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We present a new non-photorealistic rendering (NPR) algorithm for rendering pho-
tographs in an impasto painterly style. We observe that most existing image-based NPR

algorithms operate in a spatially local manner, typically as non-linear image filters seek-
ing to preserve edges and other high-frequency content. By contrast, we argue that

figurative artworks are salience maps, and develop a novel painting algorithm that uses
a genetic algorithm (GA) to search the space of possible paintings for a given image, so

approaching an “optimal” artwork in which salient detail is conserved and non-salient
detail is attenuated. Differential rendering styles are also possible by varying stroke style

according to the classification of salient artifacts encountered, for example edges or ridges.
We demonstrate the results of our technique on a wide range of images, illustrating both

the improved control over level of detail due to our salience adaptive painting approach,
and the benefits gained by subsequent relaxation of the painting using the GA.

Keywords: Genetic Algorithms; NPR; Painterly Rendering; Salience.

1. Introduction

Paintings are abstractions of photorealistic scenes in which salient elements are

emphasised. In the words of art historian E.H. Gombrich, “works of art are not

mirrors” 1 — artists commonly paint to capture the structure and elements of the

scene that they consider to be important; remaining detail is abstracted away in

some differential style. This differential level of emphasis is evident in all artwork,

from the sketches of young children to works of historical importance.

1
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Processing images into artwork remains an active area of research within the

field of non-photorealistic rendering (NPR). We present a novel NPR technique

for rendering images in an impasto painterly style. Our approach contrasts with

those before us in that we seek to emulate the aforementioned differential emphasis

practised by artists — automatically identifying salient regions in the image and

concentrating painting detail there. This work builds upon a previous pilot study

by the authors 2 which demonstrates that ordering the placement of virtual brush

strokes with respect to salience can enhance both accuracy and sense of composition

within a painterly rendering. Here we build upon that simple, single-pass approach

to propose two new technical contributions:

• A novel definition of salience that can be trained to select features interest-

ing to an individual user, and which performs global analysis to simultane-

ously filter and classify low-level features of interest (for example to detect

edges, ridges and corners).

• A novel salience-based approach to painting which uses a genetic algorithm

(GA) to search the space of possible paintings, and so locate the optimal

painting for a given photograph. A painting is deemed “better” if its level

of detail coincides more closely with the salience magnitude of the original

image, resulting in conservation of salient detail and abstraction of non-

salient detail.

Although we are not the first to propose relaxation approaches to painting 3,4,

our approach is novel in that we converge toward a globally defined minimum dis-

tance between salience and corresponding detail in the painting. Our paintings are

formed by compositing curved Catmull-Rom spline brush strokes via an adaptation

of the multi-scale curved stroke painterly technique proposed by Hertzmann 5, mod-

ified to accommodate preferential rendering with regard to image salience. Strokes

are more densely placed in salient regions, then ordered and modulated to prevent

strokes from non-salient areas encroaching on more salient ones. Differential ren-

dering styles are also possible by varying stroke style according to the classification

of salient artifacts, for example edges or ridges. Furthermore, we use our novel re-

laxation scheme to iteratively converge the rendering toward the ‘optimal’ painting

for a given image. In doing so, we adapt Hertzmann’s contour tracing algorithm

to account for the influence of noise, present in any real image. As a consequence,

post-relaxation strokes tightly match the contours of salient objects and non-salient

details is attenuated. We demonstrate the results of our painterly technique on a

range of images, illustrating the benefits of rendering with regard to salience and

the improvements gained by subsequent relaxation of the painting.
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Fig. 1. Detail of a painting generated using our salience-based relaxation technique, sampled from
the fittest individual within the 80th generation of paintings. A collection of paintings and their re-
spective source images can be downloaded online at http://www.cs.bath.ac.uk/ vision/geneticpaint

1.1. Related Work and Context

The development of automated painterly renderers arguably began to gain momen-

tum with Haeberli’s semi-automatic paint systems 6. These allowed users to interac-

tively generate impressionist style ‘paintings’ by creating brush strokes, the colour

and orientation of which were determined by point-sampling a reference image. As

applications increasingly demanded automation, the onus shifted away from user

guidance toward automated heuristics to guide the placement of strokes. In Hae-

berli’s system a user might choose a finer brush to render salient areas of an image;

to mimic this behaviour automatically is more difficult. Early commercial attempts

to derive automatic renderers from Haeberli’s systems were based for the most part

upon pseudo-randomness 7. Data dependent approaches were later presented, driven

by heuristics based on local image processing techniques which automatically esti-

mated stroke attributes such as scale or orientation. Litwinowicz 8 employed short,

linear paint strokes, which were clipped to thresholded edges. Treavett and Chen 9

proposed using local statistical measures to determine stroke parameters, align-

ing strokes along axes of minimum intensity variance. A similar approach taking

into account chromatic variance was later described by Shirashi and Yamaguchi 10.

Hertzmann proposed a layered, coarse-to-fine approach to painting 5 and was the

first to automatically place curved (β-spline) strokes rather than dabs of paint. The

stroke placement algorithm we describe here is most closely related to Hertzmann’s

work. Work by Gooch et al. 11 also uses curved strokes fitted to skeletons extracted

from local connected regions of homogeneous luminance. Relaxation approaches to

painting have also been examined, and although paint by relaxation systems were

discussed in 6, the first algorithmic solution is described in 4. In this system active

contours (snakes) are used to seek a painting preserving the maximum level of fine
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Source Image Local Edge Global Salience Ground Truth

Fig. 2. Left: Examples of images edge detected, salience mapped, and a hand-sketched ground
truth. We observe that the global, rarity based salience maps are qualitatively closer to sketches,
and can “pick out” the circle and face where local methods such as edge detection fail.

detail from the original image. As with all active contour implementations success

is sensitive to initial contour location, due to the susceptibility of snakes to local

minima 12.

A commonality exists between all of these algorithms; the attributes of each

brush stroke are determined independently, by heuristics that analyse small pixel

neighbourhoods local to that stroke’s position. Rendering is, in this sense, a spatially

local process. The heuristics typically seek to convey the impression of an artistic

style whilst preserving content such as edges, and other artifacts contributing to the

upper frequencies of the Fourier spectrum. Indeed, existing relaxation-based paint-

ing algorithms 3,4 actively seek to maximally conserve high-frequency content from

the original image. Measures of variance 9,10, or more commonly, simple edge detec-

tors (such as Sobel) 8,5 drive these heuristics. This results in a painting in which all

fine detail is emphasised, rather than only the salient detail. Arguably this disparity

contributes to the undesirable impression that such paintings are of machine rather

than natural origin. In Fig. 2 (left) we demonstrate that not all fine scale artifacts

are salient; indeed in these images, salient and non-salient artifacts are of similar

scale (that is, we require windows of comparable size to detect them reliably). Such

examples make the case for some other measure of salience incontrovertible. When

one speaks of the salience of image regions, one implicitly speaks of the importance

of those regions relative to the image as a whole. It follows that global image anal-
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ysis is a prerequisite to salience determination, rather than restricting attention to

spatially local image properties.

The aim of our work is to automatically control level of detail in NPR. Some

recent techniques approach this problem by appealing to interaction. DeCarlo and

Santella 13 proposed an NPR system that enabled visual emphasis to be varied in-

teractively using gaze trackers. Image masks or “weight maps”, specified manually

or a priori, have also been used by Hertzmann 4 and Bangham et al 14 to interac-

tively control level of detail. However the problem of adaptively controlling painting

emphasis remains; this paper presents a solution.

2. Determining Image Salience

Salience is subjective; different faces photographed in a crowd will hold different

levels of salience to friends or strangers. User training is one way in which sub-

jectivity can be conveyed to an automated measure, although current Computer

Vision restricts general analysis to a lower level of abstraction than this example.

We wish to automatically estimate the perceptual salience of images. That

is, produce a mapping from a colour image to a scalar field in which the value

of any point is directly proportional to the perceived salience of the correspond-

ing image point. We now describe a user trainable approach to estimating this

mapping, comprising three operators which respectively compute the rarity, visi-

bility, and classification of local image artifacts. These three operators are com-

puted independently yielding three probabilities (Prare, Pvisible, Pclass) which are

combined to estimate the final probability of an image artifact being salient as:

Psalient = PrarePvisiblePclass.

We begin by describing an operator which performs unsupervised global statisti-

cal analysis to evaluate the relative rarity (Prare) of image artifacts, after Walker et

al.15 who observe that salient features are uncommon in an image (subsection 2.1).

This measure, whilst simplistic, can out-perform standard edge detection in many

cases (Figure 2) principally because it is a global, rather than local, measure. How-

ever, not all rare artifacts should be considered ‘salient’. In particular, we assert that

salient artifacts should also be visible, and propose a second perceptually trained

operator which estimates the visibility (Pvisible) of image artifacts (subsection 2.2).

The user may perceive certain classes of artifact, for example edges or corners, to be

more salient than others. We therefore propose a third operator which users train

by highlighting salient artifacts in photographs. Signals corresponding to these arti-

facts are clustered to produce a classifier which may be applied to artifacts in novel

images in order to estimate their potential salience (Pclass).

This trainable salience measure is well suited to our NPR painting application for
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two reasons. First, the salience maps produced have been shown to be measurably

closer to human figurative sketches of scenes than edge maps and a number of other

prescriptive salience measures 16. Second, the ability to estimate both the salience

and the classification of image artifacts simultaneously allows us to vary stroke style

according to the class of artifact encountered (Fig. 5).

2.1. Determining pixel rarity

We first describe our unsupervised technique for determining pixel rarity. The basic

technique is to model the statistical distribution of a set of measures locally associ-

ated with each pixel, and to isolate the outliers of this distribution.

For a given pixel p = (i, j)T we consider a series of rings of radius ρ, each

centred at (i, j)T . We uniformly sample the image around each ring’s circumference

at angular positions θ, hence obtaining a discrete colour signal x(p) = (ρ, θ) ∈ <3;

colours are in RGB space. This signal is rewritten as a column vector. We have found

a sampling rate of 16, and values of ρ ranging from 1 to 3 in increments of 0.5, to

yield good results in subsequent processing. For an image of M pixels we have M

vectors x(.) ∈ <n, where for us n = 16×3×3. We assume these points are Gaussian

distributed, which we represent using an eigenmodel; a simple and convenient model

that works acceptably well in practice. The eigenmodel is computed incrementally

due to the large size of the data set. The eigenmodel provides a sample mean µ and

a covariance matrix C; the product of the set of eigenvectors and corresponding

eigenvectors.An eigenmodel allows us to compute the squared Mahalanobis distance

of any point x(.) ∈ <n:

d2(x(.)) = (x(.)− µ)TC−1(x(.)− µ) (1)

We compute the Mahalanobis distance d(.) for all pixels P in the image. The prob-

ability of an individual pixel q ∈ P being rare is then written as the quotient:

Q = {r : d(x(r)) ≤ d(x(q)) ∧ r,q ∈ P} (2)

Prare(q) =

∑

p∈Q
d(x(p))

∑

∀p∈P
d(x(p))

(3)

This measures the fraction of the sample density which is less rare than the pixel

q.

2.2. Classification of image artifacts

We now introduce a degree of subjectivity by allowing users to train the system to

identify certain classes of low-level artifact as potentially salient.

For a given pixel p, we sample the image in an identical manner to that used

for determining pixel rarity. However, we treat each ring separately, and so consider
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the classification of the colour signal c(θ) at constant ρ (this turns out to be more

stable than considering the disc as a whole). We form a feature vector by first differ-

entiating c(θ), using Euclidean distance in RGB space, to obtain a periodic scalar

signal y(θ) (Figure 3).

We now take the absolute value of the Fourier components |F [y(θ)]|, normalise

to unit power, and drop the d.c. (zeroth) component. Thus for a given y(θ) we

compute a feature as:

f(ω) =
|F [y(θ)]|

(
∑

θ |y(θ)|2)
1

2

(4)

f(ω) ← f(ω) \ f(0) (5)

Removing the d.c. component is equivalent to subtracting the mean, which makes

this feature vector invariant to linear colour shifts. It is also invariant to orientation

and mirroring. Thus c(θ), c(θ) + α, c(θ + β) all map to same point in feature

space. The system has proved to be robust to more general colour scalings, γc(θ),

but cannot be invariant (suppose γ = 0). It is these properties that principally

motivate our choice of circular sampling, since the classification of salient artifacts

(for example, edges) should be invariant with respect to a cyclic shift of the signal.

This contrasts with features based on standard derivative forms, in which edge

signals, say, are thinly distributed across feature space.

2.2.1. Training and Classification

Training is a supervised process that occurs over several images, and requires the

user to interactively highlight artifacts they regard as salient during a pre-processing

step. Moreover, the user may choose a number of classes of artifact (such as edge,

ridge, or corner), and identify a class label with each artifact they highlight. Training

therefore results in multiple sets of artifacts, one set per class.

To build the classifier we convert each artifact in a given set, k say, into a fea-

ture vector as previously described. We then estimate the class conditional density

p(f |k) for that set of features using a Gaussian Mixture Model (GMM), fitted using

Expectation Maximisation 17. We estimate a prior, p(k), as the expected number of

points — the ratio of the number elements in the given set to the number of points

in all sets. This enables us to compute the posterior likelihood p(k|f) by appeal to

Bayes theorem:

p(k|y) =
p(y|k)p(y)

∑N

j=1 p(y|j)p(j)
(6)

During painting, classification of a pixel begins by sampling to obtain a new artifact.

This is converted to a feature vector and the above probability vector is computed
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Fig. 3. Circular descriptors are used to create signals (top row) from points specified as salient
by the user, which are then clustered in a feature space. Features such as ridges, edges and corners
(second row) create distinctive spectral signals (third row) which may be used to determine not only

the salience of a point, but also its classification type. Bottom row: a photograph and corresponding
salience map; edges in red, ridges in green and corners in blue.

(one element per class). Assuming independence between classes is convenient, al-

lowing us to simply add vector elements to estimate the probability that an artifact

belongs to a subset of classes. For each classified pixel we therefore have a proba-

bility p(k|y) of membership to each of the trained classes, and compute Pclass as

the maximum value over all p(k|y).

2.2.2. Selection of Scale for Classification

The above approach classifies artifacts at a constant ρ, and so at constant scale.

However classification can vary over scale. For example, an artifact classified as an

edge at small scales might be classified a ridge at larger scales; in such cases one

would arguably prefer the final classification to be ‘ridge’. By contrast corners re-

main relatively stable over scale, and it transpires that a range of heuristics exist

for other such combinations. To opt for the most stable classification over scale is

therefore insufficient, and only to hard code heuristics specific to edges, ridges etc.
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is also a poor solution since these are but examples of more general features that

users may identify.

Our strategy is to perform the classification of a given point at several values

of ρ; again using the range 1 to 3 at increments of 0.5. At each scale we obtain a

posterior probability vector p(k|y), and concatenate these to form a column vector

(a point in a higher-dimensional space that now encapsulates scale information).

Since we know the user supervised classification of each point we may again perform

clustering of salient feature classes by fitting GMMs in this scale-dependent space.

The aforementioned ‘heuristics’ for classification are thus implicitly learnt during

the training process.

2.3. Determining Visibility

Our final operator estimates the probability that a local image window contains a

perceptually visible signal. We have empirically measured the just noticeable differ-

ence (JND) between colours in RGB format. We assume that for each RGB colour

c there is distance τ(c), also in RGB space. Together the colour and the distance

specify a sphere of RGB colours (c, τ(c)). No colour interior to the surface of the

sphere can be perceptually discriminated from the centre colour. The distance τ(c)

is one JND at the colour c. The sphere radius varies depending on experimental

conditions, and after several experimental trials τ emerges as the mean radius ac-

companied by an associated standard deviation σ.Whilst this is a simple colour

model (an ellipsoid might better model JND surfaces) we have found it to be satis-

factory for our purposes. Similar distance metrics for luminance are also described

in 19.

To measure the visibility of artifacts local to a point p = (i, j)T, we sample in

a manner identical to Section 2.1 and then obtain the total colour change dc(ρ, θ)

via the differential magnitude written as:

dc(ρ, θ) =

∣

∣

∣

∣

∣

(

δc(ρ, θ)

δρ

)2

+

(

δc(ρ, θ)

ρδθ

)2
∣

∣

∣

∣

∣

1/2

(7)

where c(ρ, θ) returns the RGB value of the image at coordinates (ρ, θ) relative to

p. We compute the probability φ(.) that this change is visible as:

φ(ρ, θ) = erf (dc(ρ, θ)− τ(c(ρ, θ))/σ(c(ρ, θ))) (8)

where τ(.) and σ(.) are the JND and its deviation for the colour sample at c(ρ, θ) in

the local window. We reason that if a signal is visible in any ring, then the whole disc

should be regarded as having at least that ring’s visibility. We write the probability

of the disc being visible as:

Pvisible =

ρmax
∑

ρ=1

max(φ(ρ, θ)) (9)
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3. Painting as a Search

Our observations of artists lead us to assert that the level of detail in a painting

should closely correlate with the salience map of its source image. In this sense, the

optimality criterion for our paintings is a measure of the strength of this correlation

(defined in equation 10). We treat the painting process as a search for the “optimal”

painting under this definition. Our search strategy is genetic algorithm (GA) based.

When one considers the abstraction of a painting as an ordered list of strokes 6

(comprising control points, thickness, etc. with colour as a data dependent func-

tion of these), the space of possible paintings for a given source image is very high

dimensional, and our optimality criterion makes this space extremely turbulent.

Stochastic searches that model evolutionary processes, such as GAs 20, are often

cited among the best search strategies in such situations; large regions of problem

space can be covered quickly, and local minima more likely to be avoided 21,22.

Our algorithm accepts as input a source image I; paintings derived from I are

points in our search space. We begin by applying the salience measure to I; obtaining

both a salience map and a classification probability for each pixel. An intensity

gradient image is also computed using Gaussian derivatives, from which a gradient

direction field is obtained. With this pre-preprocessing complete, we initialise a fixed

size population of individuals. Each individual is single point in our search space,

represented by an ordered list of strokes that, when rendered, produces a painting

from I. Having initialised the population, the iterative search process begins. We

now describe the initialisation and iteration stages of the search in detail.

3.1. Initialising the Painting Population

We initialise the search by creating an initial population of 50 paintings, each de-

rived from the source image via a stochastic process. This population limit was

determined empirically, and is discussed further in section 5. We now describe this

derivation process for a single painting.

Our paintings are formed by compositing curved spline strokes on a virtual

canvas. We choose piecewise Catmull-Rom splines for ease of control since, unlike

β-splines (used in 5,11), control points are interpolated. We begin by placing seed

points on the canvas, from which strokes are subsequently ‘grown’ bidirectionally. As

a heuristic we make provision for a stroke to be seeded at every other pixel; seeds

are then scattered stochastically, with a bias toward placement of seeds in more

salient regions. In practice we scatter 95% of strokes in this manner, the remaining

5% are scattered uniformly to fill holes appearing in areas of relatively low salience.
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3.1.1. Bidirectional Stroke Growth

Strokes are grown to extend bidirectionally from seed points. Each end grows in-

dependently until it is halted by one or more preset criteria. Growth proceeds in a

manner similar to Hertzmann’s algorithm 5 in that we hop between pixels in the

direction tangential to their intensity gradient. The history of visited pixels forms

the control points for the spline stroke. Noise forms a component of any real image,

and in particular any direction estimation is better regarded as being sampled from

a stochastic distribution (Figure 4). This frustrates single-pass painterly NPR al-

gorithms 5, introducing inaccuracy into the stroke fittings process and resulting in

“loose and sketchy” paintings. We have observed that this noise obeys the central

limit theorem (see 23 for experimental details), and so model this distribution as a

zero centred Gaussian, G(0, σ); we determine σ empirically (subsection 3.1.2). Given

a locally optimal direction estimate θ we select a hop direction by adding Gaussian

noise G(0, σ). The magnitude of the hop is also Gaussian distributed; on this occa-

sion G(µ′, σ′), both parameters being inversely proportional to local salience. The

growth of a stroke end is halted when either the curvature between adjacent pixels,

or the distance (in JND space) between the colour of the pixel to be appended and

the mean colour of visited pixels, exceeds a threshold.

This method initially yields a sub-optimal trajectory for the stroke with respect

to our measure in Section 1. For a ‘loose and sketchy’ painting this is often desirable

(see Figure 5), but for tighter paintings stroke trajectories must be closer to the

optimal. The degrees of freedom resulting from each of the many hops combine

to create a range of stroke loci, at least one of which will result in the maximal

conservation of salient detail. The combination of these optimally positioned strokes

0 θ

σ

)G( σ=θ( ) 0,p

θ = stochastic deviation (3   )σ

Sampled hop site 
(stroke control point)

θ

θ

θ

θ

θ
θ

θ

Measured contour
(stroke trajectory)

Physical contour

Stroke seed point

θ

Fig. 4. Illustrating the stochastic growth of strokes from a seed pixel. We choose strokes with
hop sites which minimise our objective function, under the constraint that hop angles are drawn

from the distribution p(θ) = G(0, σ).
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comprises the optimal painting, and it is by means of breeding the fittest paintings

to create successively superior renderings, that we search for such a painting via GA

relaxation in subsection 3.2. Our relaxation strategy is thus able to approach more

globally optimal stroke trajectories, and these can out-perform trajectories based

purely on local estimates of direction.

3.1.2. Calibration for image noise

The choice of σ significantly influences the stroke growth and relaxation process. A

value of zero forces degeneration to a loose painterly system, as the degrees of free-

dom for variation in stroke placement are restricted. Similarly, if σ is too large, the

relaxation process will be unnecessarily lengthened and also may introduce unnec-

essary local minima. We propose a one time user calibration process to select this

σ, typically performed during the training step of the perceptual salience measure.

The user is asked to draw around sample image regions where direction of image

gradient is perceived to be equal; i.e. along which they would paint strokes of simi-

lar orientation. This results in several samples of the image gradient from which we

may compute angles. We have observed the natural distribution of these values to

be Gaussian and take the mean angle µ(.) as the common tangential angle. Simi-

larly, we compute the unbiased standard deviation of the set of measured tangential

angles which subsequently becomes the σ parameter for stroke growth. We assume

σ to be equal for all angles.

We typically obtain very similar σ values for similar imaging devices, which al-

lows us to perform this calibration very infrequently. A typical σ ranges from around

2 to 5 degrees, with the larger deviations being attributed to digital camera devices

(possibly as artifacts of low CCD quality or JPEG compression). This variation

allows between 12 and 30 degrees of variation per hop which, given the number of

hops per stroke, is a wide range of stroke loci. This measurements add credence

to our argument for the need of a relaxation process taking into account image

noise; potentially large variations in stroke placement due to uncompensated im-

age noise are likely to produce inaccurate stroke placements in single-pass painterly

systems 8,5,10,11.

3.1.3. Rendering and Differential Styles

At this stage we may render one of the paintings in our initial population to pro-

duce a “loose and sketchy” painting (Fig. 5). Alternatively we may proceed to the

iterative search stage of subsection 3.2 to locate a more optimal painting — each

iteration also requires paintings to be rendered to evaluate fitness. We now describe

how paintings are formed from individuals in the population.
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Fig. 5. Left: a still-life composition and corresponding salience map. Right: a loose and sketchy
painting, exhibiting differential stroke style determined by local feature classification. Edges are
drawn with hard, precise thick strokes; ridges with a multitude of light, inaccurate strokes. Ren-
dered prior to the relaxation step of subsection 3.2.

Stroke rendering attributes are set automatically as a function of stroke salience,

taken as the mean salience over each control point. By default, stroke thickness is

set inversely proportional to salience. Stroke colour is uniform and set according to

the mean of all pixels encompassed in the footprint of the thick paint stroke. During

rendering, strokes of least salience are laid down first, with more salient strokes be-

ing painted later. This prevents strokes from non-salient regions encroaching upon

salient areas of the painting.

The ability of our salience measure to differentiate between classes of salient

feature also enables us to paint in context dependent styles. For example, we have

described how we may discriminate between artifacts such as edges and ridges (Sec-

tion 2.2). In Figure 5 we give an example of a painting generated by our system, in

which the classification probability of a feature is used as a parameter to interpo-

late between three rendering styles (parameter presets) flat, edge and ridge. For the

flat preset, rendering takes the default form described in the previous paragraph.

For edges and ridges, the luminance of strokes is heavily weighted to create dark

outline strokes. In the case of edges, thickness of strokes is also boosted to create

thick outlines — whilst with ridges the thickness is greatly reduced to produce thin

wispy strokes. The σ value for ridges is also boosted to reduce accuracy and produce

‘sketchy’ strokes. Since these preset rendering parameters (thickness, luminance de-

cay, etc.) all vary by continuous multiplicative factors, interpolation between the

presets according to the classification probability vector is straightforward. There

is additional semantic value in that we render ridges as single strokes, rather than

as two edge strokes. To the best of our knowledge, rendering in differential styles

via an automated heuristic is a novel contribution to NPR.
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3.2. Iterative Relaxation by GA

Genetic algorithms simulate the process of natural selection by breeding successive

generations of individuals through the processes of cross-over, fitness-proportionate

reproduction and mutation. In our implementation such individuals are paintings;

their genomes being ordered lists of strokes and their associated attributes. We now

describe a single iteration of the GA search, which is repeated until the improve-

ments gained over the previous few generations are marginal (the change in both

average and maximum population fitness over a sliding time window fall below a

threshold). A schematic of the iterative process is given in Figure 6.

3.2.1. Fitness and Selection

The entire population is rendered, and edge maps of each painting are produced

using by convolution with Gaussian derivatives, which serve as a quantitative mea-

sure of local fine detail. The generated maps are then compared to a precomputed

salience map of the source image. The mean squared error (MSE) between maps is

used as the basis for determining the fitness F (.) of a particular painting; the lower

the MSE, the better the painting:

F (I, ψ) = 1−
1

N

∑

|S(I)− E(Ψ(I, ψ))|
2

(10)

The summation is over all N pixels in source image I. Ψ is our painterly process,

which produces a rendering from I and a particular ordered list of strokes ψ cor-

responding to an individual in the population. Function S(.) signifies the salience

mapping process of Section 2, and E(.) the process of convolution with Gaussian

derivatives.

In this manner, individuals in the population are ranked according to fitness.

The bottom 10% are culled, and the top 10% pass to the next generation. The latter

heuristic promotes convergence; the fittest individual in successive generations must

be at least as fit as those in the past. The middle 80% are used to produce the

remainder of the next generation. Two individuals are selected stochastically with a

bias to fitness, and bred via cross-over to produce a novel offspring for the successive

generation. This process repeats until the population count of the new generation

equals that of the current.

3.2.2. Cross-over

Two difference images, A and B, are produced by subtracting the edge maps of the

parents from the salience map of the original image, then taking the absolute value

of the result. By computing the binary image A > B, and likewise B > A, we are

able to determine which pixels in one parent contribute toward the fitness criterion

to a greater degree than those in the other. Since the primitives of our paintings are

thick brush strokes rather than single pixels, we perform several binary dilations
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Fig. 6. Illustrating flow of control in the genetic algorithm. The population evaluation stage is

inherently parallel and rendering is farmed out to a distributed compute cluster.
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Fig. 7. Genetic operators: The cross-over and mutation operators used during the relaxation
process (images are mock-ups for illustrative purposes only)

to both images to mark small regions local to these “fitter” pixels as desirable. A

binary AND operation between the dilated images yields mutually preferred regions

(i.e. where A = B). We mask these conflicting regions with a coarse chequerboard

texture (of random scale and phase offset) to decide between parents in an arbitrary

fashion. Finally, strokes seeded within the set regions in each parent’s mask are

cloned to create a new offspring. Figure 7 summaries this process.

3.2.3. Mutation

When a bred individual passes to a successive generation it is subjected to a ran-

dom mutation. A new “temporary” painting is synthesised (though never rendered),

and a binary mask produced containing several small discs scattered within it. The

number, location and radius of the discs are governed by random variates. Strokes

seeded within set regions of the binary mask are substituted for those in the tem-

porary painting; the temporary painting is then discarded. In our implementation

large areas of mutation are relatively rare, averaging around 4% of the canvas area.

3.2.4. Termination

The relaxation process runs until the improvements gained over the previous few

generations become marginal (the change in both average and maximum population
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1st

30th

70th

Fig. 8. Relaxation by genetic algorithm. Detail in the salient region of the ‘dragon’ painting

sampled from the fittest individual in the 1st, 30th and 70th generation of the relaxation process.

Strokes converge to tightly match contours in salient regions of the image thus conserving salient

detail.
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Fig. 9. Left: Three runs of the relaxation process; blue corresponds to the model (Fig. 10), red

the dragon (Fig. 1) and green the truck (Fig. 12). MSE of the fittest individual is plotted against

time. Middle: MSE averaged over each generation

fitness over sliding time window fall below a threshold ∆), at which point the search

has settled into a minima of sufficient extent in the problem space that escape is

unlikely. The fittest individual in the current population is then rendered and output

to the user. Typically executions run for around one to two hundred iterations for

values of σ between two and five degrees, which we have found to be the range of

standard deviations for image noise (see Section 3.1.2). Forcing larger values of σ

can result in convergence but, we observe, at the cost of an exponential increase in

execution time.

3.2.5. Implementation Notes

In practice, evaluation is the most lengthly part of the process and the rendering step

is farmed out to several machines concurrently. In our implementation we distribute

and receive paintings via the Sun RPC interface, using XDR to communicate over a

small heterogeneous (Pentium III/UltraSPARC) compute cluster. The typical time

to render a 50 painting generation at high (1024× 768) resolution is approximately

15 minutes over 6 workstations. Relaxation of the painting can therefore take in the

order of hours, but significant improvements in stroke placement can be achieved as

can been seen in Figure 8. The overhead of our task scheduler is low, and processing

time falls approximately linearly as machines of similar specification are added to

the cluster.

4. Results

We have rendered a number of paintings to demonstrate application of our algo-

rithm in Figures 10, 12-15; the reader is also referred back to the dragon (Figure 1)

and sketchy still-life (Figure 5) paintings, presented in situ. As a note, we have

found that running the paintings through a standard sharpening filter can assist

presentation of our paintings on the printed page, and have applied such a filter to
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A B

C

D

Fig. 10. Man on rock: (a) final painting after convergence using our proposed method, close-

up of hands in (c). (b) example of the face rendered with insufficient emphasis (d) example of
rock texture rendered with too great an emphasis. Please refer to the text of Section 4 for full

explanation of (b) and (d), and how our salience adaptive painting avoids such difficulties.

all paintings presented in this paper.

The painting of the model in Figure 10a converged after 92 generations. Thin

precise strokes have been painted along salient edges, while ridges and flats have

been painted with coarser strokes. We can see that non-salient high-frequency tex-

ture on the rock has been abstracted away, yet tight precise strokes have been used

to emphasise salient contours of the face. In the original image the high frequency

detail in both regions is of similar scale and edge magnitude; existing painterly
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Fig. 11. Comparison of the Sobel edge magnitude field (left) and our salience map (right), cor-

responding to the painting of Figure 10. Salient edges (red) are discriminated from non-salient
high frequency detail (ridges in green, corners in blue) guiding emphasis in the final painting. Such
distinction can not be made locally using variance or Sobel measures.

techniques would, by contrast, assign both regions equal emphasis. With current

techniques, one might globally increase the kernel scale of a low-pass filter 5 or raise

thresholds on Sobel edge magnitude 8 to reduce emphasis on the rock (Figure 10c).

However this would cause a similar drop in the level of detail on the face (Fig-

ure 10b). Conversely, by admitting detail on the face one would unduly emphasise

the rock (Figure 10d). In our method, we automatically differentiate between such

regions using a perceptual salience map (Figure 11) — contrast this with the Sobel

edge field in the same figure, in which no distinction between the aforementioned

regions can be made.

We present a still-life in Figure 13 which achieved convergence after 110 gen-

erations. Inset within this figure we present a similar painting prior to relaxation,

demonstrating differential rendering style as strokes with a high probability of being

edges are darkened to give the effect of a holding line. Further examples of level

of detail adaptation to salience are given in Figure 12. In region A, observe that

the salient ’phone sign is emphasised whilst non-salient texture of the background

shrubbery is not (also see Figure 14 for a enlarged, comparative example). For the

purposes of demonstration we have manually altered a portion of salience map in

region B, causing all detail to be regarded as non-salient. Contrast stroke placement

within this region with that on the remainder of the car body. Variations in style

may be achieved by altering the constants of proportionality, and also thresholds

on curvature and colour during stroke placement. Paintings may be afforded a more

loose and sketchy feel by increasing the halting threshold ∆ and so decreasing the

number of relaxation iterations; essentially trading stroke placement precision for

execution time. A similar trade-off could be achieved by manually decreasing the

noise estimate σ.
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B

A

Fig. 12. Pickup truck after convergence. Observe salience adaptive emphasis of sign against back-

ground in (a). We have manually dampened the salience map in (b) to cause greater abstraction of

detail; compare stroke placement here with the remainder of the car body. Original photo courtesy
Adam Batenin.
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Fig. 13. Sunflowers after convergence. Inset: a sketchy version of the sunflowers in the style of

Figure 5, prior to relaxation.
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Fig. 14. Detail from Figure 12, region A. Left: Section of the original photograph exhibiting non-
salient background texture (shrubbery) and salient foreground (sign-post). Middle: All fine detail is
emphasised using an existing automatic approaches (due to Litwinowicz) which places strokes using
only spatially local information. In this image, the high frequency detail of the background leaf
texture has caused strokes to be clipped at edges, tending the process back toward photorealism.

However it is clear that mitigating this effect, by reducing the edge threshold for clipping, will
further degrade salient detail on the sign. Right: Using our adaptive approach, salient detail is
conserved, and non-salient detail is abstracted away.

Fig. 15. Bath Abbey after 110 generations of the relaxation process. The darker strokes outlining

the arch and other salient edges are generated by interpolating between a default and ‘edge’ preset

according to the probability of salient artifacts being edges (see Section 3.1.3).
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5. Conclusion

We have presented a novel automatic algorithm for creating impasto style painterly

renderings from photographs. The contributions of our technique are twofold. First,

we propose a novel relaxation process using a genetic algorithm which results in

tight accurate placement of thick curved brush strokes. Stroke placement takes into

account the influence of noise, present in any real image. Second, we propose use

of a novel, perceptual salience measure to drive the rendering process. This results

in a painting in which salient regions are emphasised in tight precise strokes, but

non-salient detail is abstracted away. This contrasts with existing painterly meth-

ods which aim to conserve all high frequency detail in the painting; arguably our

approach is more in line with traditional artistic practice. Furthermore our salience

measure allows us to classify the type of salient artifacts encountered and to differen-

tiate stroke rendering according to that classification. To the best of our knowledge

the variation of strokes rendering style via an automated heuristic is also a novel

contribution to image-based NPR.

All of our experiments have used populations of 50 paintings per generation.

We initially speculated that population level should be set in order of hundreds

to create the diversity needed to relax the painting. However it transpires that al-

though convergence still occurs with such population limits, it requires, on average,

2 to 3 times as many iterations to achieve. Such interactions are often observed in

complex optimisation problems employing genetic algorithms 22. We conclude that

the diversity introduced by our mutation operator is sufficient to warrant the lower

population limit.

We also experimented with a number of alternative GA propagation strategies.

Originally we did not carry the best individuals from the previous generation di-

rectly through to the next. Instead, the search was allowed to diverge, and a record

of the “best painting so far” was maintained separately. This resulted in a more

lengthly relaxation process, which sometimes produced marginally fitter paintings

than the current method. However the marginal aesthetic benefit that resulted did

not seem to warrant the large increase in run-time. Similar results were observed

using another early strategy; if, after a number of generations, we observe no change

in fitness, then we may have reached a plateau in the problem space. In such circum-

stances the probability of large scale mutation occurring was gradually increased

until the search escaped the plateau. Again, this caused lengthly execution times

for which the pay off in terms of quantitative change in the fitness function, and

qualitative improvement in aesthetics, was marginal.

Simplifying assumptions have been made in our salience measure. For example,

the decision to use spherical JND surfaces in our visibility operator, and the use of a

single Gaussian for clustering during rarity were made on the grounds of unattrac-
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tive computational complexity during clustering.

As regards rendering, we might choose to texture strokes to produce more re-

alistic brush patterns, although this should be a post-processing step so as not to

introduce undue error in the comparison of salience maps. Many techniques apply

texture mapping to strokes 8,5,10, and a bump mapping technique was also pro-

posed in 24. Highly realistic volume-based hairy brush models have recently been

proposed 25 which could be swept along the Catmull-Rom spline trajectories gener-

ated by our algorithm. However, we have concentrated on stroke placement rather

than media emulation, and we leave such implementation issues open. We believe

the most productive avenues for future research will not be in incremental refine-

ments to the system, but rather will examine alternative uses for salience measures

in the production of image-based non-photorealistic renderings.
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