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Abstract— We introduce a simple but versatile camera model in categorizing a piece of artwork. The lesson for NPRP is
that we call the Rational Tensor Camera (RTcam). RTcams that to convincingly emulate a style of art, it is not suffitie
are well principled mathematically and provably subsume se- , congider either system alone; both must be considered.

eral important contemporary camera models in both Com- NPR covers a wide range of research topics including multi-
puter Graphics and Vision; their generality is one contribution. 9 p 9

They can be used alone, or compounded to produce more Perspective rendering, artistic rendering, cartoon rende
complicated visual effects. In this paper we apply RTcams to and so on. The literature on NPRP, specifically, focuses
generate synthetic artwork with novel perspective effectdfrom  gverwhelmingly on denotational systems. Sometimes by com-
real photographs. Existing Non-Photorealistic Renderingfrom 1 ting the form or placement of brush strokes, other times
Photographs (NPRP) is constrained to the projection inhemst in o i . A .
the source photograph, which is most often linear. RTcams fi painting media is modele.d. Despite ,S'gmflc,ant prOgreS,S ,m
this restriction and so contribute to NPRP via multi-perspective  these areas, NPRP algorithms remain restricted to painting
projection. This paper describes RTcams, compares them to over projections from real cameras, and the largest and most
contemporary alternatives, and discusses how to control #m important class of real cameras can be approximated to first-
in practice. lllustrative examples are provided throughou. order by a pin-hole camera. The significance of this is that

Index Terms— Generalized Cameras, Non-Photorealistic ren- NPRP has been restricted in the gamut of projective styles it
dering, Projective systems. exhibits. We conclude that NPRP faces what might be called
a “projective barrier”.

Our contribution is to lift the projective barrier by coneid
ing the projective system, rather than the denotationaésys

HE ideal pin-hole camera generates images in line@fe introduce Rational Tensor Cameras, or RTcams for short
perspective. Having been well studied and extensivelje pun on arty-cameras is intentional). RTcams provide a

used in both Science and Art, its properties are well knowersatile family of non-linear cameras. RTcams can moate le
Recently, non-linear projective cameras have been résedrcaperrations in real cameras and can even be calibratedrty the
in both Computer Graphics and Computer Vision, driven byccounting for barrel and pin-cushion aberrations. Eguall
a variety of motivations. Our motivation came from noticinghey enable photographs to be processed into projectivesfor
that linear perspective is surprisingly rare in Art: chédr hat no physical camera can ever capture but which are used
draughtsmen, architects and engineers regularly dra\/\gusgy human artists. The images output from RTcams retain a
non-linear projections, either by accident or design. Thie Ophotographic texture and so can be used as fancy photos, or
ental and African schools, amongst other non-Western $sthhey can be painted over with any NPRP algorithm. In this way
make little if any use of linear perspective. Historicallie \ye can build a system that takes both the (multi)perspective
pre-Renaissance and post-impressionist Western Art &80 Y, denotational systems into account.
non-linear perspective. We set out to introduce a wide #arie  Non-linear cameras remove the requirement that rays of
of perspective effects into real photographs. The output |jght must pass through a single point focus. In fact non-
processed into paintings using standard Non-Photoriealisinear cameras may contain any number of real-valued focal
Rendering from photographs (NPRP). We wanted a simgd@ints, including zero or infinitely many. They are the sabje
method, able to emulate not only real cameras but algp 5 considerable volume of contemporary study and are
perspective types typical to Art; hence RTcams. used in many different ways in both Graphics and Vision.

Our work was in part motivated by our own observationgontemporary models include X-slit [2] cameras, push-broo
that Art often uses non-linear projection and also by Agameras [21], strip cameras [3]-[6], General Linear Cam-
commentator John Willats. He differentiates tpeojective grgg [20] and Rational Function cameras (RFcams) [7]. The
systenthat is concerned with perspective in artwork, from thgext Section provides a fuller review. RTcams are tensoedas
denotational systehthat is concerned with the way marks argameras that emulate (and can be calibrated to) many other
made [1]. Willats shows both systems play an important rojgyn-linear cameras including all those just mentioned aRiE
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partment of Computer Science, University of Bath, BA2 7AYK.U features of RTcams are that they:

Email {pmhjpclyzs2Qcsspscl249t@cs.bath.ac.uk. Ph +44(1225)386811. ; ; ;
Fax +44(1225)383493 o Provide a single, simple model of a camera that not

lwillats’s division is more general than the special casemilere, but the only Contajms several |mportant,' contemporary mOdeIS.
projection/mark-making division is valid and directly dippble to NPRP. of generalized cameras as special cases, but have their

I. INTRODUCTION



unique properties (perspective effects) too. calibration methods mean that RTcams too can be calibrated,
« Introduce a wide variety of projection effects. Many okee the Appendix for details. Calibration not only allows

these are impossible to achieve with any real camera lRifcams to emulate real cameras but means RTcams can be

may be seen in the work by artists of all skills, ages, arghlibrated to emulate other non-linear cameras. Calimati

many schools. allows a user interface to be built making them easier to use.
« May be combined easily, to produce largempoundRT- Such an interface simply allows the user to draw a warped

cams. Compound RTcam may themselves be combinegigtangular grid; the warping away from true rectilingarg

ad infinitum This allows users to construct complexsed to calibrate the RTcam.

optical devices that include light beam splitting and NPRP is kin to 3D-model based NPR, where research

merging. into non-linear projection is currently active. Polygorsnc

Examples of the kind of effects RTcams can produce c&€ rendered non-linearly on standard hardware via an adlapte

be seen in Figure 1. We now give a brief review of relatef@rm of scan-conversion [9], [10]. But ray-tracing is theepr
literature. dominant method by which to non-linearly render models- Lof

felmann and Groller [11] use an “extended camera” in which
points on the model each have an associated ray. Levene [12]
provides a set of heuristics, such as allowing image susface
(windows) — which are planar in the pin-hole camera — to
be polynomial surfaces. Glassner advocates the use ofy“putt
lenses” [13], again within a ray-tracer. Agrawadt al. [14]
discuss the issue of how to depth-order a set of models when
each is seen from a unique point of view. Specifically, when
the same point is seen from many views, which depth should
be used when computing hidden surfaces? They propose a
“master camera” as a means of resolving ambiguities. Karan
Singh and his co-workers have contributed much to this area
Fig. 1. Example applications of RTcams to a Rubik’s cube. famp: The  Of the literature [15], [16]. Coleman and Singh show thagdn
identity RTcam (left) leaves the image unchanged, hereppetire projection  jnterpolation is a solution to the problem of viewing a sing|
from a real camera. A barrel (middle) and pin-cushion (Jigtiistortion. . . .
Bottom row: inverse perspective (left), a depth-dependergt (middle), and model from more than one viewpoint. They too use the idea
a compound “fly-eye” lens effect (right) created with a comps RTcam. Of @ master camera [16]. More recently, they provide widgets
Close inspection of the latter reveals that cubes are noketato form a g gssist user interaction [17].
wall, but that cubes intersect to form a regular hexagon, thatl the same . . .
cube is viewed 7 times, each from a slightly different angle. The Generalized Linear Camera (GLC) of Yu and McMil-
lan [20] specifies a light field; each ray in the field is a linear
combination of three basis rays. GLCs can emulate X-slit
cameras as well as others such as push-broom cameras [21],
A. Background but cannot model pin-cushion or barrel distortion. GLCsehav
This section provides a brief review of multi-perspectivenany applications, including light-field rendering and 3D-
rendering. X-slit cameras have been used to mosaic nevedel based NPR, their versatility and simplicity make them
views without recovering 3D geometry and without cameriateresting. Similarly, Mekt al.[22], define a field of light by
calibration [2]; the foci of an X-slit camera lie on a pair ofés  specifying a variety of geometric terms related to ordirginy
making an X-shape. Rademacher and Bishop [3] constrimile cameras (focal length, center of interest, etc) on agfai
multi-view panoramas of a kind suitable for cel animatiorplanes. Theilocclusion cameras more complex than GLCs,
using astrip camera Strip cameras have appeared quitbut is specifically designed to capture occlusion boundanfe
often in the Graphics literature, with the aim of mosaicingD models.
photographs. Romaet al. [4], [5] provide a semi-interactive  John Willats worked with Fredo Durand [18] using 3D
system that uses a linear camera to combine photographsdels to demonstrate that his descriptions of artistie stgn
into panoramas of street scenes, as do Agrawalal. [6]. be connected to rules used to generate pictures. Halle [4®] a
The latter authors contribute by reducing the degree of usgfes multi-viewpoint rendering, not to produce a combarati
interaction to identifying the dominant plane. In all cabiesar of several views in one, but rather to efficiently produce ynan
camera models are used. RTcams can emulate strip camefaslar views.
using ordinary photographs, a non-linear camera and minima
user interaction; see Subsection V-A for an example.
Rational Function cameras (RFcams) [7] are used to mea-
sure and correct radial distortions, such as pin-cushidreor ~ We begin our more detailed discussion with a brief discus-
rel deformations, that obtain from real cameras. They dperaion of the overall rendering pipeline we advocate. This can
in the window plane of the camera by mapping homogenedos seen in Figure 2. Although RTcams form only a part of
pixel coordinates using rational quadratic functions, eawd be this pipeline, and although they contribute to multi-pexdjve
calibrated to real cameras. Methods based on tensors heme lsendering only, it is important to provide such a pipeline.
proposed for calibrating generic non-linear cameras [BEhS This is because our motivation is the emulation of perspecti

II. RTCAMS: WITH A BROAD BRUSH



as used by artists in different times, at different placds, & squashed more at one edge, appearing exactly as under
different ages, and so on. Our pipeline is consistent witimear perspective. (ii) Affine reconstructions preserergth
Willats’s [1] division of style into projective and denoi@bal ratios — a cube may be reconstructed with faces which are
systems, its simplicity is seen as an advantage. parallelograms. (iii) Euclidean reconstructions preseamgles

too; a cube is reconstructed correctly, up to a scale antyigui
see Faugeras and Luong [25].

RTcams are neutral with respect to the class of reconstruc-
tion. Perspective, affine, and Euclidean reconstructeatpoi
clouds are all treated equally. The class of reconstruction
needed depends on the details of the application. For exampl
Figures 10 and 13 both require Euclidean reconstructions of
a house, but Figure 12 and Figure 14 need only perspective
reconstructions. Section V has details.

The remainder of this paper introduces background math-
ematics to understand RTcams (Section IIl). We go on to
discusses practical issues in Section IV — motivating thetne
for control spacesandcompound RTcamSection V provides
specific examples that illustrate RTcams can emulate a wide
gamut of artwork. The appendix discusses how RTcams relate
to alternative non-linear cameras, proving their gengraind
shows how RTcams can be calibrated from matched points.

‘ projective style (RTcam)’<—> v

‘ denotational style (NPRP) ‘

' . ) . . I1l. RATIONAL TENSORCAMERAS: SOME MATHEMATICAL
Fig. 2.  We address the projective barrier facing NPRP bygustandard

stereopsis to create a point cloud model (not necessarijl eetonstruction, BACKGROUND
see text for details). This is acted on by RTcams soptujective styleof In this section we define and discuss the mathematical
the artwork can be selected; this is the contribution of ffaper. RTcams . . .
produce photographic quality output which can be paintéd @denotational essentials of RTcams. We use the notational convention that
style using state-of-the-art NPRP algorithms. R™ refers to ann dimensional vector space, ard® is the
corresponding projective space. We generdtefrom R™ in

We change the projective system using stereo photograpiti¢ usual way: by defining a basis vector that is orthogonal
This is preferred over a single image because it allows mugh R so that pointsx = [zi,...,z,] € R" require a
greater freedom in warping — relative depth turns out to beomogeneous coordinate” to be appended: =, \[x 1] for
useful. Stereo photography allows us to build a partial rhodg -« 0. The additional vector is, of course, the “homogeneous
of the scene, which can then be re-photographed — in agifection” and the value of a point's homogeneous cooreinat
case with an RTcam. Stereopsis has been applied previouslits “homogeneous depth”.
in NPRP, but to better highlight edges [23], [24] which is As a note, all of the photographic examples in this paper
an issue of the denotational system, rather than to addiess|ise RTcams defined iR?, which means the objects are three-
projective system as we do. dimensional. The visualizations though, that is Figuresd%

The Computer Vision literature has a vast literature devotgise RTcams defined iR2. This is so homogeneous depth can
to reconstruction from a stereo pair. The majority of it @@  pe visualized as a third spatial dimension. The mathematics
points located in three dimensions. Fitting lines, pla@® makes no assumption about the dimensionality of the space.
other geometric objects takes extra effort and impliesaextr We begin by defining an RTcam. An RTcam is a projection
assumptions too. RTcams are designed to work with poings: p» — P" We write y(x) = Q[x]. The RTcam maps
— the simplest possible geometric primitive. Stereo reies a vectorx € P™, to another vectoy € P" using a ratio of
corresponding pixels in the two given images. Mis-matchaénsor operations on the input vectear In this paper we use
pixels lead to erroneous 3D locations. The importance fird-order tensors, which are. x n x n) cubes of numbers.
these outliers to our application depends on many factorhe ith element in the output vector is computed as
which makes a full discussion out of place here. The most T

R . . . . . X inx
serious issue here is that outlying points project to aabjtr yi(x) = = (1)
positions in the final image. We have found that hand-based xQnx
segmentation greatly assists the process of correspondimgvhich Q; is a (n x n) matrix, which can be thought of
points, so that outliers are not an issue for us in practice. as a plane of the tensor, see Figure 3. E@:hhas exactly

In this paper, the reader may assume an object comprities same effect as its transpose, so that we can as@ne
a cloud of points. Importantly, this cloud need not be a fuymmetric without loss of generality.
reconstruction. Computer vision recognizes three clas$es This definition of an RTcam is a direct analog of the
reconstruction: (i) Perspective reconstruction is theallest standard linear camera, which is specified using a single
class in which connectivity between points is preserved afd x n) matrix, C. If C; is theith row of C, then theith
straight lines remain straight. A cube will typically appeaelement in the projection is given by, = (xC7)/(xCT).
as a highly distended shape in which each face, though fl@he linear camera is therefore the ratio of linear functidxs




we will see below, RTcams are ratios of quadratic functions. The decomposition of the transform into independent parts
As with linear cameras, it is convenient to think of projeati — scalar, linear, quadratic — means users can consider each
as acting in two steps — a geometric mapping followed byaf these terms independently, which makes control of RTcams
perspective projection: much easier. For example, we see that setfhg= 0 gives
s(x) = xQxT @ the special case of a linear camera; each column of the linear
! ! camera’s matrixC is just a Jacobian. The fact that RTcam
yi(z) = —z (3) matrices can be replaced with a symmetric version reduces
the number of parameters needed to specify an RTcam from
We say theobjectx is projected to themagey. We callz ;3 to n2(n +1)/2, so providing further assistance. The next
the homogeneous imagso as to tell it apart fromy. The sypsection provides mathematical elements of RTcamsgeneed
orthogonal projection of the image onto a plane generaigshelps one understand their relation to other camera raodel

points that can be visualized on a computer, we [yseya], Practical issues resume in Section IV.
and call this point thevisible image The action of a specific

RTcam inP? is shown in Figure 4. It shows how the RTcam )

warps points in an object from a plane onto a quadric surfade, Further Analysis

which is then projected. The result is an image which appearsThe definition of RTcams given above is sufficient for

non-linearly distorted. general purpose use. This subsection provide a more dktaile
Because RTcams operate in projective space they are invarathematical analysis so that its operation can be morg full

ant to scalex = \x. We can take advantage of this by fixingunderstood, and so that RTcams can be compared with other

the homogeneous depth of input points, = 1. The allows non-linear cameras.

us to partition a matrix in the tenso® into a scalar part, a RTcams are homogeneous deg2edecause for any scalar

linear part, and a quadratic part, which together compriselawe havez;(Ax) = A2z;(x). It follows that for any\ # 0,

Taylor expansion, specifically yi(Ax) = y;(x). Therefore the image is invariant to a uniform
scaling of the object.
2(x) = [x1]Q[x, 17 oy ) o .
- inear cameras contain a single focus and a plane of points
= [x1] [ H L } [x, 1]T that they cannot project becaus€? = 0. Points in this
K s singular plane are “invisible” to the camera, in the sensg th
= xHxT + (KxT +xLT) + s the camera cannot make an image of them. RTcams generalize
= s+ xJT + xHXT (4) from the linear camera case. The quadratic equation
with J = K +L. We identify the non-linear part of the camera xQ,x’ =0 5)

H as the Hessian, the linear paktas the Jacobian, and the . e
) . denotes a quadric surface which is invisible to an RTcam. We
scalars as the constant at(0); see Figure 3. Hence RTcams

. . . . call this surface thesurface at infinity because it is made
are the ratio of quadratic functions, as claimed above. ) e
up of pointsx € P™ at infinity that map toz such that

zn = 0. The absolute origir0 is a point on the surface at
infinity. The non-degenerate solutions are more intergstiot

lnear camera plane. least because they may have complex elements. Promoting
non-iinear part, real-valued vectors to have complex valued components is
called thecomplexificationof projection space, Faugeras and
linear par, 3 Luong [25]. Briefly, we can see thatQ,x” = 0 may have
scalat, s complex roots by using eigenvalue decomposition(pf to

Fig. 3. The tensor for an RTcam is a cube of numbers. Each ptaae 9€! xRS,R~'x" = 0. We can now map the object vector
matrix mapping an object into a single element of the imagee Tapping iNto the eigenbasis to getS,v = ) . vZs; = 0. Since the
comprises a scalar constant, a linear part and a non-lirexrtimat can be .. are positive, they; must be complex in general.
expanded in a Taylor series. The “side plane” of the cubeasntiatrix for a P . .
linear camera. The surface at infinity is important because it characterize
not only a particular camera, but also the class of camena. Fo
Furthermore, we can think of a linear camera as modeliegample, no RTcam can represent a camera with a surface at
a real camera to a first order approximation, and an RTcaniinity that cannot be described by a quadric. This can bd use
as adding a second-order correction. Exactly this coomrés to build a taxonomy of cameras based on sub-class relations
used by by Claus and Fitzgibbon [7] to calibrate and correlsetween surface families. For example, the bilinear segac
for lens aberrations in real cameras. Those authors confare a sub-class of the quadric surfaces because all bilinear
themselves taP? whereas typically we use RTcams . surfaces are representable using a quadric, but not vicave
We also include tools designed specifically for NPRP usds:follows that because the surface at infinity of GLCs are
control spaces in Subsection IV-B and compound camefaitinear surfaces, they can be considered as a special case
in Section IV-C. It is worth noting that some lens aberrasiorof RTcams. The Appendix discusses the relationship between
do in fact depend on real depth, Seidel aberrations for exaRFcams and other cameras in greater detail.
ple [26], and that RTcams do allow for depth dependent effect Linear cameras map straight lines to straight lines. RTcams
and so can approximate these. map straight lines to quadratic curves. Suppgse p + su



is an arbitrary parametric straight line #i*. The line is such
thatz,, = 1, so is in a subspace d@". Under an RTcam, this w

line maps to the quadratic curve A" given by

I/

2e) = xQux +x(Q + Q7 )uTs + u(Q + Q1"
- dz(0)  1d%2(0) , =

= 20 ds © 2 ds? ©) )

This is easy to show by differentiating Equation 2. All deriv
tives of z of third and higher order are zero. Figure 4 shov
how straight lines map to quadratic curves. -
By analogy with Faugeras and Luong [25], we define t , . o
vanishing pointof a line in P as the images of its points a ' ERLns | o st Vot o

Top left: a grid object and its image
Above: a visualization shows the
RTcam warps the object in
homogeneous space before
projecting it onto the image plane.

infinity. The vanishing points on a line defined as in Equa6or e pains| Oceur where this surface intersects

are easy to find: we simply solve the quadratic equati he h=0plane

zn(s) = 0 to obtains values. Although these are comple

in general they can then be used to obtain vanishing points.

We define aay of light to be the locus of object poinssin  Fig. 4. An RTcam inP? (a 2D camera in homogeneous space)

R™ that project to the same image pont Note that because

RTcams map straight lines to curves in projective spacey a ra

can appear to bend i®”. (A ray in P" is just a straight introduces the concept @bntrol spaceas a means to control

line emanating from the origin.) We require the differehtieeffects, explains how to combine RTcams to generatera-

structure of the RTcam; the matrix of partial derivatives is pound RTcamdescribes a user interface, and briefly discusses
issues germane to rendering such as anti-aliasing and hole-

8yi:i( 0z Z,%> (7) filling.

2 =2t
: 2\ 5. 9.
Ox; 22 Ox; Ox;

in which z is the homogeneous image. The total changg in
due to an infinitesimal change i is therefore
oy; At first glance, the action of an RTcam may seem difficult
dy; = —_ldxj (8) to specify, but just as one learns to specify matrices so one
Ox; can learn to specify tensors. We provide some examples in
We use Einstein’s convention for tensors — repeated indicgss section. But first note that by using the Taylor expamsio
denotes summation. The matrix of partials depends on objegt can easily recreate a linear camera. Given a métrixe
location; call itP(x) = dy;/0x;. Itis rank degenerate becauselistribute itsith column, scaled by /2, into the final column
the column vectody,,/0x; = 0 for all j. Consequently there and bottom row of theth RTcam matrixQ;. The effect is
is at least one direction vector such thit = Pdx = 0, to putC into a plane of the tensor that crosses each of the
that is which leaves the image stationary. We call this Q;, see Figure 3. The remaining terms in a partic&gr the
tangential direction arinstantaneous rayintegrating over “upper-left” corner, account for all non-linearities.
these recovers the ray. Given a paintthe direction\x is an An RTcam that produces barrel distortion (see Figure 1)
instantaneous ray, because it leayestationary. If the rank under the control of a parameteiis:
of P is n — 1, then the instantaneous ray through a point has

A. Specific RTcam examples

a unique direction. If the rank is lower than this, then there 0 0 0 1/2 0 0 0 0
may be many instantaneous rays through the same point. &| = 0 00 0 Q. = 0 0 0 1/2
vanishing points hav@® of rank 0. The row vectody;/0x, 0 00 0 00 0 0
is the instantaneous ray direction, projected into imageesp L /2.0 0 0 . L 0 1/2 0 0
The radial lines in Figure 4 are rays. 00 O 0 s 0 0 O
Q — |00 0 0 o |0 s 00
IV. ARTY CAMERAS: RTCAMS APPLIED TO ’ 00 0 1/2 00 s 0
NON-PHOTOREALISTIC RENDERING |0 0 1/2 0 | |0 0 0 1

Recall that in this paper RTcams use input vectors préhe first three matrices are the identity transforms, in that
duced via stereopsis. We remind ourselves that RTcams affgiven|z1, 22, 3, 1] they producéz; , xo, z3]. The final matrix,
perspective and do not care whether the points come fravhich determines homogeneous depth, is responsible for the
a perspective, affine, or Euclidean reconstruction. Wetereaon-linear effect. It gives,, = s(z%+z3+23)+1;if s =0 we
artistic looking images by painting over a photograph withbtain the identity RTcam. 1§ is large, a large barrel effect
non-linear projection, created by an RTcam, as explainedproduced. Ifs is negative, we get pin-cushion distortion.
in Section Il. Having outlined the mathematics of RTcamBoth can be seen in Figure 1. Clearly, the surface at infinity,
already, it remains for us to explain how to use them in, = 0, of this RTcam will have complex roots, whern> 0,
practice. This section therefore gives several exampl@RE¢ because then we requiré + 23 + 23 = —1/s.



Inverse perspective causes objects to appear to dilakerraDoing so allows users to exercise control over models and
than diminish, with distance. This effect is possible with acameras. Effects such a scaling and rotation, for exampde, a
RTcam, but of course no real camera can produce this. Invetggically best done in an object’s own frame of referencat th
perspective can be found in the Byzantine art, the work & in object space, whereas hidden surface problems may be
Matisse, the Cubists, in children’s artwork and elsewh&fe. most easily solved in image space. Conversion from one space
can obtain a dilation with real depthz say, by considering to another is effected by linear transforms, often arrarigtxd
the mapping element; in the object vector tar; + z;ax3, a hierarchy.
for somea, and in whichz; is the depth of the object in real RTcams are transforms, and it is convenient to recognize
space. In this case we set only the first two RTcam matricefifferent spaces, and their respective advantages andvdisa

0 0 o 1 00 0 0 tages. The general idea conforms exactly to standard peacti

0 0 6 (2) 0 0 o 1 a map transforms the object into some convenient space, the
Q = a0 0 0 |Q@=|o 2 (2) (2) desired transform is applied to create the image, and fially

; 00 0 0 ; 0 inverse map is used to carry the image back into the original

N _ space.

The remaining matrices are set up to produge= 3 and Suppose the matrid is a linear mapping that carries an
z4 = 1. We note that settingx = 0 yields an orthogo- opjectx into the control space to give’ = xM, both being
nal projection. The result of applying inverse perspect&e homogeneous points. This new point is subject to the tramsfo

demonstrated in Figure 1. we wish to apply. We neglect to divide by the homogeneous
A depth dependent twist is our final example, produced Rjstance but nonetheless writd = Q[x’]. Neglecting to
means of a cross product. The first two matrices are divide is in line with common practice when mapping between
o 0o o 1 00 ¢ 0 spaces. The transformed vectgr is subject to the inverse
0 0 2 0 o o0 o0 1 mapping to obtain the homogeneous image of the object:
Q = 0 = 5 o | Q= a0 0 3 z =z'M~1. All vectors belong toP™.
10 0 0 0 & 0 0 If the RTcam mapping were linear, then all of these trans-

. . . forms can be collected into a single transform; we need only
which on expansion give, = a1 — (ax3)zs @ndz; = 22+ myitiply the matrices to get the single matiik — MQM
(aws)ay respectively. If we setin(6)/ cos(f) = azs, thenwe __ yig’«concatenation” is a well known advantage of using
seez; = wy cos(0) —wasin(0), andz = 3 cos() +215in(f),  matrices. It turns out we can do the same wh@f is an

which is a depth dependent twist, up to a scale; the outgfcam, although the process is a little more complicated. It
vector length is scaled byl + o?z3). To eliminate this we .. pe shown that by setting

would have to redefine RTcams to take the square root of the . .
denominator, so that input and output vector lengths remain R, = (M QMM 9

constant. One may opt to modify the RTcam definition b%e RTcamR performs the mapping into the control space,

settingz; = (xQx)™, butin this paper we retain the simplicity ;05 the RTcand), and performs the inverse mapping out
of the original definition. To complete the twisting RTcang W of the control space: that i&® appliedQ in the control space.

setQs; andQ, to returnzs andz,4 respectively. Figure 1showsAgain repeated indices imply summation, so e&his a
a depth dependent twist, but applied in all directions ateon(i/veigh,ted sum of thé M7 Q;M) '

The final exgmple in Figure 1 will not be ex_plalned here, Returning to the discussion of named spaces, we retain
because creating a compound-eye effect requires seve{gl q@} concept of avorld spaceas the default space in which
cams to b? combm.ed. Exgctly how tq do this is explain mogeneous points reside. This space is useful for tasks
Igter, but first we W'l_l cons[der controlling RTcam effects Quch as rotation and translation but is not well suited for
little more closely using various spaces. applying scaling and non-linear effects to objects, fomepke.

The analogy with object space is harder to maintain, because
B. Control spaces objects may not be Euclidean reconstructed. However, we an-

The visual effect of an RTcam on an object depends dicipate that users will want to apply RTcams in the refeeenc
where in space that object is, as well as the values in tirame of the camera, not the object. This makes sense because
tensor. Picking values is in principle no more difficult thaiit is the visual effect of the camera that is interesting.
specifying matrix transforms. The effect of the spatiakitban When constructing a canonical space in the frame of the
of objects is managed usingpntrol spacesFigure 5 shows camera we first make aimage spaceThis is directly anal-
an example for a two dimensional grid experiencing barrebous to the space of the image space defined by pixels
distortion at various locations in the plane. It is clearttha— points map to pixels under parallel projection (Figure 6).
the output depends critically on the location of the inpus. AWe then map image space to canonical space using a scale
we explain below, defining aanonical spaces a particular and shift, using an RTcam to do so. This RTcam is defined
control space, a user can specify the canonical action of lay fitting a bounding cone around an object’s points. The
RTcam, and store it in a library for later use, making RTcanapex of the cone is the absolute origin. The sides of the
easier to use. cone lie along the line of sight. Two parallel planes, each

Conventional 3D computer graphics recognizes “worldf constant homogeneous depth, cap the cone at either end.
space” , “image space” and “object space”, amongst othel$ie whole cone is skewed and scaled into a cylinder that



Moreover, we combine cameras in serial and in parallel, to
create a complicated structure, represented by directedi@c
graph (DAG). This vastly widens the gamut of possible effect
Compound RTcams are DAGs. Each node contains an
RTcam which processes points in an object. The arcs of the
DAG govern the flow of the data (set of points) between nodes,
see Figure 7. A simple DAG has two node$,and B say,
arranged in series so that is a parent node ané a child
node. A set of points is input to this compound RTcam via
node A, which produces a new set of points that is input to
the RTcam in node3. The output of B is the output of the
Fig. 5. An example showing the effect of an RTcam on an objepedds compound RTcam. It is easy to create a series of RTcams of

on where the object is. An object is made of four grids (blade blue any length. The example in Subsection V-B depends, in part,
image is the effect of the barrel camera without transfogrtime object into on RTcam in series.

canonical space. The red image is the effect when canorpeakss used on . . .
each grid. P ’ pes A different case arises when nodé has two children,

B; and B,, say. In this case the output of is input to
both children, which are in parallel. Extension 2 parallel
children is easy. Equally, a nod€, say, can havé/ parents
in parallel. We callA a “splitter” and C' a “merger”. The
image space problem is in the merging node, which must combine multiple
T | v images, one from each parent, each showing the object from
different points of view. Here aiew means the image of an
object under any RTcam, so scaling, rotating, barrel-distos
are all views There is no unique solution to the problem of
combining multiple views, so we discuss and demonstrate two
] methods.

o / image plane The first is straight-forward — the point sets output by each

A
A0
RNEN
LI

world space

child are concatenated into a single set. This producespteult
copies of the same object. The problem of depth ordering
origin (focus) can be solved using a z-buffer. This is how the compound-
) o _ _ eye example in Figure 1 was made. The second method is
Fig. 6. Control spaces: Points in world space (blue) are m@pto points . . . . . .
in image space (green), which maps convergent rays froml aaezera into to merge views by linearly |.nterpola.1t|n'g the points in t_hem
parallel rays. Points in image space are mapped canoniaabgped), which SO as to create a set of points. This is a more complicated
makes many effects easier to control because the pointsnatesed by a method. but one which is rewarding because it enables a&ingl
known geometry. The yellow plane is the image plane, whichaias in a . ’ . . . .
constant location. image to show the same object from quite different views,
simultaneously, with each point appearing at most onceen th
final image.
projects orthogonally to the same set of points. This RTcam1) Merging views by interpolationWhen merging point
can be expressed with an invertible, linear operation. Tlsets from nodes in parallel it is important our implemewotati
newly formed cylinder is mapped tanonical spaceAnother of RTcams does not change point ordering. This seeming
invertible linear transform shifts and scales the cylinstethat triviality make it easy to identify corresponding points in
the center of the near plane is at the origin, and the cylindenages: theth point in data sej corresponds to théh point
has unit height and radius. Now that the object lies in a wetl data set and so on (thg andk index the parent nodes; as
defined region the effects become much more predictablg, and B, are parents t@’, for example). Suppose;; is the
placing RTcams under user control. ith point in thejth data set to be merged. Linear interpolation
gives

canonical space

C. Compound RTcams

N

So far we have considered RTcams as tensor transforms. Yi= Zw”xij (10)
Much can be done with these, as shown in the examples of =t
Figure 1 and some of the extended examples in Section a4 theith output point, wherev;; is a weight associated with
Even greater power can be achieved by combiningatoenic the ith point of thejth input set; we requirezj wij = 1.
RTcams studied so far to creatempound RTcamSo far Settingw;; = w;, a constant for thgth view usually gives
as we know, compound cameras are a unique contributi@sults of little interest, the general case is far morer@sing
of this paper, even though others combine (linear) cameragd is discussed next.
Coleman and Singh [16] show how weighted cameras can béThe aim is to specify a set of weights;;, one weight for
used to combine many views of many linear cameras into omery point in every data set. In Figure 7 there are two views
We too use a linear combination, but of non-linear camerds. merge, so each weight vector has two elements. This could



be an overwhelming task were it not for our user interfaceé tha splitting node
allows users to “paint the weights”. The idea is very simple:
users paint the object being images by the compound RTcam.
Our method is very similar to one described by Coleman
and Singh [16], whose RYAN system combines views in a
hierarchy of linear cameras. We explain the system here for
completeness.

An object is painted in three dimensions with the intention
of color coding regions. For example, in Figure 7 the user
has outlined regions in red and in green which are easy to
fill with solid color. Not all points in the object are painted
but those which are painted are viewed from a single point
of view, specifically from the view of the camera associated
with the color code. In the example of Figure 7 these are
the orthogonally projected front (red) and side (greenyvsie
Fixed views can be easily arranged by setting the veetgrs AT T T T
In the example, if the front view corresponds to the= 1 e it o 1t oot art St
view we need only sety;; = [1,0] for those points painted to fit snugly between.

red, whilew;s = [0, 1] for those painted green. This scheme

extends in a natural way to more than two views. Fig. 7. A compound RTcam is used to photograph a house frondiffeyent
Weights f int hich h fixed Vi that is. h views, simultaneously. A single input object is seen frono tviews, which
eights for points which have no fixed view (that is, havge combined under user control to obtain an output image.

not been painted by the user) are generated as follows, First
all points in the object are projected to a reference vieve Th
painted points make up a set of colored regions on this viewe thought of as a set of rays, or a “beam”. By analogy, then,
Next each unpainted pointis considered; the closest distancgye can think of a compound RTcam as a generalized optical
to each colored region is found so that a vector of distancgsvice in which RTcams are lenses, and nodes act as both
dij at is created. The reciprocal of distance, when normalizngam Sp"tters and beam mergers.
gives the weight we seekv;; = (1/d;;)/>_;(1/di;). We
can choose any point of view for the reference projection,
and the particular projection chosen will affect the wegght
on the unpainted point — but we have found that almost anyEarlier we mentioned the possibility of segmenting an image
projection gives acceptable results so this has not beerjax ménto pieces and applying an RTcam to each, but chose instead
issue for us. What is more significant is that the unpaintéd consider the case where points arise from stereopsithétei
regions of an object are deformed in the final output image #utomated segmentation nor stereopsis give satisfacewts
such a way as to fit exactly between the fixed (painted regiongjthout user supervision, and user interaction is to seghitsi
In the example of Figure 7 the roof is stretched to fit snuglysed in compound RTcams. In addition, users will probably
between the front and side views. Willats [1] claims this iwish to build a library of RTcams. We have built a user
how children might draw a house, a claim which motivateiterface specifically designed for use with RTcams, a smatps
this example. of this interface is shown in Figure 8. This user interface
2) An algorithm for compound RTcam@ur algorithm for allows users to easily segment images into parts that are
using a compound RTcam is now given. First place a singeeaningful to them, they can provide assistance to improve
object at each root of the DAG, a root node has no parentige results of stereopsis, create and assign RTcams ingludi
Then perform a breadth-first traversal of the DAG by processetting weights for combining different views, and contie
ing the point set through each node. In general, each natknotational style in which the output is rendered.
will merge its input sets from each parent, apply the node’s Importantly, our interface allows a user to assemble atjbra
RTcam, and split the output to each of its children. Each nodé RTcams that operate in canonical control space. New
has a flag which, if set, maps the points into canonical spa@&cams can be defined simply by drawing down the desired
before RTcam application and inverts the mapping aftersuaraffect on a rectangular grid. The grid provides a set of [goint
A second flag in the node indicates the way multiple imagésat can be used to automatically set RTcam parameters — an
are combined: concatenation or merging. The point sets fraasy way to define RTcams. This automatic process relies on a
the leaves (having no children) are concatenated by ddfaultcalibration process (see Appendix) that is can also be wsed t
create a single image. calibrate an RTcam to a given real camera. A full description
Compound RTcams take a single object (picture) as inpoft our user interface is beyond the scope of this paper. We
and give a single object as output. Therefore, compound RBntinue by considering rendering issues.
cams can be treated as atomic RTcams. Now atomic RTcam&Tcams produce a set of points to be rendered. The task
are defined in projective space, so we can interpret objextthand now is to render the points into an image made of
points as rays, if we wish. This is helpful in thinking aboupixels. We face three problems. First, a consequence of the
compound RTcams because a set of points can equally wedh-linear mapping is that the points may not be uniformly

To generate interpolation weights,
the user paints the 3D model to

fix some points, weights on other
points are automatically computed.

computed
weights

fixed side points

V. RTCAM: CREATING AND RENDERING EXAMPLES



Fig. 8. A user interacts with the RTcam system, positioningal RTcams
(left) and assigning them to regions of interest in the seytwotographs using

“magic scissors” (right). Fig. 10. My House A crayon rendering generated over a child-like projection

spread, leaving “gaps” in the rendering that must be fillegsay 5 camera obscura. By drawing, Hockney demonstrates
by interpolation. These “gaps” can be filled automaticallyy,,; the same object can have more than one vanishing point,
A “gap” is identified as being an uncolored pixel close tQnich he explains by the artist moving the optical device

at least4 other colored pixels, and within the convex hulbs ey \worked. Hockney's observations have influenced his

of those pixels. The color of the gap pixel is determined, .o \ork, made by pasting together photographs takem fro
by interpolation. We anti-alias using Gaussian point-isiolg. different views similar to an example in Figure 11.

The second problem is thaF the rendering may conta_lin *holes” 51 aim here is to merge photographs to create a single
caused by parts of the object that were occluded in each;0f o \ith a subtly varying view point, typical of the Northe

the original photographs used for stereopsis, and *hole®) Mc.pqo6 - An atomic RTcam suffices, because we use it to

appear be_tween Wafp?o_' objects. Both kinds of holes mUStin'erpoIate between two points of view. Suppose we have two
filled in using texture-filling.

linear cameras, one with a projection matx the other has
projection matrixB. In Section Il we showed an RTcam can

be expanded as a Taylor series, so that a linear camera can be
emulated by filling in the linear parts appropriately.Af; is
theith column of the camera, we put

o]

then force symmetry, if we wishQ; « 3(Q; + Q;) To
interpolate between views we interpolate over the verazé
of the image, so use

Fig. 9. An example of raw output from an RTcam. Object partt there

obscured in the source photos appear as holes, which acifillesing by 0
growing surrounding texture into them. Anti-aliasing takée non-uniform T T
distribution of points into account, as explained in thet.tex Qi = Bi - Ai
0
. . . . T
The final step of the rendering process is to optionally apply A;

existing NPRE algorithms to the image. T_his allows us t_anin forcing symmetry. In any case, an expansion of the
use a denotational system more sympathetic to the progectiyf e using the input point = [z1,zs, 23, 1] gives y; =

system. For exgmplg, Figure 7 shovys how we can “flattegg’((Bi — A;)zs + A;) Now each output value is the inter-
the front and side view of a house into a single image. We,ation of two cameras, withr, being the control variable.
have mentioned already that Willats [1] claims this “flat®1 115 \ariable comes from the reconstruction of the objects,
is used by children, who then fit the roof wherever it may,e neeq only a perspective reconstruction. In this regard we
land. This is exactly what our example does. et the outpytyq the work of Zomet al. [2] who use cross-slit camera to

in Figure 7 is not convincing as a child’s drawing, becausg pjeye similar results (but cross-slit camera cannobegre

the denotational style is photographic. Automatic OVErMIg e many other effects of RTcams). Because we kngscans

in crayon [27] yields Figure 10, in which denotational anghq \ertical dimension of the image we can normalize it tyvar
projective styles match to produce a house rendering thatb@tween 0 and 1. Eachy; is right multiplied by a matrixS

convincingly child like. N __that scales and shifts, from its domain,[1, N] say to index
We now illustrate the versatility of RTcams by prowdlnqnto N scan-lines, into the range, 1], so we can replace.
examples emulating a range of different artistic styles,heam the above withu = (5 — 1)/(N — 1)

one of which requires non-linear projection to be convigcin The mathematics can be interpreted in two equivalent

o ] o ways: (1) the point's position in camerA and cameraB
A. Combining views: a "Northern school’ projection is interpolated, or (2) a single camera is moved from the
Artist David Hockney [28] suggests, amidst some contrgosition of cameraA to the position is camerB. The latter
versy, that artists of the Northern schools may have usederpretation emulates a strip-camera. The equivalaig-st
optical devices. The artist Vermeer is widely reputed toehacamera is initially placed coincident with camera A, and the



This 'Northern school’ mosaic blends \
different views by interpolating camera

positions (ie image points). The

effect is to acquire each scanline \
with a strip-camera. This could \
be generalized so that every pixel

has a unique camera associated with it. \

Tangents to the book edge have
been automatically drawn using
output from an edge detector.

It clearly shows a change in

the tangent, of about 7 degrees.
The intersection of the left and
right tangents gives a vanishing
point which is seen to shift.

Fig. 11. Three ways to mosaic two images: top-left is the Hegkesque approach of pasting one photo over the otherjgopis a mosaic constructed
by determining the best-fit homography between the imagdswamping one to match. Bottom-left is the result of our mdthour method can be thought
of as emulating a strip-camera. It produces results moreewith the projective system of the Northern school, as esirdd: straight lines, such as the
edge of a book, are bent almost imperceptibly.

bottom-row of pixels is copied into the target. The stripresia

is then moved just a little toward B, and the second to bottom
scan-line is copied, and so on until the camera B is reached,
where the top scan-line is copied.

There is a subtlety to be explained. There was not enough
information in the original images to extract 3D points oé th
vegetables in the near-plan view, and the utensils in theroth
photograph. This does not prevent the interpolation fromde
applied to them, but means that the objects are treated as flat
planes at infinity — much as the photographs in conventional
mosaicing are considered as planes at infinity. This simpli-
fication is acceptable under a projective reconstructiod an
necessary if these complex objects are to change perspectiv
with the rest of the image and so avoid the need for filling
gaps between objects.

The result of merging is seen in Figure 11, which also
includes both a Hockney-esque and standard panoramic mo- = -
saicing of merged images for comparison. The objects in the ( ool
scene are too close to the cameras for standard panoramic =~ o )
mosaicing algorithms to work well (the plane-at-infinity- aszé%oi)lz_- Still Life” in the projective and denotational style of the Northern
sumption breaks down). Our 'Northern school’ merge is sybtl
and we think is of higher quality than the standard panoramic
mosaic. The near imperceptible change in perspective view ] ) . ] ] ]
point moving up the page cause straight lines to bend. fgsult p_am;ed, we obtain an emulation that is consistetit wi
illustrate this bending we draw tangents to the side of a bo8k¢ Projective and denotational styles of the Northern etho
automatically, using edge detection and line fitting. Thenge S€€ Figure 12.
in tangent is a measure of the change in vanishing point. OnceBefore leaving this example, we remark that the ability to
holes around the edge of the image have been filled, and tneate panoramas such as this raises the interesting ftibssib




of using RTcams to create cel panoramas from ordinary
cameras for input, rather than the real strip-cameras uged b
Rademacher and Bishop [3]. Zomett al. [2] mosaic in way
similar to our own, using X-slit cameras, yet RTcams are more
general then X-slit camera.

B. Serial RTcams: The haunted house

The Northern school example used a single RTcam. Here
we use a compound RTcam with nodes in serial, that is one
after the other in a DAG. It is motivated by noticing Artists’
skill in creating different moods using both projective and
denotational systems. For example, art work in comic booléis 14, Left: Photographic output of vase seen under a “Byae’ RTcam
may exaggerate or even invert perspectives for dramagceff Rig'ht “ase from By%arﬂiumj, P ’
straight lines may be drawn as curves. This tradition is seen
in films and television; villains in the 1960’s version of Ben
hang out in dens filmed at peculiar angles and the “Psychgynthesize the denotational style of a mosaic. Figure 1#wsho
house was manufactured abdjitreal size, and filmed from both the photographic and mosaiced results.

below. This exaggerated perspective and helped build &tensThe handles of the vase were cut out manually prior to
atmosphere around the Bates motel. any RTcam application, and re-composited afterwards. This

hints at the value of aompositional systeymwhich refers

to the relative location, orientation and size of objects in
pictures for esthetic effect, rather than the technicablam of
compositing. The compositional system can be used to make
a scene appear perpetually stable, or unstable, for example
Eastern Art uses a compositional framework that differsnfro
that of Western Art: more distant objects are placed higher
up the page. The next example continues the compositional
theme.

Fig. 13. Left: Photographic output of a compound RTcam. Rijhaunted

house”in comic-book style. . o o
D. Compositing parts: Expressionist projection

We created Figure 13 using the same house photographs a9ur final example partitions a scene into objects and applies
in Subsection V (the child’'s drawing). Both examples requira different RTcam to each, to create an image in projec-
Euclidean reconstruction. The compound RTcam used hdike and denotational styles that emulate expressionidme. T
comprises two atomic RTcams in series. The first appliexpressionists broke many rules, including those of linear
inverse perspective, the second a pin-cushion distortion perspective. Our example is derived from Matisdd&mony
three dimensions and views the house from low down, givirig Red Matisse used orthogonal projection to emphasize the
a threatening appearance. table, tilting its objects to show them in canonical viewsee W

To complete the ambiance, the house has been composhesde developed an algorithm that automatically and easily
onto a spooky landscape and heavily stylized using a eiooses canonical points of view [30].
painterly rendering algorithm [27] where stroke tone hasrbe Following Matisse, we created three objects from a scene,
automatically modulated to enhance the creepiness of e for a table-top, one for a cup, one for a bowl of fruit.
image. Figure 13 shows both the photographic and paintefy different atomic RTcam was applied to each, to depict
stylized output. This example also shows that the same modelin orthogonal projection, and seen from a canonical or
in this case a house, can be rendered in many different wagegar-canonical point of view. The output images composited
tuned to a particular application by the combination of botiere to create the final picture seen in Figure 15. As usual,
projective and denotational styles — both are needed tdecrewe painted over the photographic output in an appropriate

convincing artistic effects. painterly style [27].
We found re-compositing the transformed parts a little

) ) ) awkward. This is because their shape and size has to be

C. RTcams in parallel: a Byzantine mosaic carefully fitted into the surrounding elements of the scene.

Mosaicing with tiles is a traditional form of picture making RTcams having nothing to say about compositional issues,
Our example copies a projective system seen in a mosaicand we are not aware of any study that does. We conclude
a vase from the Byzantine school. The bottom of the vasetigt “esthetic composition” is a major open issue in NPRP.
viewed “front on”, so that it looks like a straight line. The
mouth of the vase is viewed at a steep angle, using a depth VI. DISCUSSION ANDCONCLUDING REMARKS
dependent skew. A compound DAG merges these views byRTcams are a non-linear camera model that contributes to
interpolation. Finally, we used an existing algorithm [28] multi-perspective rendering. Multi-perspective rendgris an



We have used RTcams in several examples: showing how
to merge two photographs using both a single RTcam and a
compound RTcam. The examples demonstrate the importance
of both denotational and projective systems in defining e e
thetics of the final artwork. A particular lesson from the Se&
and “Matisse” examples is the importance of what we call the
compositional systemvhich appears to have been over-looked
by Willats’s [1]. We have encountered compositional issues
before, when we emulated Cubism [31] and Futurism [32]
— experience which adds conviction to our proposition. We
therefore propose it makes sense to modify Willat's taxoypom
to include this additional system.

In summary, RTcams contribute to multi-perspective ren-
dering by providing a simple camera model with a strong
mathematical base; they unify many important, contempgorar
non-linear camera models. Although conceived to address th
“projective barrier” facing NPRP, RTcams can model real
camera aberrations. Because RTcams can be compounded into
complicated non-linear optical devices the gamut of rebleha
projective styles becomes very wide. By bringing the projec
tive system under user control, RTcams enable the re-oreati
of perspective effects typically seen in real artwork, mafiy
which cannot be reproduced with a real camera.

Fig. 15. Top: Photographic output in the projective stylévizttisse. Bottom:
“Harmony in style”.
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APPENDIX

RTCAMS AND SOME CONTEMPORARY NONLINEAR
ALTERNATIVES

in whiches is the unit row vectof0, 0, 1]. The above definition

is asymmetric; symmetry may be forced upon @} by
halving the sum of each matrix and its transpose, but this
is not required. Using the asymmetric version we see that

zi(o, 8,7) = api1 + Bpiz + piz + (v + Bz + vi3)

which is identical to the GLC. This shows any GLC can be
represented by an equivalent RTcam. Furthermore, the RTcam
has three additional degrees of freedom in the “top-lefhedt

of each matrix with index € [1, 2, 3], preventing GLCs from
emulating every RTcam. Therefore RTcams are more general
than GLCs.

Here we compare RTcams to several non-linear alternativesGLCs define rays on a bilinear surface, which is reflected
showing that RTcams are more general versions of each. WWehe structure of the RTcam matrices above. The surface at
begin with the rational function cameras introduced by €lainfinity for GLCs is therefore bilinear, and because theseaar
and Fitzgibbon [7] to compensate for radial aberrationsad r sub-class of quadric surfaces, GLCs are special case RTcams
cameras. They too use the ratio of quadratic functions, blitis is an alternative proof the RTcams subsume GLCs.

use an RTcam defined iR2. We use RTcams i3 and are

Specifying a ray, as GLCs do, is necessary for Computer

therefore more general. Similar remarks apply to the X-siitraphics applications such as ray-tracing. But ray-tigaén
cameras of Zomet al. [2], who use tensor based projectionnot an an efficient rendering strategy for the point clouds
Again, our tensors are more general and we conclude RTcamske our models. It is much more efficient to project the

are more general than X-slits.

points along the ray that passes through it. The problemdaci

Comparison with General Linear Cameras (GLCs) [20] IGLCs in this context is determining the ray direction though

more difficult (and so takes more space). This is because GL&sarbitrary point in space, the GLC must be “inverted”. Such
define the direction of a set of rays, whereas RTcams operateinversion is not found in the GLC literature, but we give
using points. GLCs operate i? by defining a ray using three it here for completeness. We omit any proof, supplying only
basis rays. Each basis ray is specified by a pair of point$, edlae main results which may be verified by the reader.

of three elements because the camera ac®8%nThe points
r; ands; define: the basis ray. The; form a triangle in
the plane of zero homogeneous depth {go= 0 for all 7),
the s; all have unit homogeneous deptks(= 1 for all 7).

Theith coordinate of the ray vector through a point is given
by a ratio of quadratic equations, that is by an RTcam with
matrix planes given by the tensor equatid®s= v;;D; and
Qs = Dj3 in which the D; are (4 x 4) matrices, defined

Three numbers, an input point, specify any particular poibelow. Given the RTcam as specified above, the ray &

z(«, 3,7), v being the distance along the ray.

z(o, B8,7) = ar; + fra + (1 — a — B)rs + y(a(sy — 1)
+8(s2 —r2) + (1 —a — B)(s3 —r3))

w; = xT'Q;x/xTQ,x The first three coordinates of the ray
w (i.e. an orthogonal projection) is the ray passing through
the point, but represented within a GLC. This ray carries the
pointx onto the image point given by = x 4+ x3w which is



identically the image point in the GLC. TH9; are matrices
defined by

[0 0 vas  paa |
D, - 1 0 0 —v21  —Pp21
2| va2 —v21 by ay
L P22 —P21 a1 c1 |
[0 0 —viz —pi2 |
1 0 0 V11 P11
D, = -
2 2 | —vi2 V11 bo az
|l —P12 Pu az c2 |
o 0 0 O
110 0 0 O
D3 o 5 0 0 bg as
L 0 0 as C3

In which we define vectors, b, andc

b = 2(V1 ®V2)
c = 2(p1®p2)
a = (p1ou’)-(p2ou')

We use the notatiop; to refer to thesith column of P, and
v’ to refer to thei row of V; other terms in the above follow
by analogy. The ability to compute rays, and hence image
points is sufficient to specify an RTcam. This is becausergive
a sufficient number of object/image point matches we ca
calibrate an RTcam, as explained next.

CALIBRATING RTCAMS

We wish to determine an RTcam given a set of object poin
x, and a set of corresponding image poigtsWe begin by
re-writing z; = xQ;x’ asz = (x'x) ® Q; in which ®
multiplies corresponding matrix elements and takes the sum
— itis an inner product. SettinJ = x”x, and recallingQ;
has a symmetric equivaleR; allows us to write the above as
the familiar inner product of vectors, each witfi(n + 1)/2
elements: we write;; = up?. The relation with components
of the image poiny can now be expressed as

up;fp — yiupz =0

It is the RTcam elements, the we seek, which we therefore
factor out to yield a homogeneous set of equations of the fo

Pl
u; 0 —Yi;4y pT -0
0 llj —ijIIj %

P3

in P? and an analogous form foP?; the j indexes the
jth pair of matched points. Provided, ", there are more
than n%(n + 1)/(2(n — 1)) matches, the singular valued
decomposition of the design matrix af andy; yields a null
left-singular vector which is readily converted to the smin
P, up to a scale factor that makes no difference to the camer
operation. In this way the RTcam can be calibrated, wi
applications such as “inverse” GLC emulation by an RTcar
or as means by which users can specify an RTcam by draw
its effect.
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