patch is sampled from a reprojected view and en-
tered into the DoP (V ), a per-patch frame id fi is used to
monitor the patch freshness, ωi.

ωi =
τ +(t− fi)

τ
(4)

This adaptive culling of patches allows for a dictionary of
historical patches to be maintained and applied to the min-
imisation framework without optimising over every possi-
ble patch and biasing toward the freshest content as this is
most likely to reflect the true background.

3.7 Optimization
The overall energy function to be minimized is solved via
Iterated Conditional Modes (ICM) [6]. ICM proceeds by
choosing an initial random label configuration for the ver-
tices. It iterates over each vertex in the graph and calculates
the value that minimises the energy given the current val-
ues of all the variables in its neighbourhood in time and
space. At the end of an iteration, the new values for each
variable become the current values, and the next iteration
begins. In general, within MRF optimisation, an important
step is label pruning. The extreme situation is that each
node examines all possible labels Pt , this is highly ineffi-
cient as a majority of labels are ill-suited for a specific node.
Therefore, in general, inpainting identifies a fixed number
of patches as possible labels per node up to some fixed
limit. Given the use of the 3D reconstruction and resulting
geometric proxy to unify the multiple views of the images,
there is no longer the requirement to search for an optimal
patch over the complete image. Therefore, only labels from
patches located within the initial patch size (400 pixels for

an HD image) are examined across the witness cameras.
This use of judicious label pruning allows the examination
of only a small number of correlated patches across all the
witness views, which improves efficiency with no reduction
in accuracy.

4 R E S U LT S A N D D I S C U S S I O N

We evaluate our inpainting algorithm over five public MVV
sequences (subsec. 4.1) [1]. A set of foreground object mat-
tes Ω are obtained for all viewpoints using [14] and hand
labelling. Visual examples of source footage, mattes and in-
painted regions produced by our algorithm are presented in
Fig 6 and in the accompanying video (The video is available
at https://bit.ly/2DQYCw3).

We quantify the accuracy of the sequences Odzemok,
Steps and Courtyard via PSNR comparison with a static
clean plate unavailable to the algorithm. Together with qual-
itative results for three sequences with a moving principal
camera; TuROM, Courtyard and Amphitheatre, where it is
infeasible to capture a clean plate for each frame. We also
analyse the patch size and the number of witness views and
the runtime performance against other approaches.

4.1 Multi-view Video Datasets
The sequence Odzemok was captured in an indoor studio
using 9 HD cameras in a 180-degree arc, the background
consists of multiple depths, with large swathes of the back-
ground occluded in the principal view over all time, includ-
ing the sofa, wall and floor. Steps consists of 8 HD cameras
in an outdoor setting in a 150-degree arc with multiple mov-
ing people, and a dynamic background of trees. The multi-
planar geometry of the steps presents a challenging scenario
for patch re-projection in the presence of a noisy geometric
proxy. The sequence Amphitheatre uses the same scene and
cameras as Steps, however with a dynamic mid-ground con-
sisting of multiple moving and occluded people, ensuring
a unique inpainting result is required for each frame. The
sequence Courtyard is filmed in a small outdoor courtyard,
with 14 cameras in a 180-degree arc and a moving hero cam-
era and a large number of small objects in the scene. We
show results using both a static and moving hero camera.
The sequence TuROM consists of 6 static witness cameras
in a 150-degree arc and a single moving hero camera in an
outdoor setting with a single person performing a Range of
Motion (ROM) sequence. This sequence features a white
box behind the actor never seen from the hero camera. In
terms of parameters, we use Mph = 400, the initial patch
size and the patch lifetime threshold τ = 5.

4.2 Evaluation of Accuracy
We perform comparative evaluation of our method (DoP-
MRF-OF) with a large number of baseline approaches
(using their released code, but modified to use all camera
views): 1) FVVR, a free-viewpoint video rendering tech-
nique [20]; 2) Efros and Freeman’s patch-based inpaint-

https://bit.ly/2DQYCw3


Fig. 5: The progressive refinement of inpainted texture as the multi-resolution algorithm increases scale s = [1,4], enabling
large Ωh to be filled.

ing [9] using patches sampled directly from all views; 3)
Single plane, as per (2) with a single homography to repro-
ject all texture patches to the principal view; 4) Geometric
proxy, as per (3) but with full multi-planar geometric proxy
reprojection; 5) PatchMatch [3] a monocular inpainting
technique adapted to draw upon all camera views; 6) Image
Melding [8], a monocular inpainting technique that incor-
porates geometric patch transformations from all camera
views; 7) PatchMatch3D [27] the state of the art video in-
painting using static and moving camera implementations.
8) DoP-MRF, a modification of (4) with a multi-resolution
MRF and DoP to enforce coherent and plausible patch pro-
posals; (9) DoP-MRF-OF, as per (8) but using our coarse to
fine optical flow patch alignment. Fig. 6 presents represen-
tative visuals of our proposed method (9) against baseline
approaches (2,5,6,7) and a ground truth clean plate for the
static cameras, or an approximate camera view for moving
cameras, indicated by a white star, additional discussion of
the sequences is in Section 4.5 and a video of the sequences
is available at http://bit.ly/2pJEsun). Mean aver-
age SSIM [36] of the inpainting result against the clean-
plate is reported in Tbl. 1 and plotted in Fig. 7 over time for
the Odezmok sequence, consistently the SSIM is higher for
our proposed method.

4.3 Evaluation of Temporal Consistency
To evaluate the temporal consistency of the approach, we
adopt the stability metric of Hua et al. [7] used in their work
to assess flicker in video stylization. The resultant inpainted
frame is divided into dense equi-sized patches. Each patch
is compared against its spatial neighbours in the adjacent
frames, and the maximum SSIM across the neighbourhood
computed. That aggregated scores across all patches pro-
vides a measure of temporal coherence (inversely correlated
to flicker) in the video. The temporal coherence of the ap-
proach and other state of the art methods is shown in Tbl. 2
and per frame over the TuROM and Courtyard (moving
camera) sequences in Fig 8. Fig 9 visualises the false colour
heat map for frames throughout the two sequences. The
high SSIM for both our proposed approach, indicates that
there is little change between the frames - therefore mini-

mal artefacts or ”popping” of patches occurring through the
temporal sequence. Fig 9 visualises the stability score over
regions of the representative frames. Both PM3D and Img-
Meld appear less coherent, indicated by the greater quantity
of red pixels.

4.4 Perceptual User Study
In order to fully analyse the qualitative performance of
our proposed approach, we performed a two user studies,
analysing the performance of the inpainting against indi-
vidual frames and short 40 frame sequence clips. The two
modes, image and video were independent experiments
each shown to 300 different users. For each test the user
was shown the same sequence or frame with 3 inpainting
techniques side by side, our proposed DoP-MRF-OF, Patch-
match3D [27] and image melding [8] (in a randomised or-
der). The users were asked to ”select the highest quality
video/image”, Tbl 3, shows the percentages of approaches
chosen split over sequences It can be seen that our approach
perform excellently, in particular in the video clips for the
moving camera sequences TuROM and CourtyardMoving.
For individual frames, TuROM is lower as the other ap-
proaches are still able to produce a pleasing (but blurred)
result as shown in Figure 6. However, these results don’t
represent the groundtruth scene as they ignore the white
box.

4.5 Failure Cases
The only failure in Odzemok is at the top left of the sofa,
where the geometric proxy is a poor approximation of scene
structure. The alignment of the steps in Steps requires the
coarse to fine optical flow alignment to provide near photo
realistic in painting. The dynamic non-rigid background
in Amphitheatre of trees and moving people demonstrates
the impressive ability of our proposed approach to correctly
inpaint the non-rigid moving objects. This is possible due to
the updating of the geometric proxy on a frame wise basis,
in conjunction with the patch freshness favouring recent
patches from the witness views. Allowing our approach to
work with further moving backgrounds such as vehicles or
a beach, however smaller non rigid objects such as humans

http://bit.ly/2pJEsun


Fig. 6: Qualitative results of the proposed method DoP-MRF-OF, against other baselines (subsec. 4.2), including a ground
truth clean plate or approximate moving camera view (indicated by a white star), discussion of the sequences is shown in
section 4.5



Table 1: Accuracy quantified as SSIM against the groundtruth cleanplate (higher is better)

Seq FVVR Efros 1 plane PtchMtch[11] Geo Prox ImgMeld[18] PM3D[14] DoP-MRF-OF
SSIM σ SSIM σ SSIM σ SSIM σ SSIM σ SSIM σ SSIM σ SSIM σ

Odzemok 0.92 0.02 0.89 0.01 0.90 0.00 0.94 0.00 0.91 0.01 0.94 0.00 0.92 0.00 0.98 0.00
Steps 0.99 00.1 0.92 0.01 0.91 0.01 0.98 0.00 0.91 0.02 0.95 0.00 0.97 0.00 0.99 0.00
Curtyrd(static) 0.68 0.02 0.82 0.02 0.79 0.02 0.83 0.02 0.80 0.02 0.85 0.01 0.86 0.02 0.92 0.01

Table 2: Temporal consistency of approach across all sequences, measured through patch similarity computed by SSIM in
a local neighbourhood on the previous frame. (Higher is better)

Seq FVVR Efros 1 plane PtchMtch[11] Geo Prox ImgMeld[18] PM3D[14] DoP-MRF-OF
SSIM σ SSIM σ SSIM σ SSIM σ Prev σ SSIM σ SSIM σ SSIM σ

Odzemok 0.94 0.00 0.94 0.02 0.92 0.01 0.95 0.01 0.92 0.02 0.99 0.00 0.99 0.01 0.99 0.00
Steps 0.98 0.01 0.98 0.02 0.97 0.02 0.97 0.01 0.96 0.03 0.99 0.00 0.99 0.00 0.99 0.00
Ampitheatre 0.90 0.03 0.89 0.03 0.91 0.03 0.92 0.02 0.91 0.03 0.96 0.02 0.96 0.01 0.98 0.01
TuROM 0.81 0.04 0.75 0.04 0.83 0.03 0.83 0.03 0.83 0.02 0.86 0.01 0.87 0.01 0.90 0.01
Curtyrd(Static) 0.87 0.02 0.95 0.01 0.93 0.02 0.88 0.02 0.92 0.02 0.92 0.01 0.99 0.01 0.99 0.00
Curtyrd(Move) 0.92 0.03 0.78 0.03 0.82 0.02 0.93 0.02 0.92 0.02 0.94 0.01 0.97 0.01 0.98 0.01

Fig. 7: Accuracy vs. time: per-frame SSIM against clean-
plate for the Odezmok sequence.

can be harder to model geometrically, due to the resolution
of the geometry incorrectly reprojecting a body part. The
geometric proxy is updated on a frame by frame basis for
the moving backgrounds and this can cause popping in the
result, due to large scale geometric changes in the proxy.
Also given the approach driven purely by patches, if none
of the cameras can see an area due to occlusion there is
likely to be an incorrect optimisation found.

Our approach, DoP-MRF-OF provides both quantita-
tively and qualitatively clearer inpainting of the matte in
comparison to the other approaches. The current state of the
art temporal based video inpainting optimisation method,
PatchMatch3D [27], is successful for the sequence Steps,
with its repetitive structures like many other inpainting se-
quences, such as the beach umbrella. However while it
attempts to minimise the visual spatiotemporal errors by
smoothing the inpainted regions, compared to the ground-
truth it struggles in preserving the actual structure of the
background in Odzemok (the sofa), Courtyard( the lower

Fig. 8: Temporal consistency of TuROM and Courtyard se-
quences.

part of the image) and TuROM(the white box and a tem-
poral smoothness). The use of PatchMatch improves the
visual appearance in comparison to the older approach by
Efros and Freeman, however, similar to PatchMatch3D,
a lack of geometry and depth constraints between views
causes significant failures in the Odzemok, Amphitheatre
and TuROM sequences. Use of a full geometric proxy (DoP-
MRF improves the approach with the temporal and spatial



Fig. 9: Visualisation of the temporal instability of inpainted result using the stability score method of Hua et al. (red
indicates regions of poor temporal stability)

constraints that the MRF framework provides, however, the
alignment of patches is sometimes missed and in the case of
TuROM the right background is never identified. This high-
lights the value of an MVV inpainting method; monocular
approaches can only hallucinate missing detail when the
actual environment is never observed (e.g. in Odzemok, Am-
phitheatre and TuROM). Analysis between PatchMatch,
PatchMatch3D, Image Melding, single plane and DoP-
MRF-OF, is shown in Fig. 10. The error of the inpainting
patches against the background plate shown for Odzemok

and Courtyard. It shows the minimal error of our approach
against the clean plate, compared to the other image and
video techniques, that especially struggle to inpaint the sofa
and surprisingly in the case of PatchMatch3D the cloth.

4.6 The use of multi-view images

To demonstrate the importance of the multi-view aspect
of the approach, we perform inpainting using a decreasing
number of camera views on the Odzemok sequence, and
the accuracy measured through the mean, min, max and



Fig. 10: Visualisation of the error vs captured clean plate, and patch cameras used for DoF-MRF-OF, PatchMatch and
Single Plane and PM3D

Table 3: Qualitative inpainting User study, across all frames
and video clips of the sequences, 300 users were asked to
pick their ”highest quality” video/image, after inpainting
with the 3 approaches

Seq PM3D Img Meld DoP-MRF-OF
Single Frame Comparison

Odzemok 2.1% 2.7% 95.2%
Amphitheatre 18.2% 10.4% 71.4%
TuROM 25.0% 15.0% 59.4%
Courtyard moving 2.1% 3.4% 95.0%
Courtyard static 1.5% 1.5% 97.0%

Video clip Comparison
Odzemok 1.4% 2.4% 96.2%
Amphitheatre 22.9% 8.0% 69.1%
TuROM 9.7% 5.1% 85.2%
Courtyard moving 0.7% 3.2 % 96.1%
Courtyard static 4.8% 2.9% 92.3%

standard deviation of the PSNR for all view permutations.
The results on the performance of the inpainting against the
number of camera views are displayed in Fig 11.

It can be seen that excluding the hero camera view only
(excl PC), makes no difference to the performance, however,
once three or more cameras are removed the performance
drops. Fig 12 confirms the importance of the additional
views, by showing the average number of patches drawn
from each camera view for the five sequences. It can be
seen that a number of cameras are used, this is due to the
geometric proxy warping the patches with respect to the
scene, thus allowing them to be used effectively in the in-
painting. Although the steps sequence does use a large num-
ber of patches from the hero camera (4), The steps sequence

Fig. 11: Accuracy vs number of camera views used

Fig. 12: Illustration of the mean of patches drawn from each
camera view for the 4 sequences



has a large amount of similar low-frequency texture in the
steps and background grass on the hero camera (in this case
camera 4). Also, the subject to inpaint is quite far away
meaning there are more patches in the hero camera, there-
fore it uses the hero camera to source many of the patches.
Although excluding the hero camera, makes no difference
on average to the performance of the approach as shown in
Figure 4.8. The other sequences use the hero camera less
as their sequences generally contain more occlusion of the
hero camera due to the subject being larger or using moving
cameras, these mean the witness views are needed more.

4.7 Dictionary of Patches
The use of a DoP is also key to the approach, Fig 13, shows
the performance of the Odzemok and Steps sequences when
the dictionary of patches lifetime threshold τ is varied. It
can be seen that as the number of frames kept in the dictio-
nary increases so does the performance until it stabilises at
around five frames. Allowing patches from previous frames
to be used but without the naive approach of testing all pos-
sible patches in the sequence, with its exponential increase
in storage and computation costs. It is possible to remove
the dictionary and optimise overall frames in a sequence,
and the MRF has access to all possible patches, this can re-
move the flicker at the beginning of the sequence, indicated
by the instability in the initial frames. However, the mean
PSNR over the Odzemok and Courtyard sequences are un-
affected at 38.9dB and 39.8dB respectively, despite a huge
increase in the computational runtime cost of the approach,
increasing the time per frame from around 1s to over 10s
on average.

Fig. 13: Comparing performance for increasing the maxi-
mum frame lifetime of patches in the DoP τ

4.8 Patch size
The approach is based on image patches as these provide
improved local structure, with minimal computational costs.
It is possible to adjust the initial patch size, both lower and

higher than the standard 400pixels for an HD video. Fig-
ure 14 shows how the PSNR changes for Odzemok and
Courtyard for different initial patch sizes.

Fig. 14: The mean PSNR performance of Odzemok and
Courtyard with a static hero camera with varying initial
patch size

While Fig 15 qualitatively shows the change in the qual-
ity of inpainting for a region of frame 40 of TuROM as the
initial patch size is changed

These examples show that as the patch size decreases
dramatically, it starts to lose performance, as it loses the
ability for a coherent globally optimised inpaint. Similarly,
as it increases the patch size, there are less possible patches
to use no corrupted by the matte area and the approach fails
to inpaint at all.

4.9 Non-rigid Mid Ground Objects
When dynamic or static midground objects are present in
the sequence, the use patch depth in the unary term of the
MRF dramatically improves the inpainting quality (while
un-affecting sequences without midground objects. Fig 16
shows the frames from the Amphitheatre sequence from
Fig 6 when the depth is and isn’t considered in the MRF.
It can be seen that without depth the dynamic objects are
also ignored, and the background is inpainted incorrectly,
as shown in Fig 6 this occurs with other approaches such
as PatchMatch3D too. However, with the depth term, the
midground objects which cannot be seen from the hero cam-
era are inpainted correctly.

4.10 Run-time Performance
Often within optimisation frameworks, the per frame run-
time cost of the inpainting process is very high and not
practical for realistic use especially for video, taking hours
per frame. Tbl 4 shows the mean time per frame in seconds
across the different approaches for two of our HD video
sequences.

As can be seen compared to the approaches Patch-
Match3D(PM3D) and Image Melding(imgMeld), our ap-
proach DoP-MRF-OF show a speed-up of at least an order
of magnitude . This advantage is significant because not
only is the algorithm more practical to use, given that a
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Fig. 15: Comparing performance as the initial patch size is changed for TuROM Fr 40. We use a 400-pixel size, as this
provides a compromise between availability of patches and availability of local structure.

Seq FVVR Efros 1 plane PM Geo Prox DoP-MRF ImgMeld PM3D DoP-MRF-OF
Odzmk 0.5 0.8 0.8 0.8 0.8 0.8 4710 126 1.2
Curtyd 0.4 0.7 0.9 1.7 0.8 0.9 4920 131 1.5

Table 4: Comparing Mean time per frame (seconds) of our approach DoP-MRF-OF against previous works on the
Odzemok and Courtyard sequences

Fig. 16: Comparing the approach with and without optimi-
sation from as defined in sec 3.2

video sequence will contain many frames, but it has state of
the art performance compared to this other approaches. The
Multi-resolution solution and selective candidate patches
together with the carefully constrained dictionary label set
in the MRF allows for a near real time operation with a state
of the art performance.

5 C O N C L U S I O N

We have presented the first algorithm for video inpainting
over wide baseline MVV footage. Uniquely our MVV ap-
proach can inpaint regions of the principal view that are
never visible in that view (e.g. the plinth in TuROM or peo-
ple in Amphitheatre). Key technical contributions were an
optimisation framework for disambiguating patch selection
from an over-complete DoP sampled from principal and
witness views. Texture patches from the latter were repro-
jected to the principal view using a coarse geometric proxy
recovered from the scene. The DoP was constructed over

time and patches culled based on age and popularity to re-
tain tractable execution times. The MRF constrain patch
choices to encourage visual plausibility, bias toward more
recent patches, and innovative depth based spatiotemporal
coherence. We evaluated using five public MVV sequences
and results showed excellent qualitative and quantitative
performance when compared to baseline monocular and
multiple-view techniques. Future work will evaluate perfor-
mance over backgrounds exhibiting more substantial mo-
tion, considering the possibility of a dynamically updating
geometric proxy e.g via Kinect Fusion [26]. It would also
be interesting to explore the effect of near-camera objects
in the scene either directly behind or directly occluding the
foreground object and how reasoning about visibility could
be factored into the unary term of the MRF.
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