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Abstract— We introduce a simple but versatile camera model
that we call the Rational Tensor Camera (RTcam). RTcams
are well principled mathematically and provably subsume sev-
eral important contemporary camera models in both Com-
puter Graphics and Vision; their generality is one contribution.
They can be used alone, or compounded to produce more
complicated visual effects. In this paper we apply RTcams to
generate synthetic artwork with novel perspective effectsfrom
real photographs. Existing Non-Photorealistic Renderingfrom
Photographs (NPRP) is constrained to the projection inherent in
the source photograph, which is most often linear. RTcams lift
this restriction and so contribute to NPRP via multi-perspective
projection. This paper describes RTcams, compares them to
contemporary alternatives, and discusses how to control them
in practice. Illustrative examples are provided throughout.

Index Terms— Generalized Cameras, Non-Photorealistic ren-
dering, Projective systems.

I. I NTRODUCTION

T HE ideal pin-hole camera generates images in linear
perspective. Having been well studied and extensively

used in both Science and Art, its properties are well known.
Recently, non-linear projective cameras have been researched
in both Computer Graphics and Computer Vision, driven by
a variety of motivations. Our motivation came from noticing
that linear perspective is surprisingly rare in Art: children,
draughtsmen, architects and engineers regularly draw using
non-linear projections, either by accident or design. The Ori-
ental and African schools, amongst other non-Western schools,
make little if any use of linear perspective. Historically,the
pre-Renaissance and post-impressionist Western Art also use
non-linear perspective. We set out to introduce a wide variety
of perspective effects into real photographs. The output is
processed into paintings using standard Non-Photorealistic
Rendering from photographs (NPRP). We wanted a simple
method, able to emulate not only real cameras but also
perspective types typical to Art; hence RTcams.

Our work was in part motivated by our own observations
that Art often uses non-linear projection and also by Art
commentator John Willats. He differentiates theprojective
systemthat is concerned with perspective in artwork, from the
denotational system1 that is concerned with the way marks are
made [1]. Willats shows both systems play an important role
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1Willats’s division is more general than the special case given here, but the
projection/mark-making division is valid and directly applicable to NPRP.

in categorizing a piece of artwork. The lesson for NPRP is
that to convincingly emulate a style of art, it is not sufficient
to consider either system alone; both must be considered.

NPR covers a wide range of research topics including multi-
perspective rendering, artistic rendering, cartoon rendering,
and so on. The literature on NPRP, specifically, focuses
overwhelmingly on denotational systems. Sometimes by com-
puting the form or placement of brush strokes, other times
painting media is modeled. Despite significant progress in
these areas, NPRP algorithms remain restricted to painting
over projections from real cameras, and the largest and most
important class of real cameras can be approximated to first-
order by a pin-hole camera. The significance of this is that
NPRP has been restricted in the gamut of projective styles it
exhibits. We conclude that NPRP faces what might be called
a “projective barrier”.

Our contribution is to lift the projective barrier by consider-
ing the projective system, rather than the denotational system.
We introduce Rational Tensor Cameras, or RTcams for short
(the pun on arty-cameras is intentional). RTcams provide a
versatile family of non-linear cameras. RTcams can model lens
aberrations in real cameras and can even be calibrated to them,
accounting for barrel and pin-cushion aberrations. Equally,
they enable photographs to be processed into projective forms
that no physical camera can ever capture but which are used
by human artists. The images output from RTcams retain a
photographic texture and so can be used as fancy photos, or
they can be painted over with any NPRP algorithm. In this way
we can build a system that takes both the (multi)perspective
and denotational systems into account.

Non-linear cameras remove the requirement that rays of
light must pass through a single point focus. In fact non-
linear cameras may contain any number of real-valued focal
points, including zero or infinitely many. They are the subject
of a considerable volume of contemporary study and are
used in many different ways in both Graphics and Vision.
Contemporary models include X-slit [2] cameras, push-broom
cameras [21], strip cameras [3]–[6], General Linear Cam-
eras [20] and Rational Function cameras (RFcams) [7]. The
next Section provides a fuller review. RTcams are tensor based
cameras that emulate (and can be calibrated to) many other
non-linear cameras including all those just mentioned. RTcams
can combine different photographs from different views into
one, or can be used to define a light field. The important
features of RTcams are that they:

• Provide a single, simple model of a camera that not
only contains several important, contemporary models
of generalized cameras as special cases, but have their



unique properties (perspective effects) too.
• Introduce a wide variety of projection effects. Many of

these are impossible to achieve with any real camera but
may be seen in the work by artists of all skills, ages, and
many schools.

• May be combined easily, to produce largercompoundRT-
cams. Compound RTcam may themselves be combined,
ad infinitum. This allows users to construct complex
optical devices that include light beam splitting and
merging.

Examples of the kind of effects RTcams can produce can
be seen in Figure 1. We now give a brief review of related
literature.

Fig. 1. Example applications of RTcams to a Rubik’s cube. Toprow: The
identity RTcam (left) leaves the image unchanged, here perspective projection
from a real camera. A barrel (middle) and pin-cushion (right) distortion.
Bottom row: inverse perspective (left), a depth-dependenttwist (middle), and
a compound “fly-eye” lens effect (right) created with a compound RTcam.
Close inspection of the latter reveals that cubes are not stacked to form a
wall, but that cubes intersect to form a regular hexagon, andthat the same
cube is viewed 7 times, each from a slightly different angle.

A. Background

This section provides a brief review of multi-perspective
rendering. X-slit cameras have been used to mosaic new
views without recovering 3D geometry and without camera
calibration [2]; the foci of an X-slit camera lie on a pair of lines
making an X-shape. Rademacher and Bishop [3] construct
multi-view panoramas of a kind suitable for cel animation,
using a strip camera. Strip cameras have appeared quite
often in the Graphics literature, with the aim of mosaicing
photographs. Romanet al. [4], [5] provide a semi-interactive
system that uses a linear camera to combine photographs
into panoramas of street scenes, as do Agrawalaet al. [6].
The latter authors contribute by reducing the degree of user
interaction to identifying the dominant plane. In all caseslinear
camera models are used. RTcams can emulate strip cameras
using ordinary photographs, a non-linear camera and minimal
user interaction; see Subsection V-A for an example.

Rational Function cameras (RFcams) [7] are used to mea-
sure and correct radial distortions, such as pin-cushion orbar-
rel deformations, that obtain from real cameras. They operate
in the window plane of the camera by mapping homogeneous
pixel coordinates using rational quadratic functions, andcan be
calibrated to real cameras. Methods based on tensors have been
proposed for calibrating generic non-linear cameras [8]. Such

calibration methods mean that RTcams too can be calibrated,
see the Appendix for details. Calibration not only allows
RTcams to emulate real cameras but means RTcams can be
calibrated to emulate other non-linear cameras. Calibration
allows a user interface to be built making them easier to use.
Such an interface simply allows the user to draw a warped
rectangular grid; the warping away from true rectilinearity is
used to calibrate the RTcam.

NPRP is kin to 3D-model based NPR, where research
into non-linear projection is currently active. Polygons can
be rendered non-linearly on standard hardware via an adapted
form of scan-conversion [9], [10]. But ray-tracing is the pre-
dominant method by which to non-linearly render models. Lof-
felmann and Groller [11] use an “extended camera” in which
points on the model each have an associated ray. Levene [12]
provides a set of heuristics, such as allowing image surfaces
(windows) — which are planar in the pin-hole camera — to
be polynomial surfaces. Glassner advocates the use of “putty
lenses” [13], again within a ray-tracer. Agrawalaet al. [14]
discuss the issue of how to depth-order a set of models when
each is seen from a unique point of view. Specifically, when
the same point is seen from many views, which depth should
be used when computing hidden surfaces? They propose a
“master camera” as a means of resolving ambiguities. Karan
Singh and his co-workers have contributed much to this area
of the literature [15], [16]. Coleman and Singh show that linear
interpolation is a solution to the problem of viewing a single
model from more than one viewpoint. They too use the idea
of a master camera [16]. More recently, they provide widgets
to assist user interaction [17].

The Generalized Linear Camera (GLC) of Yu and McMil-
lan [20] specifies a light field; each ray in the field is a linear
combination of three basis rays. GLCs can emulate X-slit
cameras as well as others such as push-broom cameras [21],
but cannot model pin-cushion or barrel distortion. GLCs have
many applications, including light-field rendering and 3D-
model based NPR, their versatility and simplicity make them
interesting. Similarly, Meiet al. [22], define a field of light by
specifying a variety of geometric terms related to ordinarypin-
hole cameras (focal length, center of interest, etc) on a pair of
planes. Theirocclusion camerais more complex than GLCs,
but is specifically designed to capture occlusion boundaries of
3D models.

John Willats worked with Fredo Durand [18] using 3D
models to demonstrate that his descriptions of artistic style can
be connected to rules used to generate pictures. Halle [19] also
uses multi-viewpoint rendering, not to produce a combination
of several views in one, but rather to efficiently produce many
similar views.

II. RTCAMS: WITH A BROAD BRUSH

We begin our more detailed discussion with a brief discus-
sion of the overall rendering pipeline we advocate. This can
be seen in Figure 2. Although RTcams form only a part of
this pipeline, and although they contribute to multi-perspective
rendering only, it is important to provide such a pipeline.
This is because our motivation is the emulation of perspective



as used by artists in different times, at different places, of
different ages, and so on. Our pipeline is consistent with
Willats’s [1] division of style into projective and denotational
systems, its simplicity is seen as an advantage.

stereopsis algorithm (computer vision)

denotational style (NPRP)

projective style (RTcam)

Fig. 2. We address the projective barrier facing NPRP by using standard
stereopsis to create a point cloud model (not necessarily a full reconstruction,
see text for details). This is acted on by RTcams so theprojective styleof
the artwork can be selected; this is the contribution of thispaper. RTcams
produce photographic quality output which can be painted into adenotational
style using state-of-the-art NPRP algorithms.

We change the projective system using stereo photography.
This is preferred over a single image because it allows much
greater freedom in warping — relative depth turns out to be
useful. Stereo photography allows us to build a partial model
of the scene, which can then be re-photographed — in our
case with an RTcam. Stereopsis has been applied previously
in NPRP, but to better highlight edges [23], [24] which is
an issue of the denotational system, rather than to address the
projective system as we do.

The Computer Vision literature has a vast literature devoted
to reconstruction from a stereo pair. The majority of it recovers
points located in three dimensions. Fitting lines, planes,and
other geometric objects takes extra effort and implies extra
assumptions too. RTcams are designed to work with points
— the simplest possible geometric primitive. Stereo relieson
corresponding pixels in the two given images. Mis-matched
pixels lead to erroneous 3D locations. The importance of
these outliers to our application depends on many factors,
which makes a full discussion out of place here. The most
serious issue here is that outlying points project to arbitrary
positions in the final image. We have found that hand-based
segmentation greatly assists the process of corresponding
points, so that outliers are not an issue for us in practice.

In this paper, the reader may assume an object comprises
a cloud of points. Importantly, this cloud need not be a full
reconstruction. Computer vision recognizes three classesof
reconstruction: (i) Perspective reconstruction is the broadest
class in which connectivity between points is preserved and
straight lines remain straight. A cube will typically appear
as a highly distended shape in which each face, though flat,

is squashed more at one edge, appearing exactly as under
linear perspective. (ii) Affine reconstructions preserve length
ratios — a cube may be reconstructed with faces which are
parallelograms. (iii) Euclidean reconstructions preserve angles
too; a cube is reconstructed correctly, up to a scale ambiguity;
see Faugeras and Luong [25].

RTcams are neutral with respect to the class of reconstruc-
tion. Perspective, affine, and Euclidean reconstructed point
clouds are all treated equally. The class of reconstruction
needed depends on the details of the application. For example
Figures 10 and 13 both require Euclidean reconstructions of
a house, but Figure 12 and Figure 14 need only perspective
reconstructions. Section V has details.

The remainder of this paper introduces background math-
ematics to understand RTcams (Section III). We go on to
discusses practical issues in Section IV — motivating the need
for control spaces, andcompound RTcams. Section V provides
specific examples that illustrate RTcams can emulate a wide
gamut of artwork. The appendix discusses how RTcams relate
to alternative non-linear cameras, proving their generality, and
shows how RTcams can be calibrated from matched points.

III. R ATIONAL TENSORCAMERAS: SOME MATHEMATICAL

BACKGROUND

In this section we define and discuss the mathematical
essentials of RTcams. We use the notational convention that
ℜn refers to ann dimensional vector space, andPn is the
corresponding projective space. We generatePn from ℜn in
the usual way: by defining a basis vector that is orthogonal
to ℜn so that pointsx = [x1, . . . , xn] ∈ ℜn require a
“homogeneous coordinate” to be appended:x→ xnλ[x 1] for
λ 6= 0. The additional vector is, of course, the “homogeneous
direction” and the value of a point’s homogeneous coordinate
is its “homogeneous depth”.

As a note, all of the photographic examples in this paper
use RTcams defined inP 3, which means the objects are three-
dimensional. The visualizations though, that is Figures 4 and 5,
use RTcams defined inP 2. This is so homogeneous depth can
be visualized as a third spatial dimension. The mathematics
makes no assumption about the dimensionality of the space.

We begin by defining an RTcam. An RTcam is a projection
Q : Pn 7→ Pn. We write y(x) = Q[x]. The RTcam maps
a vectorx ∈ Pn, to another vectory ∈ Pn using a ratio of
tensor operations on the input vectorx. In this paper we use
third-order tensors, which are(n× n× n) cubes of numbers.
The ith element in the output vector is computed as

yi(x) =
xQix

T

xQnxT
(1)

in which Qi is a (n × n) matrix, which can be thought of
as a plane of the tensor, see Figure 3. EachQi has exactly
the same effect as its transpose, so that we can assumeQi is
symmetric without loss of generality.

This definition of an RTcam is a direct analog of the
standard linear camera, which is specified using a single
(n × n) matrix, C. If Ci is the ith row of C, then theith
element in the projection is given byyi = (xCT

i )/(xCT
n ).

The linear camera is therefore the ratio of linear functions. As



we will see below, RTcams are ratios of quadratic functions.
As with linear cameras, it is convenient to think of projection
as acting in two steps — a geometric mapping followed by a
perspective projection:

zi(x) = xQix
T (2)

yi(z) =
1

zn

z (3)

We say theobject x is projected to theimagey. We call z
the homogeneous imageso as to tell it apart fromy. The
orthogonal projection of the image onto a plane generates
points that can be visualized on a computer, we use[y1, y2],
and call this point thevisible image. The action of a specific
RTcam inP 2 is shown in Figure 4. It shows how the RTcam
warps points in an object from a plane onto a quadric surface,
which is then projected. The result is an image which appears
non-linearly distorted.

Because RTcams operate in projective space they are invari-
ant to scale:x ≡ λx. We can take advantage of this by fixing
the homogeneous depth of input points,xn = 1. The allows
us to partition a matrix in the tensor,Q into a scalar part, a
linear part, and a quadratic part, which together comprise a
Taylor expansion, specifically

z(x) = [x, 1]Q[x, 1]T

= [x, 1]

[

H LT

K s

]

[x, 1]T

= xHxT + (KxT + xLT ) + s

= s + xJT + xHxT (4)

with J = K+L. We identify the non-linear part of the camera
H as the Hessian, the linear partJ as the Jacobian, and the
scalars as the constant atz(0); see Figure 3. Hence RTcams
are the ratio of quadratic functions, as claimed above.

scalar, s

non−linear part, H

linear part, J

linear camera plane.

Fig. 3. The tensor for an RTcam is a cube of numbers. Each planeis a
matrix mapping an object into a single element of the image. The mapping
comprises a scalar constant, a linear part and a non-linear part that can be
expanded in a Taylor series. The “side plane” of the cube is the matrix for a
linear camera.

Furthermore, we can think of a linear camera as modeling
a real camera to a first order approximation, and an RTcam
as adding a second-order correction. Exactly this correction is
used by by Claus and Fitzgibbon [7] to calibrate and correct
for lens aberrations in real cameras. Those authors confine
themselves toP 2 whereas typically we use RTcams inP 3.
We also include tools designed specifically for NPRP uses:
control spaces in Subsection IV-B and compound cameras
in Section IV-C. It is worth noting that some lens aberrations
do in fact depend on real depth, Seidel aberrations for exam-
ple [26], and that RTcams do allow for depth dependent effects
and so can approximate these.

The decomposition of the transform into independent parts
— scalar, linear, quadratic — means users can consider each
of these terms independently, which makes control of RTcams
much easier. For example, we see that settingH = 0 gives
the special case of a linear camera; each column of the linear
camera’s matrixC is just a Jacobian. The fact that RTcam
matrices can be replaced with a symmetric version reduces
the number of parameters needed to specify an RTcam from
n3 to n2(n + 1)/2, so providing further assistance. The next
subsection provides mathematical elements of RTcams, needed
to helps one understand their relation to other camera models.
Practical issues resume in Section IV.

A. Further Analysis

The definition of RTcams given above is sufficient for
general purpose use. This subsection provide a more detailed
mathematical analysis so that its operation can be more fully
understood, and so that RTcams can be compared with other
non-linear cameras.

RTcams are homogeneous degree2, because for any scalar
λ we havezi(λx) = λ2zi(x). It follows that for anyλ 6= 0,
yi(λx) = yi(x). Therefore the image is invariant to a uniform
scaling of the object.

Linear cameras contain a single focus and a plane of points
that they cannot project becausexCT

n = 0. Points in this
singular plane are “invisible” to the camera, in the sense that
the camera cannot make an image of them. RTcams generalize
from the linear camera case. The quadratic equation

xQnxT = 0 (5)

denotes a quadric surface which is invisible to an RTcam. We
call this surface thesurface at infinity, because it is made
up of points x ∈ Pn at infinity that map toz such that
zn = 0. The absolute origin0 is a point on the surface at
infinity. The non-degenerate solutions are more interesting, not
least because they may have complex elements. Promoting
real-valued vectors to have complex valued components is
called thecomplexificationof projection space, Faugeras and
Luong [25]. Briefly, we can see thatxQnxT = 0 may have
complex roots by using eigenvalue decomposition ofQn to
get xRSnR−1xT = 0. We can now map the object vector
into the eigenbasis to getvSnv =

∑

i v2

i sii = 0. Since the
sii are positive, thevi must be complex in general.

The surface at infinity is important because it characterizes
not only a particular camera, but also the class of camera. For
example, no RTcam can represent a camera with a surface at
infinity that cannot be described by a quadric. This can be used
to build a taxonomy of cameras based on sub-class relations
between surface families. For example, the bilinear surfaces
are a sub-class of the quadric surfaces because all bilinear
surfaces are representable using a quadric, but not vice-versa.
It follows that because the surface at infinity of GLCs are
bilinear surfaces, they can be considered as a special case
of RTcams. The Appendix discusses the relationship between
RTcams and other cameras in greater detail.

Linear cameras map straight lines to straight lines. RTcams
map straight lines to quadratic curves. Supposex = p + su



is an arbitrary parametric straight line inℜn. The line is such
thatxn = 1, so is in a subspace ofPn. Under an RTcam, this
line maps to the quadratic curve inPn given by

z(s) = xQix
T + x(Qi + QT

i )uT s + u(Qi + QT
i )uT s2

2

= z(0) +
dz(0)

ds
s +

1

2

d2z(0)

ds2
s2 (6)

This is easy to show by differentiating Equation 2. All deriva-
tives of z of third and higher order are zero. Figure 4 shows
how straight lines map to quadratic curves.

By analogy with Faugeras and Luong [25], we define the
vanishing pointsof a line inPn as the images of its points at
infinity. The vanishing points on a line defined as in Equation6
are easy to find: we simply solve the quadratic equation
zn(s) = 0 to obtain s values. Although these are complex
in general they can then be used to obtain vanishing points.

We define aray of light to be the locus of object pointsx in
ℜn that project to the same image pointy. Note that because
RTcams map straight lines to curves in projective space, a ray
can appear to bend inℜn. (A ray in Pn is just a straight
line emanating from the origin.) We require the differential
structure of the RTcam; the matrix of partial derivatives is

∂yi

∂xj

=
1

z2
n

(

zn

∂zi

∂xj

− zi

∂zn

∂xj

)

(7)

in which z is the homogeneous image. The total change iny

due to an infinitesimal change inx is therefore

dyi =
∂yi

∂xj

dxj (8)

We use Einstein’s convention for tensors — repeated indices
denotes summation. The matrix of partials depends on object
location; call itP(x) = ∂yi/∂xj . It is rank degenerate because
the column vector∂yn/∂xj = 0 for all j. Consequently there
is at least one direction vector such thatdy = Pdx = 0,
that is which leaves the imagey stationary. We call this
tangential direction aninstantaneous ray; integrating over
these recovers the ray. Given a pointx, the directionλx is an
instantaneous ray, because it leavesy stationary. If the rank
of P is n− 1, then the instantaneous ray through a point has
a unique direction. If the rank is lower than this, then there
may be many instantaneous rays through the same point. All
vanishing points haveP of rank 0. The row vector∂yi/∂xn

is the instantaneous ray direction, projected into image space.
The radial lines in Figure 4 are rays.

IV. A RTY CAMERAS: RTCAMS APPLIED TO

NON-PHOTOREALISTIC RENDERING

Recall that in this paper RTcams use input vectors pro-
duced via stereopsis. We remind ourselves that RTcams affect
perspective and do not care whether the points come from
a perspective, affine, or Euclidean reconstruction. We create
artistic looking images by painting over a photograph with
non-linear projection, created by an RTcam, as explained
in Section II. Having outlined the mathematics of RTcams
already, it remains for us to explain how to use them in
practice. This section therefore gives several example RTcams,

RTcam warps the object in
homogeneous space before
projecting it onto the image plane.

Left: the warped object lies on a
quadric surface. Vanising points

the h=0 plane
occur where this surface intersects

Above: a visualization shows the

Top left: a grid object and its image

Fig. 4. An RTcam inP 2 (a 2D camera in homogeneous space)

introduces the concept ofcontrol spaceas a means to control
effects, explains how to combine RTcams to generate acom-
pound RTcam, describes a user interface, and briefly discusses
issues germane to rendering such as anti-aliasing and hole-
filling.

A. Specific RTcam examples

At first glance, the action of an RTcam may seem difficult
to specify, but just as one learns to specify matrices so one
can learn to specify tensors. We provide some examples in
this section. But first note that by using the Taylor expansion
we can easily recreate a linear camera. Given a matrixC we
distribute itsith column, scaled by1/2, into the final column
and bottom row of theith RTcam matrixQi. The effect is
to put C into a plane of the tensor that crosses each of the
Qi, see Figure 3. The remaining terms in a particularQi, the
“upper-left” corner, account for all non-linearities.

An RTcam that produces barrel distortion (see Figure 1)
under the control of a parameters is:

Q1 =









0 0 0 1/2
0 0 0 0
0 0 0 0

1/2 0 0 0









Q2 =









0 0 0 0
0 0 0 1/2
0 0 0 0
0 1/2 0 0









Q3 =









0 0 0 0
0 0 0 0
0 0 0 1/2
0 0 1/2 0









Q4 =









s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1









The first three matrices are the identity transforms, in that
given[x1, x2, x3, 1] they produce[x1, x2, x3]. The final matrix,
which determines homogeneous depth, is responsible for the
non-linear effect. It giveszn = s(x2

1
+x2

2
+x2

3
)+1; if s = 0 we

obtain the identity RTcam. Ifs is large, a large barrel effect
is produced. Ifs is negative, we get pin-cushion distortion.
Both can be seen in Figure 1. Clearly, the surface at infinity,
zn = 0, of this RTcam will have complex roots, whens > 0,
because then we requirex2

1
+ x2

2
+ x2

3
= −1/s.



Inverse perspective causes objects to appear to dilate, rather
than diminish, with distance. This effect is possible with an
RTcam, but of course no real camera can produce this. Inverse
perspective can be found in the Byzantine art, the work of
Matisse, the Cubists, in children’s artwork and elsewhere.We
can obtain a dilation with real depth,x3 say, by considering
the mapping elementxi in the object vector toxi + xiαx3,
for someα, and in whichx3 is the depth of the object in real
space. In this case we set only the first two RTcam matrices:

Q1 =









0 0 α
2

1

2

0 0 0 0
α
2

0 0 0
1

2
0 0 0









Q2 =









0 0 0 0
0 0 α

2

1

2

0 α
2

0 0
0 1

2
0 0









The remaining matrices are set up to producez3 = x3 and
z4 = 1. We note that settingα = 0 yields an orthogo-
nal projection. The result of applying inverse perspectiveis
demonstrated in Figure 1.

A depth dependent twist is our final example, produced by
means of a cross product. The first two matrices are

Q1 =









0 0 0 1

2

0 0 α
2

0
0 −α

2
0 0

1

2
0 0 0









Q2 =









0 0 α
2

0
0 0 0 1

2
α
2

0 0 0
0 1

2
0 0









which on expansion givez1 = x1 − (αx3)x2 andz2 = x2 +
(αx3)x1 respectively. If we setsin(θ)/ cos(θ) = αx3, then we
seez1 = x1 cos(θ)−x2 sin(θ), andz2 = x2 cos(θ)+x1 sin(θ),
which is a depth dependent twist, up to a scale; the output
vector length is scaled by(1 + α2x2

3
). To eliminate this we

would have to redefine RTcams to take the square root of the
denominator, so that input and output vector lengths remain
constant. One may opt to modify the RTcam definition by
settingzi = (xQx)βi , but in this paper we retain the simplicity
of the original definition. To complete the twisting RTcam, we
setQ3 andQ4 to returnx3 andx4 respectively. Figure 1 shows
a depth dependent twist, but applied in all directions at once.

The final example in Figure 1 will not be explained here,
because creating a compound-eye effect requires several RT-
cams to be combined. Exactly how to do this is explained
later, but first we will consider controlling RTcam effects a
little more closely using various spaces.

B. Control spaces

The visual effect of an RTcam on an object depends on
where in space that object is, as well as the values in the
tensor. Picking values is in principle no more difficult than
specifying matrix transforms. The effect of the spatial location
of objects is managed usingcontrol spaces. Figure 5 shows
an example for a two dimensional grid experiencing barrel
distortion at various locations in the plane. It is clear that
the output depends critically on the location of the input. As
we explain below, defining acanonical spaceas a particular
control space, a user can specify the canonical action of an
RTcam, and store it in a library for later use, making RTcams
easier to use.

Conventional 3D computer graphics recognizes “world
space” , “image space” and “object space”, amongst others.

Doing so allows users to exercise control over models and
cameras. Effects such a scaling and rotation, for example, are
typically best done in an object’s own frame of reference, that
is in object space, whereas hidden surface problems may be
most easily solved in image space. Conversion from one space
to another is effected by linear transforms, often arrangedinto
a hierarchy.

RTcams are transforms, and it is convenient to recognize
different spaces, and their respective advantages and disadvan-
tages. The general idea conforms exactly to standard practice:
a map transforms the object into some convenient space, the
desired transform is applied to create the image, and finallyan
inverse map is used to carry the image back into the original
space.

Suppose the matrixM is a linear mapping that carries an
objectx into the control space to givex′ = xM, both being
homogeneous points. This new point is subject to the transform
we wish to apply. We neglect to divide by the homogeneous
distance but nonetheless writez′ = Q[x′]. Neglecting to
divide is in line with common practice when mapping between
spaces. The transformed vectorz′ is subject to the inverse
mapping to obtain the homogeneous image of the object:
z = z′M−1. All vectors belong toPn.

If the RTcam mapping were linear, then all of these trans-
forms can be collected into a single transform; we need only
multiply the matrices to get the single matrixR = MQM−1

— this “concatenation” is a well known advantage of using
matrices. It turns out we can do the same whenQ[.] is an
RTcam, although the process is a little more complicated. It
can be shown that by setting

Rj = (MTQiM)M−1

ji (9)

the RTcamR performs the mapping into the control space,
applies the RTcamQ, and performs the inverse mapping out
of the control space: that is,R appliedQ in the control space.
Again, repeated indices imply summation, so eachRj is a
weighted sum of the(MT QiM).

Returning to the discussion of named spaces, we retain
the concept of aworld spaceas the default space in which
homogeneous points reside. This space is useful for tasks
such as rotation and translation but is not well suited for
applying scaling and non-linear effects to objects, for example.
The analogy with object space is harder to maintain, because
objects may not be Euclidean reconstructed. However, we an-
ticipate that users will want to apply RTcams in the reference
frame of the camera, not the object. This makes sense because
it is the visual effect of the camera that is interesting.

When constructing a canonical space in the frame of the
camera we first make animage space. This is directly anal-
ogous to the space of the image space defined by pixels
— points map to pixels under parallel projection (Figure 6).
We then map image space to canonical space using a scale
and shift, using an RTcam to do so. This RTcam is defined
by fitting a bounding cone around an object’s points. The
apex of the cone is the absolute origin. The sides of the
cone lie along the line of sight. Two parallel planes, each
of constant homogeneous depth, cap the cone at either end.
The whole cone is skewed and scaled into a cylinder that



Fig. 5. An example showing the effect of an RTcam on an object depends
on where the object is. An object is made of four grids (black). The blue
image is the effect of the barrel camera without transforming the object into
canonical space. The red image is the effect when canonical space is used on
each grid.

Fig. 6. Control spaces: Points in world space (blue) are mapped into points
in image space (green), which maps convergent rays from a real camera into
parallel rays. Points in image space are mapped canonical space (red), which
makes many effects easier to control because the points are enclosed by a
known geometry. The yellow plane is the image plane, which remains in a
constant location.

projects orthogonally to the same set of points. This RTcam
can be expressed with an invertible, linear operation. The
newly formed cylinder is mapped tocanonical space. Another
invertible linear transform shifts and scales the cylinderso that
the center of the near plane is at the origin, and the cylinder
has unit height and radius. Now that the object lies in a well
defined region the effects become much more predictable,
placing RTcams under user control.

C. Compound RTcams

So far we have considered RTcams as tensor transforms.
Much can be done with these, as shown in the examples of
Figure 1 and some of the extended examples in Section V.
Even greater power can be achieved by combining theatomic
RTcams studied so far to createcompound RTcam. So far
as we know, compound cameras are a unique contribution
of this paper, even though others combine (linear) cameras.
Coleman and Singh [16] show how weighted cameras can be
used to combine many views of many linear cameras into one.
We too use a linear combination, but of non-linear cameras.

Moreover, we combine cameras in serial and in parallel, to
create a complicated structure, represented by directed acyclic
graph (DAG). This vastly widens the gamut of possible effects.

Compound RTcams are DAGs. Each node contains an
RTcam which processes points in an object. The arcs of the
DAG govern the flow of the data (set of points) between nodes,
see Figure 7. A simple DAG has two nodes,A and B say,
arranged in series so thatA is a parent node andB a child
node. A set of points is input to this compound RTcam via
nodeA, which produces a new set of points that is input to
the RTcam in nodeB. The output ofB is the output of the
compound RTcam. It is easy to create a series of RTcams of
any length. The example in Subsection V-B depends, in part,
on RTcam in series.

A different case arises when nodeA has two children,
B1 and B2, say. In this case the output ofA is input to
both children, which are in parallel. Extension toN parallel
children is easy. Equally, a node,C say, can haveM parents
in parallel. We callA a “splitter” and C a “merger”. The
problem is in the merging node, which must combine multiple
images, one from each parent, each showing the object from
different points of view. Here aview means the image of an
object under any RTcam, so scaling, rotating, barrel-distortions
are all views. There is no unique solution to the problem of
combining multiple views, so we discuss and demonstrate two
methods.

The first is straight-forward — the point sets output by each
child are concatenated into a single set. This produces multiple
copies of the same object. The problem of depth ordering
can be solved using a z-buffer. This is how the compound-
eye example in Figure 1 was made. The second method is
to merge views by linearly interpolating the points in them
so as to create a set of points. This is a more complicated
method, but one which is rewarding because it enables a single
image to show the same object from quite different views,
simultaneously, with each point appearing at most once in the
final image.

1) Merging views by interpolation:When merging point
sets from nodes in parallel it is important our implementation
of RTcams does not change point ordering. This seeming
triviality make it easy to identify corresponding points in
images: theith point in data setj corresponds to theith point
in data setk and so on (thej andk index the parent nodes; as
B1 andB2 are parents toC, for example). Supposexij is the
ith point in thejth data set to be merged. Linear interpolation
gives

yi =

N
∑

j=1

wijxij (10)

as theith output point, wherewij is a weight associated with
the ith point of thejth input set; we require

∑

j wij = 1.
Settingwij = wj , a constant for thejth view usually gives
results of little interest, the general case is far more interesting
and is discussed next.

The aim is to specify a set of weightswij , one weight for
every point in every data set. In Figure 7 there are two views
to merge, so each weight vector has two elements. This could



be an overwhelming task were it not for our user interface that
allows users to “paint the weights”. The idea is very simple:
users paint the object being images by the compound RTcam.
Our method is very similar to one described by Coleman
and Singh [16], whose RYAN system combines views in a
hierarchy of linear cameras. We explain the system here for
completeness.

An object is painted in three dimensions with the intention
of color coding regions. For example, in Figure 7 the user
has outlined regions in red and in green which are easy to
fill with solid color. Not all points in the object are painted,
but those which are painted are viewed from a single point
of view, specifically from the view of the camera associated
with the color code. In the example of Figure 7 these are
the orthogonally projected front (red) and side (green) views.
Fixed views can be easily arranged by setting the vectorswij .
In the example, if the front view corresponds to thej = 1
view we need only setwi1 = [1, 0] for those points painted
red, whilewi2 = [0, 1] for those painted green. This scheme
extends in a natural way to more than two views.

Weights for points which have no fixed view (that is, have
not been painted by the user) are generated as follows. First,
all points in the object are projected to a reference view. The
painted points make up a set of colored regions on this view.
Next each unpainted pointi is considered; the closest distance
to each colored region is found so that a vector of distances
dij at is created. The reciprocal of distance, when normalized,
gives the weight we seek:wij = (1/dij)/

∑

j(1/dij). We
can choose any point of view for the reference projection,
and the particular projection chosen will affect the weights
on the unpainted point — but we have found that almost any
projection gives acceptable results so this has not been a major
issue for us. What is more significant is that the unpainted
regions of an object are deformed in the final output image in
such a way as to fit exactly between the fixed (painted regions).
In the example of Figure 7 the roof is stretched to fit snugly
between the front and side views. Willats [1] claims this is
how children might draw a house, a claim which motivated
this example.

2) An algorithm for compound RTcams:Our algorithm for
using a compound RTcam is now given. First place a single
object at each root of the DAG, a root node has no parents.
Then perform a breadth-first traversal of the DAG by process-
ing the point set through each node. In general, each node
will merge its input sets from each parent, apply the node’s
RTcam, and split the output to each of its children. Each node
has a flag which, if set, maps the points into canonical space
before RTcam application and inverts the mapping afterwards.
A second flag in the node indicates the way multiple images
are combined: concatenation or merging. The point sets from
the leaves (having no children) are concatenated by defaultto
create a single image.

Compound RTcams take a single object (picture) as input
and give a single object as output. Therefore, compound RT-
cams can be treated as atomic RTcams. Now atomic RTcams
are defined in projective space, so we can interpret object
points as rays, if we wish. This is helpful in thinking about
compound RTcams because a set of points can equally well

orthogonal front vieworthogonal side view

Merging Node

splitting node

Final view: the house is "unfolded" along one

the remaining points (on the roof) are stretched
to fit snugly between.

To generate interpolation weights,

corner, as specified by the fixed (painted) points

the user paints the 3D model to
fix some points, weights on other
points are automatically computed.

fixed side points

fixed
front points

computed
weights

Fig. 7. A compound RTcam is used to photograph a house from twodifferent
views, simultaneously. A single input object is seen from two views, which
are combined under user control to obtain an output image.

be thought of as a set of rays, or a “beam”. By analogy, then,
we can think of a compound RTcam as a generalized optical
device in which RTcams are lenses, and nodes act as both
beam splitters and beam mergers.

V. RTCAM : CREATING AND RENDERING EXAMPLES

Earlier we mentioned the possibility of segmenting an image
into pieces and applying an RTcam to each, but chose instead
to consider the case where points arise from stereopsis. Neither
automated segmentation nor stereopsis give satisfactory results
without user supervision, and user interaction is to set weights
used in compound RTcams. In addition, users will probably
wish to build a library of RTcams. We have built a user
interface specifically designed for use with RTcams, a snapshot
of this interface is shown in Figure 8. This user interface
allows users to easily segment images into parts that are
meaningful to them, they can provide assistance to improve
the results of stereopsis, create and assign RTcams including
setting weights for combining different views, and controlthe
denotational style in which the output is rendered.

Importantly, our interface allows a user to assemble a library
of RTcams that operate in canonical control space. New
RTcams can be defined simply by drawing down the desired
effect on a rectangular grid. The grid provides a set of points
that can be used to automatically set RTcam parameters — an
easy way to define RTcams. This automatic process relies on a
calibration process (see Appendix) that is can also be used to
calibrate an RTcam to a given real camera. A full description
of our user interface is beyond the scope of this paper. We
continue by considering rendering issues.

RTcams produce a set of points to be rendered. The task
at hand now is to render the points into an image made of
pixels. We face three problems. First, a consequence of the
non-linear mapping is that the points may not be uniformly



Fig. 8. A user interacts with the RTcam system, positioning local RTcams
(left) and assigning them to regions of interest in the source photographs using
“magic scissors” (right).

spread, leaving “gaps” in the rendering that must be filled
by interpolation. These “gaps” can be filled automatically.
A “gap” is identified as being an uncolored pixel close to
at least4 other colored pixels, and within the convex hull
of those pixels. The color of the gap pixel is determined
by interpolation. We anti-alias using Gaussian point-splatting.
The second problem is that the rendering may contain “holes”
caused by parts of the object that were occluded in each of
the original photographs used for stereopsis, and “holes” may
appear between warped objects. Both kinds of holes must be
filled in using texture-filling.

Fig. 9. An example of raw output from an RTcam. Object parts that were
obscured in the source photos appear as holes, which are filled-in using by
growing surrounding texture into them. Anti-aliasing takes the non-uniform
distribution of points into account, as explained in the text.

The final step of the rendering process is to optionally apply
existing NPRP algorithms to the image. This allows us to
use a denotational system more sympathetic to the projective
system. For example, Figure 7 shows how we can “flatten”
the front and side view of a house into a single image. We
have mentioned already that Willats [1] claims this “flattening”
is used by children, who then fit the roof wherever it may
land. This is exactly what our example does. Yet the output
in Figure 7 is not convincing as a child’s drawing, because
the denotational style is photographic. Automatic over-painting
in crayon [27] yields Figure 10, in which denotational and
projective styles match to produce a house rendering that is
convincingly child like.

We now illustrate the versatility of RTcams by providing
examples emulating a range of different artistic styles, each
one of which requires non-linear projection to be convincing.

A. Combining views: a ’Northern school’ projection

Artist David Hockney [28] suggests, amidst some contro-
versy, that artists of the Northern schools may have used
optical devices. The artist Vermeer is widely reputed to have

Fig. 10. My House: A crayon rendering generated over a child-like projection.

used a camera obscura. By drawing, Hockney demonstrates
that the same object can have more than one vanishing point,
which he explains by the artist moving the optical device
as they worked. Hockney’s observations have influenced his
recent work, made by pasting together photographs taken from
different views similar to an example in Figure 11.

Our aim here is to merge photographs to create a single
image with a subtly varying view point, typical of the Northern
school. An atomic RTcam suffices, because we use it to
interpolate between two points of view. Suppose we have two
linear cameras, one with a projection matrixA, the other has
projection matrixB. In Section III we showed an RTcam can
be expanded as a Taylor series, so that a linear camera can be
emulated by filling in the linear parts appropriately. IfAi is
the ith column of the camera, we put

Qi =

[

0

AT
i

]

then force symmetry, if we wishQi ←
1

2
(Qi + Qi) To

interpolate between views we interpolate over the verticalaxis
of the image, so use

Qi =









0

BT
i −AT

i

0

AT
i









again forcing symmetry. In any case, an expansion of the
above, using the input pointx = [x1, x2, x3, 1] gives yi =
x((Bi − Ai)x2 + Ai) Now each output value is the inter-
polation of two cameras, withx2 being the control variable.
This variable comes from the reconstruction of the objects,
we need only a perspective reconstruction. In this regard we
echo the work of Zometet al. [2] who use cross-slit camera to
achieve similar results (but cross-slit camera cannot reproduce
the many other effects of RTcams). Because we knowx2 scans
the vertical dimension of the image we can normalize it to vary
between 0 and 1. EachQi is right multiplied by a matrixS
that scales and shiftsx2 from its domain,[1, N ] say to index
into N scan-lines, into the range[0, 1], so we can replacex2

in the above withu = (x2 − 1)/(N − 1).
The mathematics can be interpreted in two equivalent

ways: (1) the point’s position in cameraA and cameraB
is interpolated, or (2) a single camera is moved from the
position of cameraA to the position is cameraB. The latter
interpretation emulates a strip-camera. The equivalent strip-
camera is initially placed coincident with camera A, and the



output from an edge detector.

It clearly shows a change in

The intersection of the left and

point which is seen to shift.

the tangent, of about 7 degrees.

right tangents gives a vanishing

been automatically drawn using

Tangents to the book edge have

different views by interpolating camera
positions (ie image points). The
effect is to acquire each scanline
with a strip−camera. This could
be generalized so that every pixel
has a unique camera associated with it.

This ’Northern school’ mosaic blends

Fig. 11. Three ways to mosaic two images: top-left is the Hockney-esque approach of pasting one photo over the other, top-right is a mosaic constructed
by determining the best-fit homography between the images and warping one to match. Bottom-left is the result of our method. Our method can be thought
of as emulating a strip-camera. It produces results more in line with the projective system of the Northern school, as we desired: straight lines, such as the
edge of a book, are bent almost imperceptibly.

bottom-row of pixels is copied into the target. The strip-camera
is then moved just a little toward B, and the second to bottom
scan-line is copied, and so on until the camera B is reached,
where the top scan-line is copied.

There is a subtlety to be explained. There was not enough
information in the original images to extract 3D points of the
vegetables in the near-plan view, and the utensils in the other
photograph. This does not prevent the interpolation from being
applied to them, but means that the objects are treated as flat
planes at infinity — much as the photographs in conventional
mosaicing are considered as planes at infinity. This simpli-
fication is acceptable under a projective reconstruction and
necessary if these complex objects are to change perspective
with the rest of the image and so avoid the need for filling
gaps between objects.

The result of merging is seen in Figure 11, which also
includes both a Hockney-esque and standard panoramic mo-
saicing of merged images for comparison. The objects in the
scene are too close to the cameras for standard panoramic
mosaicing algorithms to work well (the plane-at-infinity as-
sumption breaks down). Our ’Northern school’ merge is subtle,
and we think is of higher quality than the standard panoramic
mosaic. The near imperceptible change in perspective view
point moving up the page cause straight lines to bend. To
illustrate this bending we draw tangents to the side of a book
automatically, using edge detection and line fitting. The change
in tangent is a measure of the change in vanishing point. Once
holes around the edge of the image have been filled, and the

Fig. 12. “Still Life” in the projective and denotational style of the Northern
school.

result painted, we obtain an emulation that is consistent with
the projective and denotational styles of the Northern school,
see Figure 12.

Before leaving this example, we remark that the ability to
create panoramas such as this raises the interesting possibility



of using RTcams to create cel panoramas from ordinary
cameras for input, rather than the real strip-cameras used by
Rademacher and Bishop [3]. Zometet al. [2] mosaic in way
similar to our own, using X-slit cameras, yet RTcams are more
general then X-slit camera.

B. Serial RTcams: The haunted house

The Northern school example used a single RTcam. Here
we use a compound RTcam with nodes in serial, that is one
after the other in a DAG. It is motivated by noticing Artists’
skill in creating different moods using both projective and
denotational systems. For example, art work in comic books
may exaggerate or even invert perspectives for dramatic effect,
straight lines may be drawn as curves. This tradition is seentoo
in films and television; villains in the 1960’s version of Batman
hang out in dens filmed at peculiar angles and the “Psycho”
house was manufactured about3

4
real size, and filmed from

below. This exaggerated perspective and helped build a tense
atmosphere around the Bates motel.

Fig. 13. Left: Photographic output of a compound RTcam. Right: “Haunted
house” in comic-book style.

We created Figure 13 using the same house photographs as
in Subsection V (the child’s drawing). Both examples require
Euclidean reconstruction. The compound RTcam used here
comprises two atomic RTcams in series. The first applies
inverse perspective, the second a pin-cushion distortion in
three dimensions and views the house from low down, giving
a threatening appearance.

To complete the ambiance, the house has been composited
onto a spooky landscape and heavily stylized using a oil
painterly rendering algorithm [27] where stroke tone has been
automatically modulated to enhance the creepiness of the
image. Figure 13 shows both the photographic and painterly
stylized output. This example also shows that the same model,
in this case a house, can be rendered in many different ways,
tuned to a particular application by the combination of both
projective and denotational styles — both are needed to create
convincing artistic effects.

C. RTcams in parallel: a Byzantine mosaic

Mosaicing with tiles is a traditional form of picture making.
Our example copies a projective system seen in a mosaic of
a vase from the Byzantine school. The bottom of the vase is
viewed “front on”, so that it looks like a straight line. The
mouth of the vase is viewed at a steep angle, using a depth
dependent skew. A compound DAG merges these views by
interpolation. Finally, we used an existing algorithm [29]to

Fig. 14. Left: Photographic output of vase seen under a “Byzantine” RTcam.
Right: “Vase from Byzantium”.

synthesize the denotational style of a mosaic. Figure 14 shows
both the photographic and mosaiced results.

The handles of the vase were cut out manually prior to
any RTcam application, and re-composited afterwards. This
hints at the value of acompositional system, which refers
to the relative location, orientation and size of objects in
pictures for esthetic effect, rather than the technical problem of
compositing. The compositional system can be used to make
a scene appear perpetually stable, or unstable, for example.
Eastern Art uses a compositional framework that differs from
that of Western Art: more distant objects are placed higher
up the page. The next example continues the compositional
theme.

D. Compositing parts: Expressionist projection

Our final example partitions a scene into objects and applies
a different RTcam to each, to create an image in projec-
tive and denotational styles that emulate expressionism. The
expressionists broke many rules, including those of linear
perspective. Our example is derived from Matisse’sHarmony
in Red. Matisse used orthogonal projection to emphasize the
table, tilting its objects to show them in canonical views. We
have developed an algorithm that automatically and easily
chooses canonical points of view [30].

Following Matisse, we created three objects from a scene,
one for a table-top, one for a cup, one for a bowl of fruit.
A different atomic RTcam was applied to each, to depict
it in orthogonal projection, and seen from a canonical or
near-canonical point of view. The output images composited
were to create the final picture seen in Figure 15. As usual,
we painted over the photographic output in an appropriate
painterly style [27].

We found re-compositing the transformed parts a little
awkward. This is because their shape and size has to be
carefully fitted into the surrounding elements of the scene.
RTcams having nothing to say about compositional issues,
and we are not aware of any study that does. We conclude
that “esthetic composition” is a major open issue in NPRP.

VI. D ISCUSSION ANDCONCLUDING REMARKS

RTcams are a non-linear camera model that contributes to
multi-perspective rendering. Multi-perspective rendering is an



Fig. 15. Top: Photographic output in the projective style ofMatisse. Bottom:
“Harmony in style”.

important component of NPR; this is the first time we are
aware of that multi-perspective has been used specifically in
NPRP. RTcams address the “projective barrier” facing NPRP,
and highlight the division between projective and denotational
systems.

Atomic RTcams are second-order rational tensors, that
subsume several other camera models available, including:
GLCs, strip-cameras, X-slit cameras, and the rational function
cameras used to correct for radial aberrations in real cameras
(see Appendix). Each of these cameras is able to reproduce
part of the RTcam repertoire, but none can reproduce all of it,
and RTcams are capable of unique effects both in atomic and
compound form. Camera models that RTcams cannot emulate
include the occlusion camera [22], which requires divisionby
a square root term. Generally, RTcams can model any camera
whose surface at infinity is contained in the set of all quadric
surfaces.

When modeling real cameras we can think of RTcams as
a second order correction to a first order approximation (the
linear camera). Higher order corrective terms require higher-
order tensors. Fourth-order tensors give cubic functions,and
a cubic surface at infinity. Another way to generalize RTcams
is to pass both the numerator and demoninator through some
function, so as to raise each term to some power, or to take its
logarithm or exponential. These generalizations would allow
RTcams to emulate a much wider class of cameras, including
occlusion cameras. In this paper, we elected to follow neither
of these possibilities. Instead we generalized by introducing
compound RTcams, allowing for highly non-linear aggregation
of simpler cameras. Compound RTcams are able to split and
merge beams (sets of points), and so are analogous to optical
devices. So far as we know the idea of building compound
optical devices is new.

We have used RTcams in several examples: showing how
to merge two photographs using both a single RTcam and a
compound RTcam. The examples demonstrate the importance
of both denotational and projective systems in defining the es-
thetics of the final artwork. A particular lesson from the “vase”
and “Matisse” examples is the importance of what we call the
compositional system, which appears to have been over-looked
by Willats’s [1]. We have encountered compositional issues
before, when we emulated Cubism [31] and Futurism [32]
— experience which adds conviction to our proposition. We
therefore propose it makes sense to modify Willat’s taxonomy
to include this additional system.

In summary, RTcams contribute to multi-perspective ren-
dering by providing a simple camera model with a strong
mathematical base; they unify many important, contemporary
non-linear camera models. Although conceived to address the
“projective barrier” facing NPRP, RTcams can model real
camera aberrations. Because RTcams can be compounded into
complicated non-linear optical devices the gamut of reachable
projective styles becomes very wide. By bringing the projec-
tive system under user control, RTcams enable the re-creation
of perspective effects typically seen in real artwork, manyof
which cannot be reproduced with a real camera.
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APPENDIX

RTCAMS AND SOME CONTEMPORARY NON-LINEAR

ALTERNATIVES

Here we compare RTcams to several non-linear alternatives,
showing that RTcams are more general versions of each. We
begin with the rational function cameras introduced by Claus
and Fitzgibbon [7] to compensate for radial aberrations in real
cameras. They too use the ratio of quadratic functions, but
use an RTcam defined inP 2. We use RTcams inP 3 and are
therefore more general. Similar remarks apply to the X-slit
cameras of Zometet al. [2], who use tensor based projection.
Again, our tensors are more general and we conclude RTcams
are more general than X-slits.

Comparison with General Linear Cameras (GLCs) [20] is
more difficult (and so takes more space). This is because GLCs
define the direction of a set of rays, whereas RTcams operate
using points. GLCs operate inP 2 by defining a ray using three
basis rays. Each basis ray is specified by a pair of points, each
of three elements because the camera acts inP 2. The points
ri and si define i the basis ray. Theri form a triangle in
the plane of zero homogeneous depth (sori3 = 0 for all i),
the si all have unit homogeneous depth (si3 = 1 for all i).
Three numbers, an input point, specify any particular point
z(α, β, γ), γ being the distance along the ray.

z(α, β, γ) = αr1 + βr2 + (1− α− β)r3 + γ(α(s1 − r1)

+β(s2 − r2) + (1− α− β)(s3 − r3))

By settingui = si − ri, which is a basis ray direction, and
writing each vector as a row in a matrix, we can express the
above as

z(α, β, γ) = [α β 1]









p1

p2

p3



 + γ





v1

v2

v3









in which we define the matrices

P =





r1 − r3

r2 − r3

r3



V =





u1 − u3

u2 − u3

u3





The ith element of the output point is now

zi(α, β, γ) = αpi1 + βpi2 + pi3 + γ(αvi1 + βvi2 + vi3)

The equivalent RTcam is specified inP 3. For eachmatrix
i = 1, 2, 3

Qi =









0 0
0 0
pi 0
vi 0









Q4 =









0 0
0 0
e3 0
0 0









(11)

in whiche3 is the unit row vector[0, 0, 1]. The above definition
is asymmetric; symmetry may be forced upon allQi by
halving the sum of each matrix and its transpose, but this
is not required. Using the asymmetric version we see that

zi(α, β, γ) = αpi1 + βpi2 + pi3 + γ(αvi1 + βvi2 + vi3)

which is identical to the GLC. This shows any GLC can be
represented by an equivalent RTcam. Furthermore, the RTcam
has three additional degrees of freedom in the “top-left corner”
of each matrix with indexi ∈ [1, 2, 3], preventing GLCs from
emulating every RTcam. Therefore RTcams are more general
than GLCs.

GLCs define rays on a bilinear surface, which is reflected
in the structure of the RTcam matrices above. The surface at
infinity for GLCs is therefore bilinear, and because these are a
sub-class of quadric surfaces, GLCs are special case RTcams.
This is an alternative proof the RTcams subsume GLCs.

Specifying a ray, as GLCs do, is necessary for Computer
Graphics applications such as ray-tracing. But ray-tracing is
not an an efficient rendering strategy for the point clouds
make our models. It is much more efficient to project the
points along the ray that passes through it. The problem facing
GLCs in this context is determining the ray direction though
an arbitrary point in space, the GLC must be “inverted”. Such
an inversion is not found in the GLC literature, but we give
it here for completeness. We omit any proof, supplying only
the main results which may be verified by the reader.

Theith coordinate of the ray vector through a point is given
by a ratio of quadratic equations, that is by an RTcam with
matrix planes given by the tensor equationsQi = vjiDj and
Q4 = D3 in which the Di are (4 × 4) matrices, defined
below. Given the RTcam as specified above, the ray atx is
wi = xT Qix/xT Q4x The first three coordinates of the ray
w (i.e. an orthogonal projection) is the ray passing through
the point, but represented within a GLC. This ray carries the
point x onto the image point given byy = x+ x3w which is



identically the image point in the GLC. TheDi are matrices
defined by

D1 =
1

2









0 0 v22 p22

0 0 −v21 −p21

v22 −v21 b1 a1

p22 −p21 a1 c1









D2 =
1

2









0 0 −v12 −p12

0 0 v11 p11

−v12 v11 b2 a2

−p12 p11 a2 c2









D3 =
1

2









0 0 0 0
0 0 0 0
0 0 b3 a3

0 0 a3 c3









In which we define vectorsa, b, andc

b = 2(v1 ⊗ v2)

c = 2(p1 ⊗ p2)

a = (p1 ⊗ u2)− (p2 ⊗ u1)

We use the notationpi to refer to theith column ofP, and
vi to refer to thei row of V; other terms in the above follow
by analogy. The ability to compute rays, and hence image
points is sufficient to specify an RTcam. This is because given
a sufficient number of object/image point matches we can
calibrate an RTcam, as explained next.

CALIBRATING RTCAMS

We wish to determine an RTcam given a set of object points,
x, and a set of corresponding image pointsy. We begin by
re-writing zi = xQix

T as zi = (xT x) ⊙ Qi in which ⊙
multiplies corresponding matrix elements and takes the sum
— it is an inner product. SettingU = xT x, and recallingQi

has a symmetric equivalentPi allows us to write the above as
the familiar inner product of vectors, each withn2(n + 1)/2
elements: we writezi = upT

i . The relation with components
of the image pointy can now be expressed as

upT
i − yiupT

n = 0

It is the RTcam elements, thepi we seek, which we therefore
factor out to yield a homogeneous set of equations of the form

[

uj 0 −y1juj

0 uj −y2juj

]





pT
1

pT
2

pT
3



 = 0

in P 2 and an analogous form forP 3; the j indexes the
jth pair of matched points. Provided, inPn, there are more
than n2(n + 1)/(2(n − 1)) matches, the singular valued
decomposition of the design matrix ofuj andyj yields a null
left-singular vector which is readily converted to the solution
P, up to a scale factor that makes no difference to the camera’s
operation. In this way the RTcam can be calibrated, with
applications such as “inverse” GLC emulation by an RTcam,
or as means by which users can specify an RTcam by drawing
its effect.
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