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Abstract

We present a fast technique for retrieving video clips
using free-hand sketched queries. Visual keypoints
within each video are detected and tracked to form short
trajectories, which are clustered to form a set of space-
time tokens summarising video content. A Viterbi pro-
cess matches a space-time graph of tokens to a de-
scription of colour and motion extracted from the query
sketch. Inaccuracies in the sketched query are amelio-
rated by computing path cost using a Levenshtein (edit)
distance. We evaluate over datasets of sports footage.

1. Introduction

Techniques to search video databases are increas-
ingly important in a media rich world. Video Re-
trieval is predominantly addressed by searching meta-
data tags, yet keyword based retrieval can be semanti-
cally ambiguous, and often lacks rich descriptive power
for actions. Querying by Visual Example (QVE) can
mitigate these problems, however most video QVE
techniques require a photo-real query (an image [18],
or video [4]) and so are unsuitable in use cases where
exemplar footage is absent. This paper presents a new
QVE technique for retrieving video clips using a free-
hand motion-sketch query, depicting both the colours
and trajectories of objects (Figure 3).

Our focus on colour and motion cues arises from re-
cent work exploring motion-sketch recall of video [7,
6]. These studies report low spatial and temporal ac-
curacy in query sketches, due to both the limited time
users are willing to invest constructing a query, and
a reliance upon their episodic memory when recalling
events [19]. Users typically depict the actions of a few
salient objects in a scene, rather than their detailed ap-
pearance. Object appearance tends to be depicted using
a limited yet approximately correct colour palette — but
often using high-level pictograms or canonical shapes
that bear little correlation to the object’s apparent shape
within a real video [7].

The under-complete and approximate nature of
sketch has motivated recent “model fitting” approaches
to video retrieval; treating the motion-sketch as a space-
time model and fitting that model to each clip to evalu-
ate its support and thus the relevance of the clip [6]. We
adopt a similar approach, deriving a pattern from the
sketched query that is “fitted” to a compact representa-
tion of each video. Rather than segmenting the video
volume into super-pixels (as in [6, 8]), our video rep-
resentation comprises a trellis of space-time tokens ob-
tained by tracking and clustering trajectories of visual
keypoints. Queries are matched via an efficient Viterbi
shortest path search that computes path cost via the Lev-
enshtein distance adapted to operate over our tokens.

1.1 Related Work

Several sketch based retrieval (SBR) algorithms
have been proposed within the image retrieval domain.
Queries are typically colour-blob sketches, deriving de-
scriptors from region topology, global histograms [9],
or spectral decomposition [11]. Texture and shape have
also been explored [17]. Although such techniques ex-
tend to video via key-frame extraction, they do not ex-
plicitly accommodate motion as a search constraint.

Motion plays an important role in event recall, typ-
ically forming a stronger impression upon our episodic
memory than visual appearance [19, 7]. However, the
combined use of colour and motion cues in sketch based
video retrieval (SBVR) has been sparsely researched
to date. Trajectory retrieval systems [10, 2, 3, 1] do
not consider colour, and typically assume an ‘ideal’
pre-processor such as global scene segmentation or lo-
calised optical flow to extract motion paths. Collomosse
et al recently proposed a SBVR system in which a lin-
ear dynamical system is modelled from the sketch query
and fitted to video super-pixels. Unlike previous related
approaches (e.g. VideoQ [8]) their system aggregates
super-pixels to form sketched objects, and does not as-
sume ‘ideal’ segmentation of the video into semantic
objects. Although this significantly improves precision,
the inference step is computationally expensive pro-
hibiting interactive speeds. In this paper we outline a



Figure 1. Space-time clustering: (a) initial
and (b) filtered correspondences. A GMM
component and (-spline motion path (c)
consistent with the motion of the horse.

technique for (over-)segmenting video into coherently
moving coloured components, and aggregating these to
quickly match against a colour-motion description de-
rived from the sketch.

2. Moving Object Description

Upon addition of a new video to the database, we ap-
ply shot-detection [20] to segment each video into clips
for retrieval. Each clip is parsed as follows.

2.1 Space-time keypoint clustering

Visual keypoints are identified within each frame of
the clip using SIFT, and matched with keypoints in the
immediately preceding and succeeding frames. Follow-
ing Lowe et al. [14] we iteratively correspond descrip-
tors using the L' norm, disregarding correspondences
where the distance ratio between the best two matches
falls below tolerance. Keypoints detected within TV lo-
gos and captions are culled. The spatial position of key-
points are transformed to compensate for any camera
motion present in the clip. The camera motion is ap-
proximated by estimating the inter-frame homography
via MAPSAC using the keypoint correspondences.

The correspondences between camera motion-
corrected keypoints result in a set of short-term key-
point trajectories (Figure 1a), that we filter to remove
erroneous correspondences. Such errors are typically
manifested as sporadic, large displacements of key-
points along their trajectory. We assume locally con-
stant motion between adjacent frames, deleting and in-
terpolating the position keypoints whose inter-frame
displacement deviates from the local average. Tra-
jectories exhibiting sudden changes in direction are

fragmented into separate individual trajectories (Fig-
ure 1b). For each trajectory 7; comprising N; keypoints
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We perform unsupervised clustering on the space-
time trajectories by fitting a Gaussian Mixture Model
(GMM) to features of all 7, selecting the number of
components using a Bayesian MDL criterion [15]. The
resulting mixture components correspond to coherently
moving objects (or parts thereof) within the clip.

2.2 Extracting motion paths

We extract a representative motion path from each
clustered component by approximating its global trajec-
tory with a piece-wise cubic [-spline. The solution is
unavailable in closed-form due to the typical presence
of outliers and piecewise modelling of complex paths.
We therefore fit the spline using RANSAC to select a
set of control points for the 3-spline from the set of
keypoints in the corresponding cluster. One keypoint
is selected at random from each time instant spanned
by cluster, to form the set of control points. The fit-
ness criterion for a putative §-spline is derived from a
snake [12] energy term, which we seek to minimize:
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where B(s) is the arc-length parameterised 3-spline,
and P, t = {0..T'} is the subset of keypoints within the
cluster at time ¢. We set & = 0.8, 3 = 0.2 to promote
smooth fitting of the motion path (Figure 1c).

3. Representation and Retrieval

The clustered components obtained from each clip
are processed into a “token” representation (Sec. 3.1),
which is stored to facilitate the matching of sketches to
clips at query-time (Sec. 3.2).



3.1 Trellis Representation

We discretise each motion path at equal temporal in-
tervals and record the motion vectors between points
on the path at adjacent intervals. The number of in-
tervals I (10) is constant across all clips. We augment
each intervals’ motion vector with a colour histogram
sampled from the corresponding video frame. Quanti-
zation is first performed over the whole clip to deter-
mine the set of (32) colour bins for the histogram. The
histogram for each interval on the motion path is popu-
lated by sampling the colour of the video frame beneath
each keypoint within that temporal interval. To miti-
gate against video noise when point-sampling colour,
we segment the video frame into coloured regions us-
ing mean-shift [5]. The colour of keypoint is deemed
to be the (quantized) mean colour of the underlying re-
gion, and a weighted contribution is made to the his-
togram proportional to the area of that region. Once
constructed, the histogram is normalised to represent
the relative colour distribution of the moving object.

Having processed all clustered motion components
within the clip, we construct a directed acyclic graph V
from the tokens. Each node V,,,; corresponds to the to-
ken from the m*" motion path at time interval ¢ € 1..1.
It is likely multiple tokens will co-exist at a given time,
as many objects may exist at a given instant and objects
themselves may be over-segmented. Edges are created
from V,,; to V,,, ;¥ at ¢ (where { is the next time in-
terval containing at least one token). This produces a
fully-connected “trellis” (Figure 2), where each verti-
cal layer contains zero or more tokens. We connect a
source node to V,,,1 and a sink from V,, ;.

3.2 Matching Tokens

Our system accepts query motion sketches in the
form of a temporally ordered list of strokes. A pic-
togram recognition algorithm [7] is applied to locate
motion cues (arrows) within the sketch. Remaining
strokes are grouped into objects using graph-cut [7].
Objects are associated with motion cues by proximity.

Motion sketches are temporally ambiguous; trajec-
tories indicate the sequence of direction changes along
an object’s motion path, but contain no information re-
lating to speed or acceleration. We assume a constant
speed along the sketched trajectory, but observe that di-
rection changes on the path are inaccurately depicted
with respect to time. Our matching process adopts an
edit distance metric to accommodate this variation.

Given a query sketch, we first obtain a sequence of
tokens Q@ = {Q1,...,Qr} from the trajectory of each
sketched object. As in Sec. 3.1, the trajectory is divided
into I intervals of equal arc-length. Each interval yields
a token comprising a motion direction and colour his-
togram. Sketched objects share a histogram obtained
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Figure 2. Motion paths are discretised in
time to form motion-colour tokens. To-
kens are arranged into a trellis and Viterbi
shortest path computed across the graph.
Past cost (red) is the edit distance be-
tween tokens on the path, and a token se-
quence derived from the query.

from strokes comprising the object.

Our matching strategy is to evaluate the support that
each clip (trellis of tokens V,,;) holds for the sketch (to-
kens Q.. y); clips are ranked according to this support.
We compute the Viterbi shortest path from source to
sink, computing path cost as the edit distance between
tokens on the putative shortest path and those in Q (Fig-
ure 2). The path cost C;(Q, V) (from source to time t),
and the corresponding token sequence oy C V¢ are:

ay = {atfl ,
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where Cy(Q,V) = 1, oy = 0 and D(q,v) expresses
the (dis-)similarity of two token sequences as an edit
distance. D(q, v) is computable using Levenshtein’s al-
gorithm [13] in O(n?), where n = min(|q|,|v|) i.e.
n = I bounds n in our system. This is the minimal
‘cost’ of operations required to transform ¢ into v. Op-
erations comprise token insertions, deletions and sub-
stitutions. The substitution cost between two tokens
(a € q,b € v) is a user weighted product of the colour
similarity D..(.) and the motion similarity M.(.):
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where C,, (i) is the i*" colour histogram bin, £, (.)
the corresponding normalised CIELab colour, and M, 3
is the motion vector of individual tokens a and b. Inser-
tion and deletion costs are functions of D,,, only.

4. Evaluation and Discussion

We evaluated our system using five datasets: (i) a
subset of the public KTH activity dataset [16], compris-
ing 200 clips of people walking/running; (ii) 120 horse
racing clips (Horse); (iii) 29 motor racing (Car); and (iv)
83 diving clips from the 2008 Olympic Games (Diving).
We also ran experiments on a combined dataset (HCD)
containing 232 clips of ‘Horse’, ‘Car’ and ‘Diving’.

Figure 3 (left) plots the precision-recall curves for all
dataset. The Mean Average Precision (MAP) scores for
a set of 17 queries over each set were Horse (54.4%),
Car (55.0%), KTH (38.8%), Diving (30.0%), HCD
(28.2%). Queries comprised both simple linear and
more complex trajectories (Fig. 3, right). In the more
challenging examples of motion (e.g. diving), the tra-
jectory clustering process fragmented objects into sev-
eral space-time volumes. However our matching pro-
cess correctly aggregated the respective tokens to re-
trieve the correct object. Our lower MAP over the KTH
dataset is due to absence of colour cues, which can
cause the shortest path to visit erroneous regions. Aver-
age running time for a match was 20 — 30ms per clip on
unoptimized C code (i.e. a few seconds per query).

This work demonstrates that sketch based QVE for
video retrieval is viable using sketched depictions con-
taining only colour and motion cues. Furthermore it
demonstrates that a part aggregation/model-fitting ap-
proach to SBVR can accommodate non-trivial motion
trajectories, and achieve interactive speeds. Improve-
ments focus on improved robustness to clutter and in-
troducing relevance feedback to interactively learn the
weights between colour and motion in eq. (8).
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