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Abstract

We present a novel Content Based Video Retrieval
(CBVR) system, driven by free-hand sketch queries depict-
ing both objects and their movement (via dynamic cues;
streak-lines and arrows). Our main contribution is a prob-
abilistic model of video clips (based on Linear Dynamical
Systems), leading to an algorithm for matching descriptions
of sketched objects to video. We demonstrate our model fit-
ting to clips under static and moving camera conditions,
exhibiting linear and oscillatory motion. We evaluate re-
trieval on two real video data sets, and on a video data set
exhibiting controlled variation in shape, color, motion and
clutter.

1. Introduction

This paper presents a Content Based Video Retrieval
(CBVR) system, capable of retrieving video clips using
free-hand sketched queries. Our query sketches depict both
the scene content and dynamics present in the clip, using
motion cues (arrows and streak-lines) commonly used in
production story-boarding [6, 10]. We refer to this input
medium as a storyboard sketch (after [5], e.g. Fig. 1).

When people recall events, such as those in video, they
draw upon their episodic memory [22]. Crucially, such rec-
ollections are not appearance based (photo-accurate); rather
they are a meaningful, ordered account of an episode doc-
umenting the relative positions and actions of a few key
actors/objects. We argue that storyboard sketches are well
suited for specifying descriptions of episodes to a CBVR
system. The semantic gap created by ambiguities both in
episodic recall, and in sketch depiction, poses a challenging
matching problem for Computer Vision (Sec. 2).

Our contribution is a novel algorithm for matching
sketched object descriptions to video, combining spatial
and weak dynamic constraints to identify and rank relevant
clips. We propose a probabilistic, autoregressive model of

a video clip, based on parallel Linear Dynamical Systems
(LDSs), that each encode the shape, color and motion pa-
rameters of a sketched object. We explain clips through
this model, which simultaneously labels video regions to
sketched objects and evaluates support for the sketch in a
given clip (Sec. 4). We have evaluated our algorithm on
both real and synthetic video data sets in Sec. 5.

1.1. Related Work

Keyword tagging can be labor intensive and, when per-
formed collaboratively, leads to descriptive inconsisten-
cies [8]. Querying by visual example (QVE) provides an
attractive alternative. Recent successes with ‘bag of words’
approaches have lead to systems able to quickly locate ob-
jects within movie-length data sets [20], or large image col-
lections [4] from a photographic query.

Much of the sketch based retrieval (SBR) literature fo-
cuses on image retrieval [8]. Queries typically comprise
blobs of color or predefined texture [11, 15]. Color and
texture information is augmented with shape descriptors
in [18], and spectral descriptors such as wavelets have also
been explored [12]. These techniques have been trivially
extended to video through key-frame extraction, however
as with [20, 4], such systems are appearance based. There
is no temporal component to the query, and a high level of
realism is expected in the sketch. The nature of episodic
recall suggests this expectation to be unrealistic in sketched
queries [5].

Although several motion-based video retrieval systems
have been proposed (e.g. for activity recognition [13, 14]),
only a handful of systems explicitly query on sketched
motion. Most match sketched trajectories with optical
flow fields in the video [19, 21]. However, flow-based
approaches model neither camera motion, nor the spatial
structure in a scene. By contrast, Chang et al.’s VideoQ [2]
adopts an approach closely related to our own; segmenting
the video frames into regions and matching on both spatial
properties (color and shape) and motion at the region level.
However our system differs from VideoQ, and other SBR



systems, in a number of ways.

Existing SBR systems require sketches to indicate the
precise trajectory of objects. VideoQ also requires users to
specify the object’s speed (in pixels/second). However, a
recent user study [5] found that sketches drawn for CBVR
recall are often imprecise with respect to both appearance
and motion depiction (Sec. 2.1). There is usually no indi-
cation of speed, and only a few salient objects are sketched.
Furthermore, objects co-present in a sketch often appear at
different instants in a clip. In order to bridge the semantic
gap between free-hand sketch query and a given retrieval
target, we propose a weaker model of space and motion
(Sec. 4.1) that can both accommodate these ambiguities in
sketch, and match broader motion classes than previous sys-
tems (both monotonic trajectories and oscillatory motion).
In addition, our model enables multiple regions to be ag-
gregated and labelled to a single sketched object (Sec. 3).
We do not assume that the video is perfectly segmented into
semantically meaningful regions as in VideoQ. Indeed, we
aim for an over-segmentation of the video and later aggre-
gate regions under our probabilistic model of objects.

2. Overview of Sketch Parsing

Our system accepts query sketches as temporally ordered
lists of strokes (trajectories, with associated attributes e.g.
color). Whilst sketching, we ask users to indicate whether
strokes form the foreground, background or a motion cue in
their drawings (e.g. Fig 1).

Given a query, we apply our existing motion-sketch pars-
ing algorithm [5] to group strokes into sketched objects. We
then perform feature extraction to obtain a description of
each object depicted in the sketch. These object descrip-
tions form the input to our CBVR algorithm (Sec. 4).

2.1. Descriptions of Sketched Objects

Our motion sketch parsing algorithm was motivated
by an earlier user study exploring motion-sketches under
episodic recall. We observed that users sketch using a com-
bination of coarse shape approximations and a consistent,
shared alphabet of pictograms for depicting common ob-
jects (e.g. stick-men) or motion (e.g. trailing streak-lines
or leading arrows). Objects in motion are depicted as mov-
ing relative to a static background; regardless of the motion
of the camera/viewpoint. Crucially, only direction is indi-
cated in a sketch; there is no indication of speed or other
motion parameters. Sketches are also under-specified spa-
tially; only a few salient objects are depicted per query.

Our two-step sketch parsing process [5] comprises:
HMM based recognition of common pictogram objects
(stick-men, arrows, streak-lines) followed by grouping of
remaining non-pictogram strokes into objects using graph-
cut. From each non-motion cue object grouped by [5], we
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Figure 1. A query sketch grouped by [5] and processed into de-
scriptions of moving objects. Non-motion pictograms identified
in solid red, motion pictograms in solid blue, remaining strokes
grouped in dashed red. Motion cues are assigned to objects based
on proximity (dashed blue).

extract a number of features; the “object description™:

1. Color distribution (Gaussian Mixture Model (GMM)
of colors in the sketched object, in CIELab space).

2. Global shape descriptors (Eccentricity, Orientation,
Convexity, Area) derived from the object boundary;
plus a measure of Connectedness from object mask.

3. Foreground probability (ratio of foreground to back-
ground strokes in object).

4. Probability of being a person (derived from the pic-
togram recognition algorithm [5]).

5. Direction of the object’s motion

Feature (5) is derived from motion cues present in the
sketch. Motion cues are associated with the object accord-
ing to their spatio-temporal proximity. Multiple motion
cues can be associated to an object, to indicate oscillation.

In this way, each query sketch yields one or more object
descriptions, that we subsequently match to video (Sec. 4).

3. Video Pre-processing

When videos are added to our database, pre-processing
steps prepare the video for query matching (Sec. 4). First,
videos are divided into clips using cut-detection [23] to
identify scene transitions. Within each clip, we compute
the homography between adjacent frames, obtaining an es-
timate of global motion. This information is used in Sec. 4.1
to compensate for camera motion (Fig. 2e). Users tend to
subtract camera motion in their sketches (Sec. 2.1), and we
must do the same to enable comparison.

We segment each video frame independently into a se-
ries of regions using mean-shift [3], under an assumption of
color homogeneity within regions (Fig. 2b). Attributes such
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Figure 2. Left: Pre-processing clips. Frames (a) are segmented into colored regions (b). Region properties are computed: area, color, and
probabilities of being foreground (c) or a person (d). Camera motion is estimated by inter-frame homography (e). Right: Matching a sketch
to clip. The sketched direction of the object is extended over a clip’s camera-motion compensated frames, forming a trajectory (magenta).
We model an object’s progress along its trajectory as transitions along states in a LDS*. Fitting our model (Sec. 4.1) yields a labelling of
clip regions to sketched objects (hidden labels ct), and object positions (hidden states zt'), for all frames ¢ = [1, 7] and objects u = [1, U].

as color, area, and centroid are computed for each region.
The VGG upper-body detector [7] is also applied yielding
a likelihood that each region belongs to a person (Fig. 2d).
Moving from a pixel-based representation to a region-based
(i.e. super-pixel [16]) representation in this way greatly im-
proves the efficiency of our matching algorithm — typically
we move from 100,000 pixels to ~ 50 regions. However,
note that we are not attempting to carry out true object seg-
mentation at this stage (as in [2]). Our region segmenta-
tion is finer than the coarse object level segmentation corre-
sponding to a query sketch and hence, multiple regions are
typically later aggregated to form a single object.

Finally, we compute the probability of each region being
in the ‘foreground’ of the scene. For each frame we apply
the inter-frame homographies computed earlier to construct
a mosaic from adjacent frames. The current frame is dif-
ferenced with the mosaic to generate a ‘foreground’ map;
which is averaged and normalized for each region (Fig. 2c).

4. Matching and Retrieving a Clip

The sketch parsing process (Sec. 2.1) outputs a compact
description of the desired clip based on objects and their
motion. Our retrieval strategy is to explain each clip us-
ing that description, ranking clips according to the evidence
present in the clip for a given sketch. We refer to the process
of explaining a clip in this way as ‘matching’.

We match a sketch to a clip by first extending the motion
direction of each object to form a trajectory over the mo-
saiced (camera motion compensated) video frames within
the clip (Fig. 2, right). We then look for evidence support-
ing the object in video regions along that trajectory. We
‘match’ each region of each frame to one object such that
objects and trajectories arising from this assignment most
closely resemble those in the sketch. A ‘null object’ is in-
cluded for regions that belong to undrawn objects; this al-
lows to select only the regions which combine to give the

best approximation to the sketched objects — i.e. the sketch
need not describe all the regions of a frame.

Sketched objects and trajectories are only rough approx-
imations to their counterparts in a clip and many of the ob-
jects contained within the clip may not be present in the
sketch (Sec 2). Given the approximate and incomplete na-
ture of sketches, and that the desired region assignment is
unobserved, it is natural to formulate our ‘matching algo-
rithm’ in a probabilistic setting. We now formalize this ap-
proach using a generative model for video clips; sketched
object features and trajectories are the model parameters.

4.1. The Probabilistic Model

We first introduce the notation used in our model. Time
is indexed by (subscript) ¢ and we assume a clip to comprise
T frames. Objects are indexed by (superscript) u, where
U is taken to be the total number of objects identified in
the sketch. Each object u is associated with a Linear Dy-
namical System (LDS) whose state corresponds to the point
the object is at on its trajectory; one can think of an object
’moving along’ its trajectory as the LDS transitions through
its states (Fig. 2). A stationary object is represented by a
single state LDS. The unobserved states of all the LDSs at
time ¢ are stored in the vector zy = (z}, ..., 2) — so if ob-
ject u = 11is 1.74 units along its trajectory at time ¢ = 9,
then z§ = 1.74.

Frame ¢ is denoted by X; and for each of these 7" im-
ages, we partitioned pixels into NV; regions during video
pre-processing (Sec. 3). For each frame, we introduce
an unobserved label vector ¢y = (¢y1,..., ¢ N, ), Where
et € {1,..,U,U + 1 = ‘null object’} indicates which
object region n of frame ¢ belongs to —e.g. if region n = 6
at time ¢ = 4 belongs to object u = 2, then ¢4 6 = 2.

For brevity, we sometimes use the notation X, Z, C to
denote all the observed frames, hidden states and hidden
labels respectively.



The graphical model for our approach is shown in Fig. 3;
from this, we see that the joint distribution is given by:
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Let us consider each of the distributions in turn. Though
it is not indicated in Fig. 3, the priors on the region la-
bels within a single slice are assumed to be independent:
p(ey) = Hg;l p(ci,n). We have used a uniform distribu-
tion p(cn, = u) = 1/(U + 1) to reflect our lack of prior
knowledge about these label values. Recall that the video
represents the data and that the same model (i.e sketch) will
be used to analyze many clips. Thus, it would not be valid
to derive values for the p(c;,,,) from a video.

4.1.1 Emission Distribution (Appearance)

The emission distribution for the observed data — the bot-
tom two lines of eq.(1) — is defined so that the objects as-
sociated with the current labeling should resemble both the
corresponding objects in the sketch and the corresponding
objects at the previous time step — i.e. there is an autore-
gressive component. An object’s appearance may change
during a clip and hence, it may not resemble even an accu-
rately drawn model object for the full duration of the clip.
The autoregressive structure of the model encourages tem-
poral coherence in the object labeling and hence, provides
a degree of robustness to this problem. Formally, we com-
bine the two components of the distribution using an ‘across
slice’ (or frame-to-frame) term g4 and a ‘within slice’ (or
sketch-to frame) term gy (refer to Fig. 2, right):

p(Xt‘th% Xt727 Ct—1, thla Zt, Ct) X
Qw(Xt|Zt; Ct)CIA(Xt\sz? Xi—2,¢4—1, X4—1, Ct)~ ()

The expressions for gy and g4 incorporate the individ-
ual object comparisons'. Recall from Sec. 2 that we rep-
resent sketched objects by a set of features (shape descrip-
tors, color distribution, foreground and ‘person’ probabil-
ity). We also have a centroid for the object, derived from
its LDS state. To compare a sketched object to a video ob-
ject, we extract the same features from the putative video
object associated with the labelling c; i.e. we group to-
gether all the regions that are currently assigned to the

TAtt = 1 we use only gy and at t = 2, g4 is necessarily only
dependent on the previous time-step.

Figure 3. Illustrating the dependency structure of our probabilistic
model for a video clip — Sec. 4.1.

object and compute the features for the aggregate region.
These features are computed as follows: the area, centroid
and global shape descriptors are computed from the binary
mask formed by the putative object-to-region labelling, the
object foreground score is the average score over the re-
gions belonging to the object (see Sec. 3), the person score
is defined as the maximum person (i.e. upper-body) score
of any region in the object and the color GMM has a com-
ponent for each region with a mean set to the color of the
region and mixing coefficient given by the relative area of
the region to the full object. We refer to the feature vector
for object u in frame ¢ given the current value of the la-
bel c; as f}*. Similarly, we write f;“ for the corresponding
feature vector of the sketched/model object given the state
z;*. Note that only the centroid feature of f;“ changes with
time; the others are fixed after sketch parsing. The cen-
troid is updated at each time step (i.e. with z}*) to reflect
expected position of the sketched object along its trajectory.
We correct for camera motion by transforming the region
centroids by the inter-frame homography computed during
pre-processing (Sec. 3). We rely on the auto-regressive
component of our model (eq. 4) for robustness to changing
object features over time, which we assume to be negligible
between frames. Although our model has no explicit spatial
coherency term, we find our shape features (e.g. connect-
edness) and optimization strategy (Sec. 4.2) to adequately
discourage non-contiguous region to object labellings in c;.

Having placed sketched and video objects in a common
feature space we define gy and ¢4 from eq.(1) as:

aw (X¢|z¢, cr) EHN’(ftu; £, 2)4
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where A" is the area of object u, N denotes the Gaus-
sian distribution and X is a diagonal covariance matrix for
the object features. In other words, we compare objects
(both sketch-to-frame and frame-to-frame) using a Gaus-
sian in feature space under the assumption that the features
are uncorrelated. The scalar p in eq.(4) weights the im-
portance of the frame-to-frame contribution relative to the
sketch-to-frame contribution. In other words, p indicates
whether the model object or previously observed object will
better predict the appearance and position of the current ob-
ject. The above expressions for ¢4 and gy are not precise
in the following ways: Firstly, the mean centroid in ¢4 is
equal to the object centroid at ¢ — 1 (i.e. the relevant fea-
ture of f;_1 as expected) plus the displacement vector from
the centroid at ¢ — 2 to ¢ — 1; this is what makes the bot-
tom chain in Fig. 3 second order. Secondly, since each ob-
ject’s color distribution is described by a GMM, we can-
not use the Euclidean distance to compare these features
when evaluating the Gaussian. We use a measure simi-
lar to the approximation of Kullback-Leibler based on the
unscented transform [9] that is fast to compute and suit-
able here as the GMMs are effectively describing color fre-
quency counts at the mean of each component — the co-
variances of the GMMs reflect how accurately we expect
colors to match rather than summarizing color spatial dis-
tribution. Given two GMMs Gy, G, with density functions
g1(x), g2(z), means p11.G,, p2.1..G, and mixing coeffi-
cients m1.1..¢,,T2,1..G, » We define the symmetric distance
between them as:

Nl
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Gy

<H92(l~b1,k)m'k> G
k=1
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D(G1,G2)= Hgl(NZ,j)ﬂz’j
j=1

i.e. we evaluate the means of one model under the density
of the other using mixing coefficients to weight the terms.

4.1.2 Transition Distribution (Motion)

For object u, the initial distribution p(z}) and transition
distribution p(z}'|z¥_,) encapsulate our belief about how
the object moves along its trajectory. Since motion cues
typically only indicate the direction of motion we are forced
to make assumptions about the speed and extent of an ob-
ject’s motion. We stretch the motion trajectory across the
full extent of the mosaic (Sec.3) and assume that the ob-
ject travels across this trajectory at uniform speed. When
coupled with a large transition variance (o2 in eq.(6)), this
seemingly strict assumption enables the model to lock on
to objects that move monotonically along some part of the
trajectory (Fig. 6, 8). The transition distribution is given by:

28|zl | ~ N(zi 1 + A\Vy,0?). (6)

where v, is the unit vector in the direction of motion and
A = T/(trajectorylength). Although this definition makes
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Figure 4. Oscillating objects (drawn with two motion cues) are
handled by our model when A = 0 (eq. 6). LDS states z; plotted
before (red) and after (blue) inference; and region-object labelling
before (upper) and after (lower) inference (null-object in black).

the model dependent on the clip, it enables us to account
for different clip lengths and mosaic sizes and once eq.(1)
is normalized by T', the probability of different clips for a
given query sketch are comparable (for clip ranking).

Note that the transition distribution only relates to the
movement of the object along the model trajectory; given
any z;, the actual position of the object is generated from
the emission distribution for the object centroid (i.e. regions
must lie close to, but not necessarily on the trajectory). Set-
ting A = 0 predicts that the object remains motionless, but
allows for smooth motion in either direction — Fig. 4.

The number of objects in the model, the objects’ trajec-
tories, and the objects’ features are computed during sketch
parsing (Sec. 2). The sketched trajectory of each object u
determines direction vy,; for oscillating motion we fix A to
0 to model smooth variation along the trajectory.

Ideally, the remaining model parameters — X, p and the
starting and transition distributions — should be estimated
from a training set of sketch-clip pairs; currently values are
set empirically. Note that we do not wish to learn different
parameters for each clip since the model parameters encap-
sulate our sketched description of the desired clip, and our
prior belief about sketch accuracy. For example, the vari-
ance parameter for the centroid (an element of ¥) specifies
our belief about what distance constitutes sketch inaccuracy
in position vs. genuine difference in object position.

4.2. Inferring Values of the Hidden Variables

Having defined the model, our objective is to compute
the p(clip|sketch) = p(X|modelparameters). We are also
interested in the values of the hidden states z; and labels c;
as these enable us to visually assess how a clip has been
‘interpreted” with respect to a given sketch (see last two
columns of Fig. 8). These hidden variables are estimated
using iterated conditional modes (ICM) [1] as follows.

Given putative values of c;, our model decomposes into
U +1 independent autoregressive LDSs. Since g4 eqs.(2,4))



Figure 5. Left: Three queries over 7SF. Middle: Region to object
labelling for best clip, before (upper) and after (lower) inference.
Right: LDS state z., before (red) and after (blue) inference.

does not depend on the z;, the autoregressive component
can be ignored when selecting the z; and each chain re-
duces to a simple first order LDS. Thus, our individual ob-
ject models (i.e. given the region labels C) are similar to
Kalman trackers and just as in tracking, we intuitively think
of the models ‘locking on’ to objects. However, here we
have observations for all T' frames, allowing us to use the
forward and backward Kalman equations when updating the
hidden states: z; < argmax,, p(z;|X, C).

At initialization, the hidden states are chosen so that the
object traverses its entire trajectory at a speed proportional
to camera motion. This is obtained from camera motion
compensated centers of all frames, projected onto the trajec-
tory. The hidden labels are then initialized to objects using
the priors and centroid information only.

Given values for the hidden states Z and all the hidden
labels except c,, (written C\ c}'), we update ¢}’ using: ¢} «—
argmax..p(cy'|X, Z, C\c}); this is equivalent to selecting
the c' that maximizes the joint distribution (eq. 1). The
joint likelihood of all the variables can be estimated at any
point by evaluating eq.(1) with current estimates of Z, C.

Practically, we must update multiple labels per iteration
to prevent ICM falling into local minima. We exhaustively
consider all possible relabellings of a subset of r regions
within C, choosing the relabelling that maximizes the joint
distribution. These r regions are chosen to form a spatially
connected aggregate region incorporating ci'. Selection of
the r regions is stochastic, biased towards neighboring re-
gions with closest color to c'. Each ICM iteration requires
(u + 1)" evaluations; r thus drives a trade-off between ac-
curacy and speed. We found » = 8 worked well for our
trials. Our algorithm converges on a Z and C that maxi-
mizes the joint distribution eq.(1). Convergence typically
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Figure 6. Synthetic (SYN) database; 72 clips. Left: Sketched
queries with (a) and without (b) background, and the top 3 result-
ing clips for each. Right: Precision of returned clips — from most
to least relevant; higher precision scores cluster in the top ranks.

takes 10 — 20 iterations; the ICM process terminates when
improvements in p(X, Z, C) fall below a threshold. We
evaluate eq.(1) and normalize with respect to the number of
frames T'; enabling comparison between clips. This value
is then used to rank the relevance of clips for a given query.
Fig. 4 shows our model fitting to oscillating motion.
The transition graph shows z; initialized to a single position
(due to a static camera), but converging to an oscillating pat-
tern under the ’smooth’ (A = 0) motion model. The region-
object labels post-inference identify the oscillating object.
Fig. 5 shows our model fitting to linear motion. As before,
LDS states are initialized to positions closest to the frame
center. For the horse, the transition graph shows the initial
(blue) and inferred (red) z; are near identical; the camera
pans to track the horse. For the car, the camera initially
tracks the car before it drives out of frame. The inferred z;
reflect this motion, leading to correct region labelling.

5. Evaluation and Discussion

We evaluated our CBVR system using three data sets:
(i) synthetic video footage containing controlled lab cases
(SYN); (ii) a real video subset of the public KTH data
set [17]; (iii) a real video data set compiled from TV drama
and sports footage (TSF). We chose our TSF set to resemble
the VideoQ [2] test data set, which was not published?.

5.1. Synthetic (Lab-based) Video Evaluation

The SYN data set contains 72 clips of filmed 2D shapes
moving in the plane (Fig. 6). Clips comprise all combina-

2The SYN and TSF datasets used in this Section are available at
http://www.ee.surrey.ac.uk/CVSSP/VMRG/doodle/
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Figure 7. Precision-Recall for 4 data sets (SYN, KTH, TSF,
TSF+KTH) averaged over g queries (SYN ¢=30, KTH q=64, TSF
=100, TSF+KTH g=100). Plotting r clips returned from set of n
clips (SYN n=72, KTH n=200, TSF n=298, TSF+KTH n=498).

tions of 3 shapes, 4 colors, and 3 motion directions, with
and without background clutter.

Fig. 6a contains a sample query sketch depicting a shape
moving against a background, the top 3 clips retrieved, and
the precision of each of the r = [1, 72] ranked clips. A clip
accumulates precision of 0.25 for each correctly matched
variable; scores are thus distributed: 1 x 1.0,8 x 0.75, 23 X
0.5,28 x 0.25,12 x 0. Average Precision (AP) is (cumu-
lative precision of r clips/ maximum attainable cumulative
precision at 1), where r = [1, 72]. Averaging AP over range
r = [1,72] yields a Mean Average Precision (MAP) of 0.91.

Our algorithm addresses sketch ambiguity by seeking
evidence for sketched objects only; no LDS is created for
unsketched objects (the ‘null object’) and so they are ig-
nored. Thus the query of Fig. 6b equally supports clips
of ovals moving left-right, with or without clutter. To ac-
count for this, we modified our precision score to con-
sider color, shape and motion only; the score distribution
is: 2 x 1.0,14 x 0.67,32 x 0.33,24 x 0. Again the most
relevant clips (scoring 1.0) ranked highest; MAP was 0.85.

Fig. 7 plots Precision-Recall averaged over 30 queries
(depicting 15 moving shapes with background, and the
same 15 without). Here we use binary precision to make
SYN comparable with KTH and TSF; an exact match across
all relevant properties (motion, shape, etc.) is required for
precision of 1. We obtained a high overall MAP (0.88) for
SYN, representing an ideal to compare real video against.

5.2. Real Video Evaluation

We evaluated our system using a 200 clip subset of
the KTH [17] activity data set. We selected 25 clips of
running/walking people in various directions. The query
set comprised sketches of stick-men with motion cues.
Fig. 7 plots Precision-Recall averaged over all queries
(MAP=0.74). Performance is comparable to SYN indicating
good scalability, and correct aggregation of over-segmented
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Figure 8. TSF data set; example sketch queries and best clip re-
trieved, discussed in Sec. 5.2. Average precision (AP) for queries:
Q1=0.63; Q2=0.48; Q3=0.67; Q4=0.62; Q5=0.60.

regions to ‘track’ the person, and so correct discrimina-
tion of motion direction. However KTH contains only
greyscale people and so does not fully exercise variability
in all our features. We therefore evaluated a second data set
TSF comprising 298 color TV drama/sports clips (~ 300
frames/clip). Objects were people, cars, or horses predom-
inantly a single object with camera motion panning to fol-
low. The data set is comparable to VideoQ who evaluate 200
similar clips over 4 queries. For each query we manually
specify a ground-truth; a clip is relevant if, visually, the ob-
ject/s shares approximate shape (aspect), color, and direc-
tion with the query (and background color if sketched). To
test scalability we also ran this query set over the combined
data sets TSF+KTH. Fig. 7 plots Precision-Recall curves
averaged over the query set. Fig 8 illustrates sample queries
each with corresponding best clip and AP score.

Overall for the TSF set we obtain MAP=0.65, and for
the TSF+KTH set MAP=0.59. Interpreting Fig. 7 for TSF
(298 clips), we expect the top 6 results to have on average
>~ 70% relevance, which we regard as acceptable given
our application of retrieving recalled episodes from video
databases. For the combined set of 500 clips the top 6 re-
sults have >~ 65% relevance, suggesting good scalability
to larger databases. Although 7SF does not exactly match
VideoQ [2], our results compare favorably with the AP of
their 4 queries (0.40, 0.36, 0.55, 0.36 — MAP=0.42)3.

Fig 8 shows correct handling of linear motions over sin-
gle (Q1,3-5) and multiple objects (Q2). In (Q2,3,5) the per-
son detector fails due to scale; nevertheless the distinctive
motion and color in these cases encourages correct recall.
In all cases (Q1-5) camera motion is correctly compensated.

3Obtained from P-R curves of Fig.10 in Cheng et al. [2]



6. Conclusion

We have presented a probabilistic model for video clips
based on Linear Dynamical Systems (LDS), and applied
our model to match descriptions of sketched moving ob-
jects to video for CBVR. We have shown our model to cor-
rectly aggregate over-segmented video regions to form ob-
jects approximated by sketches. As such, our system does
not assume temporally stable or semantically correct video
pre-segmentation (as in Chang et al. [2]). We make further
progress by matching novel motion types e.g. oscillation.

Although sketches are an expressive and intuitive query
medium, they are also ambiguous. For example, motion
cues have direction but do not reliably depict the magni-
tude of motion [5] (yet this information is required by [2]).
This ambiguity forced us to introduce assumptions into our
model; we assume the sketch canvas to approximate a mo-
saic spanning all frames, and that sketched motion extends
across this. A further ambiguity is that objects may be
sketched as co-present, but appear in the clip at different
instants. Our model accounts for this, making no assump-
tions about objects’ temporal relationships (Sec. 4). Fur-
thermore, not all objects present in video must be sketched.

Sketches are unable to express the relative importance of
features. In Fig. 6b three ovals are returned left-right. In
rank 3, shape and motion seem more important than color,
yet depending on our usage context this may not be ap-
propriate. Future work will improve our implementation
to interactive speeds and explore relevance feedback to in-
teractively adjust the covariances on these features (eq.3).
More complex features (e.g. for shape or person detection)
might be substituted into our framework. We grounded our
choices in an empirical study [5], that observed episodic
sketches to contain only approximate color distributions and
shape. Similarly, although our LDS accommodates any
parametric path, complex motions are seldom sketched [5].

Rather than computing and then matching feature vec-
tors from query and clip, we evaluate support within clips
under a probabilistic model of content (our LDS frame-
work). The main benefit is that components of the video
are interpreted in the context of a sketch; ambiguities in
the sketch are resolved in light of evidence within the video
(much as one might realize that a child’s drawing is of an
elephant once told so). Given that unsupervised grouping
of pixels into semantic objects eludes Vision, this seems a
promising approach to bridging the semantic gap for SBR.
Adaptations of our model might also be used for tracking.
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