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Abstract

We introduce a trainable system that simultaneously fil-
ters and classifies low-level features into types specified by
the user. The system operates over full colour images, and
outputs a vector at each pixel indicating the probability that
the pixel belongs to each feature type. We explain how com-
mon features such as edge, corner, and ridge can all be
detected within a single framework, and how we combine
these detectors using simple probability theory. We show its
efficacy, using stereo-matching as an example.

1. Introduction

Low-level feature detection has long been of major inter-
est to Computer Vision. Attention has usually been directed
toward developing prescriptive methods; that is, methods
that provide an objective definition of the feature to be de-
tected based on some prior, usually tacit, model. Typical
features include edges [2], corners [6], and (to a lesser ex-
tent) ridges [10]. Such systems have many advantages, but
a disadvantage is that they tend to disagree with humans
observation. For example, a typical edge map will both ad-
mit and omit edges when compared to an average of human
observations.

We aim to detect features that more closely agree with
the average of human observations, and so introduce a novel
system to detect low-level features. Ours is not a prescrip-
tive system, but is instead user trained. The user simply
points to examples of the their chosen features. Given a full
colour image as input, the system outputs a probability vec-
tor at each pixel, each component of which is the probability
that the pixel belongs to the corresponding feature type.

The importance of a user trained system is that detected
features tend to be more salient, when compared to prescrip-
tive methods. The importance of a multi-classifier is simi-
lar; some applications require edges, others corners, many
both. Our multi-classifier allows a user to choose features
types to detect, and combine them in simple but well prin-

cipled ways. Our system is very flexible, it has the potential
to be used in many applications, such as stereo-matching,
subimage matching, segmentation, and modelling.

The fact we train from user input places our system in the
same general area as that of Konishi et al [9], who provide a
trainable system for statistical edge detection. We differ in
three ways. First we provide a multi-classifier rather than a
dichotomiser. Second we use circular sampling rather than
traditional “Cartesian” sampling, which gives the advantage
of certain invariants. Finally we introduce novel terms for
“visibility”, “coherence”, and “rarity”, claiming that a fea-
ture must be visible, coherent, and rare to be of interest. Al-
though heuristic in nature, these latter add considerably to
the efficacy of our classifier; in particular their combination
can be regarded as some measure of feature salience.

Our feature detector is based on circular sampling. Smith
and Brady have already argued in favour of circular sam-
pling [1]. Krüger and Felsberg [4] use radial-polar coor-
dinates to compute the “intrinsic dimension” of features,
which enables them to classify features as flat, edge, or cor-
ner; the method is prescriptive, they make no provision for
other possible feature types. The reason we favour circu-
lar sampling is that it allows a characterisation which is in-
variant to orientation and reflection. Our approach is also
invariant to colour shifts and colour inversion, and is ro-
bust to colour scaling (caused by luminance changes, say).
These invariances mean that features of a given type, edges
say, all map to the same point in the parameter space we
use, thus giving a strong signal. This is to be preferred over
Cartesian based characterisations in which features tend to
be more thinly distributed in parameter space; edges, for
example, would lie on a ring-like manifold.

2. A trainable low-level feature detector

We use a colour image as input, in RGB format. At a
pixel � � ��� ��� we consider coloured samples ���� �� for
discrete values of radius � and angle �. The sampling disc
has �� rings and �� “spokes”. We assume that up to a local
radius ���� the feature can be classified a single type, such
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as “flat”, “edge”, “corner”, or “ridge”; clearly ���� defines
the scale of the feature.

We can now characterise the feature at � and radius � by
considering the magnitude of the differential signal

���� �

��������� ����

���� (1)

which we compute using central differences based on the
Euclidean distance between RGB colours. We parameterise
this signal using

���� �
� ������

�
�

� ����
�����

(2)

���� � ���� � ���� (3)

where � is the Fourier transform. Using ��� ensure ori-
entation and mirror invariance. Normalising by unit power
is needed to enhance discrimination between some feature
types; it raises contrast. Removal of the “dc” term, ����,
removes dependence on mean luminance. Zernike mo-
ments [12] were considered an alternative for feature char-
acterisation, we have implemented Zernike moments but
found no advantage.

During training users choose as many classes as they
wish, and then point to example features in real images to
train the system. The system requires users to point to “un-
known” examples too. If the user chooses just one class —
edges, perhaps — our system thus becomes a dichotomiser.
In any case it builds a parametric description, we use Gaus-
sian Mixture Models (GMMs), of the training sample dis-
tribution for each class, thus enabling us to estimate ��� ���
as the class conditional probability that feature type � is re-
sponsible for observed feature � . We use the ratio of sam-
ples in each class to obtain a prior ����, thus enabling an es-
timate of the posterior probability ������ using Bayes the-
orem.

The term just introduced is useful in characterising the
type of feature, but suffers because normalisation boosts
noise. We suppress noise using a measure based on simple
model of just-noticeable-differences (jnds): given a colour
� its jnd is a distance 	 such that no colours in the closed
ball ��� 	 � can be discriminated from �, and all colours in
the complement of the closed ball ��� 	 � can be so discrimi-
nated. We determined the threshold 	 for random noise —
we asked users to adjust 	 until a colour square looked just
flat. We used RGB colour space, arguing that the distance
function 	��� is sufficient for perceptually based colour
measures, leaving us free to choose any convenient colour
space. We use the full sample disc ���� �� to estimate the
probability a feature rises above noise level, and define the
perceptual gradient magnitude, 
��� ��, via the Laplacian:
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where �� is the �th colour channel. The radially-weighted
average, �
, is a crude measure of visibility. We asked users
to dichotomise training samples in visible / non-visible ex-
amples, and so empirically modelled the probability of vis-
ibility as

����
� � �� � 	
����
 � 
�������
 (6)

The constants were chosen experimentally as 
 � ��� and
� � ���. both of these are in jnd units. One might expect

 � �, that is one jnd. The lower value is in part a conse-
quence of the ����� weight, but may also imply that struc-
ture in a feature somehow boosts effective contrast com-
pared to unstructured noise (which we used to determine
one jnd).

To further eliminate pixels which appear at some level
to be a feature but are actually part of a chaotic area of the
image, we introduce a coherence measure. We use this in
preference to entropy, say, as used by Kadir and Brady [8].
Our measure is based on the idea that any part of a coher-
ent region is similar to any other part. We use the Euclidean
distance between every pair of rings, up to some scale ����,
and compute the probability that a pixel is coherent as fol-
lows
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where � is the set of all distinct Cartesian pairs ���� ��� in
the sample disc. The constants, � � ���� and � � ���, in
the error function were chosen by observation over many
images of differing kinds.

The terms introduced so far are picture independent. We
propose a final term that is picture dependent — rarity
which others have associated with salience [13]. We esti-
mate the probability of salience by first estimating the like-
lihood for every full colour sample window in the image.
Given a likelihood measure, ����, for each window � we
define the probability of rarity as the fraction of windows
that are less rare:

�
��� �
������� � ����� ��� � ����

������ ����
(10)

where � is the domain of valid windows (do not over lap
image border).

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04) 
1051-4651/04 $ 20.00 IEEE 



Since ������, ������, �����, and ����� all depend on
location, we define the probability that a pixel is salient and
of type � as

������� � ���������������������� (11)

The only exception to this is if the type chosen is “flat”,
meaning the user has decided that areas of flat colour are of
interest. In this special case we use � � ��, the probability
of not being visible, in place of ��. In any case ������� indi-
cates the probability that pixel � belongs to “interest class”
�. The sum of such probability is unity, at every pixel. The
components in the “multi-spectral” output image, �������,
can be combined in anyway that conforms with standard
probability theory. For example if “edge” and “corner” are
defined classes we can consider ��������� as an edge map,
��	
������� as a corner map, and ��������� 
 ��	
�������
as a combined corner-edge map.

The above approach classifies artifacts at a constant �,
and so at a single, constant scale. However classification
can vary over scale. For example, an artifact classified as
an edge at small scales might be classified a ridge at larger
scales. Whilst this allows for a scale-space description there
are contexts where a definitive classification decision needs
to be made taking a range of scales into account. We have
found that simply averaging ������� over several scales (typ-
ically ���� � � to �, inclusive) gives an effective a scale-
independent description.

3. Results

We now illustrate with qualitative results and present and
quantitative support for the claim that features specified by
our classifier are often more useful for stereo matching than
features obtained using a popular prescriptive method. We
trained a type classifier using a fixed radius of 3 pixels us-
ing the types “flat”, “edge”, “ridge”, “corner”, and “unclas-
sified”. We used 4 images (two faces, one indoor still life,
one outdoor of a car against trees). As Figure 1 demon-
strates, training at a fixed scale in no way prevents us from
classifying over a range of scales, although there may be
benefit to scale-specific training. Simple averaging over the
scale range can lead to improved results, as shown in the
figure. This provides features that persist over scale, which
is said to be a condition of salience [11]. We show output
from a typical Canny edge detector and a typical Harris fil-
ter for visual comparison. The photograph in Figure 1 was
not in the training set, and typical of the output we obtained
for many test images of many kinds (faces, cars, outdoors,
indoors). See Figure 2 for and example of the classifier run
on a different image.

We now turn to quantitative results. Essential for good
stereo matching are points which are distinctive and salient.

Figure 1. A photograph (top left) classi-
fied at scales 1 to 4 inclusive, reading top-
left to bottom-right. Showing edges (red),
ridges(green), and corners(blue), flat or un-
classified points in black. Average of scaless
1–6 in the third row, right–hand column. Typ-
ical Canny edges (bottom-left) and Harris fea-
tures (bottom-right) from the intensity image
shown for comparison.

Figure 2. Classification of a still life image.

They need to be strongly associated with important image
features to ensure the presence of reliable matches in the
second image. It is for these reasons we propose the clas-
sifier corner data is aptly suitable for feature matching. We
use the “corner” image from �����, thresholded at 0.5, this
threshold is justified because it picks out points which are
most likely to be corners. Such corner points tend to form
clusters, from each cluster we chose the corner with the
highest probability. These points were used in stereo match-
ing over a series of image pairs and compared to Harris cor-
ners [6] as this is a popular tool. The Harris detector relies
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upon parameters, we used a single set of parameters which
was optimal over a range of images. The images ranged
from simple block-worlds to complicated outdoor images
that included trees and other foliage.

Prospective matches between the images were made us-
ing a least square difference between the feature neigh-
bourhoods. From these two sets of pairs of potentially
matching feature pairs, homographies were calculated using
RANSAC [5]. The relative quality of the different feature
sets could thus be compared by the proportion of the match-
ing pairs which are deemed inliers by RANSAC. When us-
ing RANSAC the number of iterations made depends on the
expected number of outliers. Knowing in advance that the
classifier points are less likely to be outliers means a fewer
number of iterations need be made to ensure a sample is
made without any outliers. Hartley and Zisserman [7] give
the number of iterations � as

� �
������ ��

������ ��� ����
(12)

where � is the desired probability of making a sample with-
out any outliers. Here � � ����, � is the number of points
taken in each sample, � � 	 and � is the probability of
a random sample being an outlier. For Harris corners the
mean proportion of outliers was � � ��
	
�, resulting in
� � ����. For our classifier � � ��
�	�, giving � � ��	:
a small difference in performance can lead to a dramatic
improvement in efficiency.

4. Conclusion

We have introduced a user-trainable classifier. It is im-
proved by the introduction of novel terms for visibility, rar-
ity, and coherence. We have in part addressed the issue
of scale by averaging over scales. The need for visibil-
ity, coherence, and rarity may cause a slight concern on
the grounds that such terms should be integrated into the
classifier, not least because it enables a fully user-trainable
system. Yet close examination of the joint population dis-
tribution ������� ��������� �� ���������� ������� shows it to
contain sharp discontinuities; separating the terms out as we
have makes modelling much simpler. We are in the process
of examining non-parametric approaches for describing the
joint distribution, and associated marginals. As it stands, the
system has some analogy to weak classifiers: none of the
classifiers is alone sufficient, yet their combination proves
to be so.

Another concern might exist over the way we handle
scale-independent decisions. Currently we simply average
over many scales, but initial work on user training over
many scales indicates an advantage, particularly eliminated
“grazing edges”, which pass through the edge of the sam-
ple disc without reaching the centre — these can be mis-

taken for corners. The system does not localise as well
as prescriptive methods. For example it also can produce
“patches”, as around corners — but such patches tend to
occur where corners are curved, and in such cases it is not
always clear what is meant by “corner”.

To its advantage, our approach is flexible, because users
can define whatever features they wish. Furthermore, it is
easy to extract a single feature map, or combine feature
maps. It produces useful features as our quantitative re-
sults in stereo-matching show. Elsewhere we have used it
in the production of novel non-photorealistic images: it en-
abled us to render different classes of features in different
ways [3]. We believe our detector will find many more ap-
plications in which to be useful. The fact is produces proba-
bility maps might make it useful as part of a larger learning
system.
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