
Real-time Full Body Motion Control

John Collomosse and Adrian Hilton

Abstract This chapter surveys techniques for interactive character animation, ex-
ploring data-driven and physical simulation based methods. Interactive character an-
imation is increasingly data-driven, with animation produced through the sampling,
concatenation and blending of pre-captured motion fragments to create movement.
The chapter therefore begins by surveying commercial technologies and academic
research into performance capture. Physically based simulations for interactive char-
acter animation are briefly surveyed, with a focus upon technique proven to run in
real-time. The chapter the focuses upon concatenative synthesis approaches to an-
imation, particularly upon motion graphs and their parametric extensions for plan-
ning skeletal and surface motion for interactive character animation.

1 Introduction

Compelling visuals and high quality character animation are cornerstones of mod-
ern video games and immersive experiences. Yet character animation remains an
expensive process. It can take a digital artist weeks to skin (design the 3D surface
representation) of a character model, and then rig it with a skeleton to facilitate
full body control and animation. Animation is often expedited by re-targeting hu-
man performance capture data to drive the character’s movement. Yet creativity and
artistic input remains in the loop, blending hand-crafted animation with motion cap-
ture data which itself may be an amalgam of multiple takes (e. g. it is common for
separate passes to be used for face, head, and hands). Performance capture itself is
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expensive; equipment hire, operation and studio/actor time can approach millions
of US dollars on a high-end production. The recent resurgence of virtual and aug-
mented reality (VR/AR) experiences, in which character interaction takes place at
very close quarters, is further driving up expectations of visual realism.

Creating believable interactive digital characters is therefore a trade-off between
project budget and quality. Better tool support inevitably leads to efficiency and
so a re-balancing toward higher quality. In this chapter we survey state of the art
technologies and algorithms (as of 2015) for efficient interactive character anima-
tion. Whilst a common goal is a drive toward increased automation, which in some
cases can produce interactive characters with near complete automation, one should
not lose sight that these are tools only, and the need for the creative artist in the
loop remains essential to reach the high quality bar demanded by modern produc-
tion. As such this chapter takes a practical view on animation, first surveying the
commercial technologies and academic research into performance capture and then
surveying the two complementary approaches to real-time animation — physically
based approaches (examined further in Chapter C-2) and data-driven approaches.

Although character animation is frequently used within other domains with the
Creative Industries (movies, broadcast) its use within games requires new anima-
tion sequences to be generated on-the-fly, responding in real-time to user interac-
tion and game events. This places some design restrictions on the underpinning
algorithms (efficient data structures, no temporal look-ahead for kinematics). This
chapter therefore focuses upon algorithms for interactive, rather than more general
offline, character animation covered elsewhere in this book.

2 State of the Art

Historically character animation has been underpinned by meticulous observations
of movement in nature, for example the gait cycles of people or animals. This link
has been made explicit by contemporary character animation, which is trending to-
ward a data driven process in which sampled physical performance is the basis for
synthesising realistic movement in real-time. This chapter therefore begins by sur-
veying commercial technologies, and state of the art Computer Vision algorithms,
for capturing human motion data.

2.1 Commercial Technologies for Performance Capture

Motion Capture (mocap) technology was initially developed within the Life Sci-
ences for human movement analysis. The adoption of mocap for digital entertain-
ment, commonly referred to as Performance Capture (PC) is now widespread. PC
accounts for 46% of the total 3D motion capture system market which is growing
annually at a rate of around 10% and expected to reach 142.5 million US dollars
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Fig. 1 Performance capture technologies. Left: Vicon IR based system being used to pre-visualize
character performance in real-time within the UNREAL Games engine (EPIC). Right: Industrial
Light and Magic’s fractal suit enabling visual light based tracking outdoors.

by 2020 [29]. Indeed many of the innovations in mocap (e. g. marker-less capture)
are now being developed within the Creative Industries, and transferred back into
domains such as bio-mechanics and healthcare.

PC systems enable sequences of skeletal joint angles to be recorded from one
or several actors. The key distinction between PC systems are the kind of physical
marker or wearable device (if any) required to be attached to the actors.

The predominant form of PC in the Creative Industries is marker based, using
passive markers that are tracked visually using synchronised multiple viewpoint
video (MVV). Popular systems for passive marker PC are manufactured by Vicon
(UK) and Optitrack (US), which require the actor to wear retro-reflective spheres
(approximately 20-30 are typically used for full body capture). A region of the
studio (capture volume) is surrounded by several infra-red (IR) cameras in known
locations, and illuminated by several diffuse IR light sources. Prior to capture of
performance data, a calibration process is performed to learn the relative locations
(extrinsic parameters) of the cameras. This enables the world location of the mark-
ers attached to the actor to be triangulated, resulting in a 3D point cloud from which
a skeletal pose is inferred using physical and kinematic constraints. Modern soft-
ware (e. g.Blade, or MotionBuilder) can perform this inference in real-time provid-
ing immediate availability of a pose estimate for each actor in the scene. PC service
providers (e. g.The Imaginarium Studios, London UK) have begun to harness this
technology to pre-visualize the appearance of digital characters for movie or Game
production during live actor performance. Such facilities provide immediate visual
feedback to both the actor, and Director, on-set removing the trial-and-error and so
improving efficiency in the capture process (Figure 1, left). Other forms of passive
PC in regular use include the fractal suits patented by Industrial Light and Magic
for full body motion capture (Figure 1, right). The suits are tracked using visible
light, and so are more amenable to deployment in outdoor sets where strong natural
light makes IR impractical.

Active marker based systems include offerings from CodaMotion (UK) and
PhaseSpace (US). Markers are bright IR light emitting diodes (LEDs) that pulse
with unique signatures that identify the marker to one or several observing cameras.
Since markers are uniquely labelled at source, automated tracking of markers is
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trivial making marker confusion highly unlikely. By contrast, the labelling of trian-
gulated markers in a passive system is performed during pose inference and may be
incorrect in the presence of clutter (e. g. multiple occluding actors). Marker misla-
belling causes errors in pose estimation, that can only be removed through addition
of more witness cameras so reducing the chance of occlusion, or manually correct-
ing the data post-capture. An advantage of active marker based systems is therefore
the need for fewer cameras, and reduced data correction. Active systems tend to per-
form better outdoors, again due to obviating the need for large area IR illumination.
The disadvantage is the additional expense and time required for actor set-up (wires
and batteries) due to the complexity of the markers. The workflow to produce a
skeletal pose estimate from active marker data is identical to passive systems, since
the capture again results in a sequence of 3D point movements.

Inertial motion capture system use inertial motion sensing units (IMUs) to de-
tect changes in joint orientation and movement, providing an alternative to visual
tracking and so removing the problem of marker occlusion. IMUs are worn on each
limb (around 12-14 for full body capture), and connected wirelessly to a hub which
forwards the data for software processing. Common IMU captures solutions include
AnimeZoo (UK), XSens (Netherlands) and most recently the crowd-funded Percep-
tionNeuron (US) system. All of these solutions again rely upon a robust back-end
software product to infer a skeletal pose estimate using physical and kinematic con-
straints. The disadvantage of inertial capture is drift, since the IMUs output only
a stream of relative joint angles. For this reason, IMU mocap is sometimes com-
bined with a secondary modality e. g. laser ranging or passive video to capture the
world-position of the actor.

An emerging form of PC is marker-less mocap, using Computer Vision to track
the actor without the need for wearables. Although the accuracy of commercial
marker-less systems has yet to reach parity with marker based solutions, the greatly
reduced setup time and flexibility to use only regular video cameras for capture
makes such systems a cost effective option. For the purposes of teaching data driven
animation production, marker-less technologies are therefore attractive. Solutions
include the OrganicMotion stage (US); a cube arrangement of around 20 machine
vision cameras that calculates human pose using the silhouette of the performer
against a uniform background from the multiple camera angles. More recently The
Captury (Germany) launched a software-only product for skeletal PC that estimates
pose against an arbitrary background using a possibly heterogeneous array of cam-
eras. Yet although commercial solutions to marker-less PC remain in their infancy,
academic research is making good progress as we next discuss.

2.2 Marker-less Human Motion Estimation

Passive estimation of human pose from video is a long-standing Computer Vision
challenge, particularly when visual fiducials (markers) are not present. Methods can
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be partitioned into those considering monocular (single-view) video, or multiple
view-point video.

2.2.1 Monocular Human Pose Estimation

Human pose estimation (HPE) often requires the regions of interest (ROIs) repre-
senting people to be identified within the video. This person localization problem is
can be solved using background [39] or motion [1] subtraction, in the cases of sim-
ple background. In more cluttered scenarios, supervised machine can be applied to
detect the presence of a person within a sliding window swept over the video frame.
Within each position of the window, pre-trained classifiers based on Histogram of
Gradient (HoG) descriptors can robustly identify the torso [12], face [35] or entire
body [11].

Once the subject is localised within the frame, the majority of monocular HPE
algorithms attempt to infer only a 2D i. e. apparent pose of the performer. These
adopt either: a) top-down fitting of a person model, optimizing limb parameters and
projecting to image space to evaluate correlation with image data; or b) individually
segmenting parts and integrating their positions in a bottom-up manner to produce
a maximal likelihood pose.

Bottom-up approaches dominated early research into HPE, over one decade ago.
Srinivasan and Shi [31] used an image segmentation algorithm (graph-cut) to parse
a subset of salient shapes from an image and group these into a shape resembling
a person using a set of learned rules. However the approach was limited to a sin-
gle person, and background clutter was reported to interfere with the initial seg-
mentation and so the eventual accuracy of the approach. Ren et al. proposed an
alternative algorithm in which Canny edge contours were recursively split into seg-
ments, each of which was classified as a putative body part using shape cues such
as parallelism [28]. Ning et al. [16] similarly attempted to label body parts individ-
ually, applying a Bag of Visual Words (BoVW) framework to learn codewords for
body zone labelling — segmenting 2D body parts to infer pose. Mori and Malik
described the first bottom-up algorithm capable of estimating a 3D pose in world
space, identifying the position of individual joints in a 2D image using scale and
symmetry constraints – and then matching those 2D joint positions to a set of many
‘training images’ each of which had been manually annotated a priori with 2D joint
positions [25], and was associated also with a 3D ground-truth. Once the closest
training image had been identified by matching query and training joint positions in
2D, the relevant 3D pose was returned as the result.

Top-down approaches, in which the entire 2D image is used as evidence to fit a
model are more contemporary. The most common form of model fitted to the image
is a ‘Pictorial Structure’; essentially a collection of 2D limbs (regions) articulated
by springs, that can be iteratively deformed to fit to evidence in the image under
an optimization process [12, 2]. However such approaches do not yield recover a
3D pose estimate, or if so are unstable due to ambiguity in reasoning from a single
image.
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(a) (b)

Fig. 2 Convolutional neural networks (CNNs) used for pose estimation in multi-view point video.
(a) using 2D detections of body parts fused in a 3D probabilistic model (from [13]), (b) recognition
of pose from 3D volumetric data recovered from multiple views (from [34]).

2.2.2 Multi-view Human Pose Estimation

A 3D estimate of human pose may be inferred with less ambiguity using footage
captured from multiple viewpoints. In such a setup, a configuration of cameras (typ-
ically surround a subject in a 180 or 360 degree arc) observes a capture volume
within which a performance is enacted. The cameras are typically calibrated, i. e. for
a subject observed by C camera views c= [1,C] the extrinsic parameters {Rc,COPc}
(camera orientation and focal point) and intrinsic parameters { fc,ox

c,o
y
c} (focal

length, and 2D optical centre) are known.
Two categories of approach exist: (a) those estimating 2D pose from each view

independently, and fusing these to deduce a 3D pose; (b) those inferring a 3D pose
from 3D geometric proxy of the performer recovered through volumetric recon-
struction.

Computer vision has undergone a revolution in recent years, with deep convo-
lutional neural networks (CNNs) previously popular in text recognition being ex-
tended and applied to solve many open problems including human pose estimation.
CNNs have shown particularly strengths in general object detection, with some state
of the art networks e. g. GoogLeNet (Google Inc.) surpassing human performance
in certain scenarios. Most recently CNNs have also been used to detect human body
parts in single and multiple viewpoint video and infer from these human pose. El-
hayek et al. [13] estimate human body parts from individual video viewpoints using
CNN detectors and the fuse these under a probabilistic model fusing colour, and
motion constraints from a body part tracker to create a 3D pose estimate. The CNN
detection step is robust to clutter, making the system suitable for estimation of 3D
pose in complex scenes including outdoors (Figure 2a).

In volumetric approaches, a geometric proxy of the performer is built using a
visual hull [15] computed from foreground mattes extracted each camera image Ic
using a chroma key or more sophisticated image segmentation algorithm. To com-
pute the visual hull the capture volume is coarsely decimated into a set of voxels at
locations V = {V1, . . . ,Vm}; a resolution of 1cm3 is commonly used for a capture
volume of approximately 6× 2× 6 metres. The probability of the voxel being part
of the performer in a given view c is:

p(V |c) = B(Ic(x[Vi],y[Vi])), (1)
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Fig. 3 4D Performance Capture: Multiple video views (top) are fused to create a volumetric rep-
resentation of the performance which is meshed (bottom). The per-frame meshes are conformed to
a single deforming mesh over time, into which a skeleton may be embedded and tracked (right).

where B(.) is a simple blue dominance term derived from the RGB components of
Ic(x,y), i. e. 1− B

R+G+B , and (x,y) is the point within Ic that Vi projects to:

x[Vi] =
fcvx

vz
+ox

c and y[Vi] =
fcvy

vz
+oy

c, where, (2)[
vx vy vz

]
= COPc−R−1

c Vi. (3)

The overall probability of occupancy for a given voxel p(V ) is:

p(Vi) =
C

∏
i=1

1/(1+ ep(V |c)). (4)

We compute p(Vi) for all Vi ∈ V to create a volumetric representation of the
performer for subsequent processing. An iso-contour extraction algorithm such as
marching cubes [24] is used to extract a triangular mesh model from the voxel based
visual hull (Figure 3). The result is a topologically independent 3D mesh for each
frame of video. This can be converted into a so called ‘4D’ representation using
a mesh tracking process to conform these individual meshes to a single mesh that
deforms over time [7]. Once obtained, it is trivial to mark up a single frame of the
performance to embed a skeleton (e. g. marking each joint limb as an average of
subsets of mesh vertices) and have the skeleton track with the performance as the
mesh deforms. As we explain in subsec. 3.2, either the skeletal or surface representa-
tions from such a 4D performance capture may be used to drive character animation
interactively.

CNNs have also been applied to volumetric approaches, with a spherical his-
togram (c.f. subsec. 3.2.2) derived from the visual hull being fed into a CNN to
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directly identify human pose [34]. The system contrasts with Elhayek et al. [13]
where the CNN operates in 2D rather than 3D space, and similarly adds robustness
to visual clutter in the scene.

3 Interactive Character Animation

Interactive character animation often takes place within complex digital environ-
ments, such as Games, in which multiple entities (characters, moveable objects, and
static scene elements) interact continuously. Since these interactions are a function
of user input they cannot be predicted or scripted a priori, and enumerating all
possible eventualities is intractable. It is therefore necessary to plan animation in
real-time using fast, online algorithms (i. e. algorithms using data from the current
and previous timesteps only). Two distinct categories of algorithm exist.

First, algorithms drawing upon pre-supplied database of motion for the character,
usually obtained via PC and/or manual scripting. Several fragments of motion data
(‘motion fragments’) are stitched and blended together to create a seamless piece
animation. A trivial example is a single cycle of a walk, which can be repeatedly
concatenated to create a character walking forward in perpetuity. However more
complex behaviour (e. g. walks along an arbitrary path) can be created by carefully
selecting and interpolating between a set of motion fragments (for example three
walk cycles, one veering left, one veering right, and one straight ahead) such that no
jarring movement occurs. This form of motion synthesis, formed by concatenating
(and in some cases interpolating between) several motion fragments is referred to
as ‘concatenative synthesis’. The challenge is therefore in selecting and sequencing
appropriate motion fragments to react to planning requirements (move from A to B)
under environmental (e. g. occlusion) and physical (e. g. kinematic) constraints. This
is usually performed via a graph optimization process, with the motion fragments
and valid transitions between these encoded in the nodes and edges of a directed
graph referred to as a ‘move tree’ or ‘motion graph’ [21]. The key advantages of
a motion graph are predictability of movement and artistic control over the motion
fragments that are challenging to embody within a physical simulation. The disad-
vantage is that motion cannot generalise far beyond the motion fragments i. e. char-
acter movement obtained via PC in the studio. We discuss concatenative synthesis
in detail within subsec. 3.2.

Second, algorithms that do not require pre-scripted or directly captured animation
but instead simulate the movement under physical laws. Physics simulation is now
commonly included within Games engines (e. g. Havoc, PhysX) but used primarily
to determine motion of objects or particles, or animation of secondary characteristics
such as cloth attached to characters [4]. Yet more recently, physics based character
animation has been explored integrating such engines into the animation loop of
principal characters [14]. Physics based simulation offers the significant advantage
of generalisation; characters modelled in this manner can react to any situation with
the virtual world and are not bound to a database on pre-ordained movements. Nev-
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ertheless, the high computational cost of simulation forces accuracy-performance
trade-offs for real-time use. Simplifying assumptions such as articulated rigid bodies
for skeletal structure are very common. It is therefore inaccurate to consider physi-
cally simulated animation as being more ‘natural’, indeed the tendency of simulation
to produce ‘robotic’ movements lacking expressivity has limited practical uptake of
these methods for interactive character animation until comparatively recently. We
briefly discuss physics based character control in the next section, restricting dis-
cussion to the context of real-time animation for interactive applications. A detailed
discussion of physics based character animation in a broader context can be found
in Chapter C-2.

3.1 Real-time Physics based Simulation

Physically simulated characters are usually modelled as a single articulated structure
of rigid limb components, inter-connected by two basic forms of joint mimicking
anatomy in nature. Characters modelled under physical simulation are typically hu-
manoid [18, 27], or animal [36] consisting predominantly of hinge joints, with hips
and shoulders joints implemented as ball-socket joints. Depending on the purpose
of the simulation, limbs may be amalgamated for computational efficiency (e. g. a
single component for head, neck and torso) [33]. More complex simulations can
include sliding joints in place of some hinge joints, that serve to model shock ab-
sorption within the ligaments of the leg [22].

3.1.1 Character Model Actuation

The essence of the physical simulation is to solve for the forces and torques that
should be applied to each limb, in order to bring about a desired motion. This solve
is performed by a ‘motion controller’ algorithm (subsec. 3.1.2). The locations at
each limb where forces are to be applied is a further design consideration of the
modeller. The most common strategy is to consider torque about each joint (degree
of freedom), a method known as servo actuation. Whilst intuitive, servo actuation is
not natural — effectively assuming each joint to contain a motor capable of rotating
its counter-part. Careful motion planning is necessary to guard against unnatural
motion arising under this simplified model.

Biologically inspired models include simulated muscles that actuate through ten-
dons attached to limbs, effecting a torque upon the connected joints. Muscle actu-
ated models are more challenging to design motion controllers for, since the maxi-
mum torque that can be applied by a muscle is limited by the turning moment of the
limb which is dependent on the current pose of the model. Furthermore the number
of degrees of freedom in such models tends to be higher than servo-actuated mod-
els, since muscles tend to operate in an antagonist manner with a pair of muscles
per joint enabling ‘push’ and ‘pull’ about the joint. Moreover such models cannot be
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considered natural unless the tendons themselves are modelled as non-rigid struc-
tures, capable of stretch and compressing to store and release energy in the move-
ment. The high computational complexity of motion controllers to solve for muscle
actuated models therefore remains a barrier to their use in real-time character ani-
mation, whose applications to digital entertainment (rather than say, bio-mechanics)
rarely require biologically accurate simulation. We therefore do not consider them
further in this chapter.

3.1.2 Character Motion Control

Use cases for character animation rarely demand direct, fine-grain control of each
degree of freedom in the model. Rather, character control is directed at a higher
level e. g. ‘move from A to B at a particular speed, in a particular style’. Such di-
rectives are issued by game AI, narrative or other higher level controllers. Motion
controllers are therefore a mid-layer component in the control stack bridging the
semantic gap between high-level control and low-level actuation parameters. In in-
teractive scenarios, simple servo-based actuation (i. e. independent, direct control
over joint torques) is adopted to ensure computation of the mapping is tractable in
real-time.

Solving for the movement is performed iteratively, over many small time steps,
each incorporating feedback supplied by the physics engine from each actuation
of the model at the previous time-step under closed-loop control. This obviates the
need to model complex outcomes of movements within the controller itself. Feed-
back comprises not only global torso position and orientation, but also individual
joint orientation and velocity post-simulation of the movement. It is common for
controllers to reason about the stability (balance) of the character when planning
movement. The center of mass (COM) of the character should correspond to the
zero-moment point (ZMP) i. e. the point at which the reaction force from the world
surface results in a zero net moment. When the COM and ZMP coincide the model
is stable.

We outline two common strategies to motion control that are applicable to phys-
ically based real-time interactive character animation.

Control in Joint-Space via Pose Graphs. Some of the earliest animation en-
gines comprised carefully engineered software routines, to procedurally generate
motion according to mechanics models embedded within kinematics solvers and
key-framed poses. This approach is derived from real-time motion planning in the
robotics literature.

Such approaches model the desired end-position of a limb (or limbs) as a ‘key-
pose’. Using a kinematics engine, the animation rig (i. e. joint angles) are gradually
adjusted to bring the character’s pose closer to that desired key-pose. The adjustment
is an iterative process of actuation, and feedback from the environment to determine
the actual position of the character and subsequent motions. For example, the COM
and ZMP as well as the physical difference between the current and intended joint
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(a) (b)

Fig. 4 Physically based interactive character animation. (a) Pose Space Graph used to drive high
level goals for kinematics solvers which direct joint movements (from [23]); (b) Ambulatory mo-
tion of a creature and person learned by optimization processes mimicking nature (from [30] and
[19]) respectively.

positions are monitored to ensure the intended motion does not unbalance the char-
acter unduly and that progress is not impeded by itself or other scene elements.

A sequence of such key-poses are defined within a ‘Pose Space Graph’ (PSG)
, where the nodes in the graph are procedurally defined poses i. e. designed by the
animator, but the movements between poses are solved using an inverse kinematics
engine (IK). A motion such as a walk, is performed by transitioning through states
in the PSG (Figure 4 illustrates a walk cycle in a PSG). Due to physical or timing
constraints, a character often will not reach a desired pose within the PSG before
being directed toward the next state. Indeed it is often unhelpful for the character
to decelerate and pause (i. e. obtain ZMP of zero) and become stable at a given
state before moving on the next; a degree of perpetual instability for example exists
within the human walk cycle. Therefore key-poses in the PSG are often exaggerated
on the expectation that the system will approximate rather than interpolate the key
poses within it.

The operation of PSGs is somewhat analogous to motion graphs (c.f. sub-
sec. 3.2.1), except that IK is used to plan motion under physical models, rather
than pre-captured performance fragments concatenated and played back.

Control via Machine Learned Models. Although expensive to train, machine
learning approaches offer a run-time efficiency unrivaled by other real-time mo-
tion controller strategies. Most commonly, neural networks (NN) are used to learn a
mapping between high-level control parameters and low-level joint torques, rather
than manually identified full body poses (subsec. 3.1.2). Notwithstanding design of
the fitness function of the network and its overall architecture, the training process
itself is fully automatic using a process trial-and-error via feedback from the physics
simulation. A further appeal of such approaches is that such training is akin to the
biological process of learned actuation in nature.

Networks usually adopt a shallow feed-forward network such as a multi-layer
perceptron (MLP) [26], although the growing popularity of deeply learned networks
has prompted some recent research into their use as motion controllers [19]. Train-
ing the MLP proceeds from an initially randomised (via Gaussian, or ‘white’ noise)
set of network weights, using a function function derived from some success metric
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– typically the duration that the controlled model can execute movement (e. g. walk)
for without destabilising and falling over. Many thousands of networks (weight con-
figurations) are evaluated to drive character locomotion, and the most successful
networks and modified and explored further in an iterative optimization process to
train the network [30].

Optimization of the NN weights is commonly performed by an evolutionary al-
gorithm (EA) in which populations of network configurations (i. e. sets of weights)
are evaluated in batches. The more successful configurations are propagated the sub-
sequent batch, and spliced with other promising configurations, to produce batches
of increasingly fitter networks [38]. In complex networks with many weights and
complex movements, it can be challenging for EAs to converge during training. In
such cases, weight configurations for the NN can be boot-strapped by training the
same network over simpler problems. This improves up white noise initialisation
for more complex tasks. In practice, training a NN can take tens of thousands of it-
erations to learn an acceptable controller [30] for even very simple movements. Yet,
once learned the controller is trivial to evaluate quickly and can be readily deployed
into a real-time system. Even with boot-strapped training however, NN cannot learn
complex movement and it was not until the recent advent of more sophisticated
(deeper) NNs that locomotion of a fully articulated body was demonstrated using an
entirely machine-learned motion controller [19].

3.2 Concatenative Synthesis

Motion concatenation is a common method for synthesising interactive animation
without the complexity and computational expense of physical simulation. In a con-
catenative synthesis pipeline, short fragments of motion capture are joined (and
often blended) together to create a single seamless movement. In the simplest ex-
ample, a single walk cycle may be repeated with appropriately chosen in-out points
to create a perpetual gait. A more complex example may concatenate walk cycles
turning slightly left, slightly right, or advancing straight-ahead to create locomotion
along an arbitrary path.

3.2.1 Skeletal Motion Graphs

Concatenative synthesis is dependent on the ability to seamlessly join together pairs
of pre-captured motion fragments – sub-sequences of performance capture – to build
complex animations. An initial step when synthesising animation is therefore to
identify the transition points within performance captured footage, at which mo-
tion fragments may be spliced together. Typically the entire capture (which may in
practice consist of several movements e. g. walking, turning) is considered as a sin-
gle long sequence of t = [1,N] frames, and pairs of frames {1..N,1..N} identified
that could be transitioned between to without the view perceiving a discontinuity.
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Fig. 5 An example of an animation (top) generated by a motion graph (left) comprising four ac-
tions. An visualisation of the inter-frame distance comparison used to compute a motion graph
(right).

A measure of similarity is defined, computable from and to any time instant in the
sequence, and that measure thresholded to identify all potential transition points.
Figure 5 visualises both the concept, and an example of such a comparison com-
puted exhaustively over all frames of a motion capture sequence — brighter cells
indicating closer matching frame pairs.

Measures of pose similarity. Pose similarity measures (which, in practice, often
compute the dissimilarity between frames) should exhibit three important proper-
ties:

1. Be invariant to global rotation and translation — similar poses should be iden-
tified as similar regardless of the subject’s position in world-space at both time
instants. Otherwise, few transition points will be detected.

2. Exhibit spatio-temporal consistency — poses should not only appear similar at
the pair of time instants considered, but also move similarly. Otherwise, motion
will appear discontinuous.

3. Reflect the importance of certain joints over others. Otherwise, a difference in
position of e. g. a finger might outweigh a difference in position of a leg.

Common similarity measures include direct comparison of joint angles (in quater-
nion form), or more commonly, direct comparisons of limb spatial position in 3D.
A set of 3D points p1..m is computed either from limb end-points, or from the ver-
tices of a coarse mesh approximating the form of the model and a sum of squared
differences used to evaluate the dissimilarity D(p, p′) between point sets from a pair
of frames p and p′ at times t and t ′ respectively:

D(p, p′) = minθ ,x0,z0

m

∑
i=1

ωi
∣∣pi−Mθ ,x0,z0 p′i

∣∣2 . (5)
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Where |.| is the Euclidean distance in world-space, pi is the ith point in the set, and
M is a Euclidean transformation best aligning the two sets of point clouds, via a
translation on the ground-plane (z0,z0) and a rotation θ about the vertical (y) axis
— so satisfying property (1). In order to embed spatio-temporal coherency (2), the
score is computed over point sets not just from a given pair of times {t, t ′} but for
a k frame window [t− k

2 , t +
k
2 ]. This is effectively a low-pass filter over time, and

explains the blurred appearance of Figure. 5 (right). For efficiency, pair-wise scores
are computed and the resulting matrix low-pass filtered. The relative importance
of each point (associated with the limb from which the point was derived) is set
manually via ωi satisfying property (3).

Motion Graph Construction. Local thresholding is applied to the resulting simi-
larity matrix, identifying non-adjacent frames (t, t ′) that could be concatenated to-
gether to produce smooth transitions according to properties (1-3). For example, if
the mocap sequence contains several cycles of a walk it is likely that correspond-
ing points in the walk cycles (e. g. left foot down at the start of each cycle) would
be identified as transitions. Playing one walk cycle to this time t, and then ‘seek-
ing’ forward or backward by several hundred frames to the corresponding time t ′

in another walk cycle will not produce a visual discontinuity despite the non-linear
temporal playback.

The ‘in’ (t) and ‘out’ (t ′) frames of these transition points are identified and rep-
resented as nodes in a graph structure (the motion graph). Edges in the graph corre-
spond to clips of motion i. e. motion fragments between these frames in linear time.
Additional edges are introduced to connect the ‘in’ and ’out’ frames of each transi-
tion. Usually the pose of the performer at the ‘in’ and ’out’ points differs slightly,
and so this additional edge itself comprises a short sequence of frames constructed
by interpolating the poses at ’in’ and ’out’ respectively e. g. using quarternion based
joint angle interpolation.

Motion Path Optimization. Random walks over the motion graph representation
can provide a useful visualisation to confirm that sensible transitions have been
identified. However interactive character control requires careful planning of routes
through the motion graph, to produce movement satisfying constraints the most fun-
damental of which are the desired end-pose (and position in the world, pv), the dis-
tance that the character should walk (dv), and the time it should take the character to
get there (tv). Under the motion graph representation, this corresponds to computing
the optimal path routing us from the current frame of animation (i. e. the current mo-
tion capture frame being rendered) to a frame corresponding to the target key-pose
elsewhere in the graph. Since motion graphs are often cyclic there are potentially
unbounded number of possible paths. The optimal path is the one minimising a cost
function, expressed in terms of these four animation constraints (Ctrans, Ctime, Cdist
and Cspatial):

C(P) =Ctrans(P)+ωtime ·Ctime(P)+ωdist ·Cdist(P)+ωspace ·Cspace(P). (6)
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Studying each of these terms in turn, the cost of a path P is influenced by Ctrans;
reflecting the cost of all performing animation transitions along the path P. Writing
the sequence of N f edges (motion fragments) along this path as { f j} where j =[
1,N f

]
this cost is a summation of the cost of transitioning at each motion graph

node along that path:

Ctrans(P) = ∑
j=1

N f −1D
(

f j 7→ f j+1
)
, (7)

where D
(

f j 7→ f j+1
)

expresses the cost of transitioning from the last frame of f j
to the first frame of f j+1, computing by measuring the alignment of their respective
point clouds p and p′ via D(p, p′) (eq. 5)

The timing cost Ctime(P) is computed as the absolute difference between the
target time tv for the animation sequence, and the absolute time time(P) taken to
transition along the path P:

Ctime(P) = |time(P)− tv| .
time(P) = N f ·∆ t, (8)

where ∆ t is the time take to display a single frame of animation e. g. ∆ t = 1
25 for

25 frames per second.
Similarly, the cost Cdist(p) is computed as the absolute difference between the

target distance dv for the character to travel, and the absolute distance travelled
dist(P) computed by summing the distance travelled for each frame comprising
P.

Cdist(P) = |dist(P)− tv| .
dist(P) = ∑

j=1
N f −1

∣∣P( f j)−P( f j+1)
∣∣ , (9)

where P is a 2D projection operation, projecting the 3D points clouds p and p′

corresponding to the end frame of f j and start frame of f j+1 respectively to the 2D
ground (x− z) plane and computing the centroid.

The final cost Cspatial is computed similarly via centroid projection of the ani-
mation end-point, penalising a large distance between the target end-point of the
character and end-point arising from the animation described by P.

Cspace(P) =
∣∣∣P( fN f−1)− pv

∣∣∣ . (10)

The three parameters ωtime, ωdist , ωspace are normalising weights typical values
of which are ωtime = 1/10,ωdist = 1/3,ωspace = 1 [3].

Finding the optimal path Popt for a given set of constraints C... is found by min-
imising the combined cost function C(P) (eq. 6):

Popt = argmin
P

C(P). (11)
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Fig. 6 Visualisation of a spherical histogram computed from a character volume. Multiple video
views (left) are combined to produce a volumetric estimate of the character (middle) which is
quantized into a spherical (long-lat) representation at multiple radii from the volume centroid.

An efficient approach using integer programming to search for the optimal path
that best satisfies the animation constraints can be found in Huang et al.[20] and
is capable of running in real-time for motion fragment datasets of several minutes.
Note that Ctrans is be pre-computed for all possible motion fragment pairs, enabling
run-time efficiencies — the total transition cost for a candidate path P is simply
summed during search.

3.2.2 Surface Motion Graphs

Surface motion graphs (SMGs) extend the skeletal motion graph concept beyond
joint angles, to additionally consider the 3D volume of the performer. This is impor-
tant since the movement of 3D surfaces attached to the skeleton (e. g. hair or flowing
clothing) is often complex, and simple concatenation of pre-animated or captured
motion fragments without considering the movement of this surface geometry can
lead to visual discontinuities between motion fragments.

Consideration of surfaces, rather than skeletons, requires the motion graph
pipeline to change only in two main areas. First, the definition of frame similarity
i. e. eq. 5 must be modified to consider volume rather than joint positions. Second,
the algorithm for interpolating similar frames to create smooth transitions must be
substituted for a surface interpolation algorithm.

3D Shape Similarity. To construct a SMG, an alternative measure of frame simi-
larity using 3D surface information is adopted, reflecting the same three desirable
properties of similarity measures outlined in subsec. 3.2.1. A spherical histogram
representation is calculated from the 3D character volume within the frame. The
space local to the character’s centroid is decimated into sub-volumes, divided by
equispaced lines of longitude and latitude – so yielding a 2D array encoding the
histogram that encodes the volume occupied by the character. Spherical histograms
are computed over a variety of radii, as depicted in Figure 6 (right) yielding a three
dimensional stack of 2D spherical histograms.
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The SMG is computed as with skeletal motion graphs, through an optimization
process that attempts to align each video to every other — resulting in a matrix
of similarity measurements between frames. The similarity between the spherical
histograms Hr(.) at radius r of the 3D character meshes Qa and Qb is computed by:

D(Qa,Qb) = min
φ

1
R

R

∑
r=1

ωr |Hr(Qa,0)−Hr(Qb,φ)| , (12)

where H(x,φ) indicates a spherical histogram computed over a given mesh x, ro-
tated about the y axis (i. e. axis of longitude) by φ degrees. In practice this rotation
can be performed by cycling the columns of the 2D histogram obviating any expen-
sive geometric transformations; an exhaustive search across φ = [0,359] degrees is
recommended in [20]. The use of the model centroid, followed by optimization for
φ fulfills property (1) i. e. rotational and translational invariance in the comparison.
The resulting 2D matrix of inter-frame comparisons is low-pass filtered as before to
introduce temporal coherence, satisfying property (2). Weightings set for each ra-
dial layer of the spherical histogram ωr weight the importance of detail as distance
increases, satisfying (3).

Transition Generation. Due to comparatively high number of degrees of freedom
on a 3D surface, it is much more likely that the start and end frames of a pair of
motion fragments f j and f j+1 selected on an optimal path Popt will not exactly
match. To mitigate any visual discontinuities on playback, a short transition se-
quence is introduced to morph the former surface (S j) into the latter (S j+1). This
transition sequence is substituted in for small number of frames (L) before and after
the transition point. Writing this time interval k = [−L,L], a blending weight α(k)
is computed:

α(k) =
k+L

2L
, (13)

and a non-linear mesh blending algorithm (such as the Laplacian deformation
scheme of [32]) is applied to blend S j 7→ S j+1 weighted by al pha(k).

3.2.3 Parametric Motion Graphs

Parametric motion graphs (PMG) extend classical motion graphs (subsec. 3.2.1) by
considering not only the concatenation, but also the blending, of motion fragments
to synthesise animation. A simple example is a captured sequence of a walk and a
run cycle. By blending these two motion fragments together one can create a cycle
of a walk, a jog, a run or anything in-between. Combined with the concatenation
of cycles, this leads to a flexibility and storage efficiency not available via classic
methods — a PMG requires only a single example of each kind of motion fragment,
whereas a classical approach would require pre-captured fragments of walks and
runs at several discrete speeds.
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Fig. 7 Three animations each generated from a parametric motion graph [9]. First Row: Walk
to Run (speed control). Second Row: Short to Long Horizontal Leap (distance i. e. leap length
control). Third Row: Short to High Jump (height control). Final Row: Animation from a Parametric
Motion Graph embedded within an outdoor scene under interactive user control [10] (time lapse
view).

Parametric extensions have been applied to both skeletal [17] and surface motion
graphs [9]. Provided a mechanism exists for interpolating a character model (joint
angles, or 3D surface) between two frames, the method can be applied. Without loss
of generality we consider surface motion graphs (SMGs) here.

SMGs assume the availability of 4D performance capture data; i. e. a single
3D mesh of constant topology deforming over time to create character motion
(subsec. 2.2.2). We consider a set of N temporally aligned 4D mesh sequences
Q = {Qi(t)} for i = [1,N] motion fragments. Since vertices are in correspondence,
it is possible to interpolate frames from such sequences directly by interpolating
vertex positions in linear or piecewise linear form. We define such an interpolating
function b(Q,w) yielding an interpolated mesh QB(t,w) at time t given a vector of
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weights w expressing how much influence each of the meshes from the N motion
fragments at time t should contribute to that interpolated mesh.

QB(t,w) = b(Q,w), (14)

where w = {wi} for normalised weights w ∈ [0,1] that drives a mesh blending
function b(.) capable of combining meshes at above 25 frames per second for inter-
active character animation.

Several steps are necessary to deliver parametric control of the motion fragments:
time-warping to align pairs of mesh sequences (which may different in length) so
that they can be meaningfully interpolated; the blending function b(.) to perform
the interpolation; and mapping between high level ‘user’ parameters from the mo-
tion controller to low level blend weights w. Considerations such as path planning
through the graph remain, as with classical motion graphs, but must be extended
since the solution space now includes arbitrary blendings of motion fragments, as
well as the concatenated of those blended fragments. Exhaustively searching this
solution space is expensive, motivating real-time methods to make PMG feasible
for interactive character animation.

Mesh Sequence Alignment. Mesh sequences are aligned using a continuous time
warping function t = f (tu) where the captured timebase tu is mapped in non-linear
fashion to a normalised range t = [0,1] so as to align poses. The technique is de-
scribed in Witkin and Popovic [37]. Although coarse results are obtainable without
mesh alignment, failure to properly align sequences can lead to artifacts such as foot
skate.

Real-time Mesh Blending. Several interpolation schemes can be employed to
blend a pair of captured poses. Assuming a single mesh has been deformed to track
throughout the 4D performance capture source data (i. e. all frames have constant
topology) a simple linear interpolation between 3D positions of corresponding ver-
tices is a good first approximation to a mesh blend. Particularly in the presence of
rotation, such approximations yield unrealistic results. A high quality solution is
to use differential coordinates i. e. a Laplacian mesh blend [5] however solution of
the linear system (comprising a 3v× 3v matrix of vertex positions, where v is of
the order 105 is currently impractical for interactive animation. Therefore a good
compromise can be obtained using a piece-wise linear interpolation [9], which pre-
computes offline a set of non-linear interpolated meshes (e. g. via [5]) and any re-
quested parametric mesh is produced by weighted linear blending of the closest two
precomputed meshes. The solution produces more realistic output, in general, that
linear interpolation at the same computational cost.

High-level Control. High-level parametric control is achieved by learning a map-
ping function f (w) between the blend weights w and the high-level motion param-
eters p e. g. from the motion controller. A mapping function w = f−1(p) is learned
from the high-level parameter to the blend weights required to generate the desired
motion. This is necessary as the blend weights w do not provide an intuitive parame-
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Fig. 8 Real-time motion planning under a parametric motion graph. Routes are identified between
trellises fanned out from the source pose Qs and end pose Qd . The possible (red) and optimal
(green) paths are indicated (illustration only).

terisation of the motion. Motion parameters p are high-level user specified controls
for a particular class of motions such as speed and direction for walk or run, and
height and distance for a jump. The inverse mapping function f−1 from parameters
to weights can be constructed by a discrete sampling of the weight space w and
evaluation of the corresponding motion parameters p.

Parametric Motion Planning. PMGs dispense of the notion of pre-computed tran-
sition points, since offline computation of all possible transition and blend possibil-
ities between e. g. a pair of mesh sequences would yield an impractical number of
permutations to permit real-time path finding.

We consider instead a continuous ‘weight-time’ space with the weight modelling
the blend between one mesh sequence (e. g. a walk) and another (e. g. a run). We
consider motion planning as the problem of finding a route through this space, taking
us from a source time and pose (i. e. weight combination) to a target time and pose.
Fig. 8) illustrates such a route finding process. The requirement for smooth motion
dictates we may only modify the weight or time in small steps, yielding to a ‘fanning
out’ or trellis of possible paths from the source point in weight-time space. The
optimal path Popt between two parametric points in that space is that minimising a
cost function balancing mesh similarity ES(P) and time taken i. e. latency EL(P) to
reach that pose:

Popt = argmin
P∈Ω

ES(P)+λEL(P), (15)

where λ defines the trade-off between transition similarity and latency. The tran-
sition path P is optimized over a trellis of frames as in Fig. 7 starting at frame
Qs(ts,ws) ending at Qd(td ,wd) where Qs and Qd are interpolated meshes (eq. 14).

The trellis is sampled forward and backward in time at discrete intervals in time
∆ t and parameters ∆w up to a threshold depth in the weight-time space. This defines
a set of candidate paths P comprising the transitions between each possible pair of
frames in the source and target trellis.
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For a candidate path P, the latency cost EL(P) is measured as the number of
frames in the path P between the source and target frames. The transition similarity
cost ES(P) is measured as the similarity in mesh shape and motion at the transition
point between the source and target motion space for the path P, computable via
eq. 12 for mesh data (or if using purely skeletal mocap data, via eq. 5). Casas et
al. [8] proposed a method based on precomputing a set of similarities between the
input data, and interpolating these at runtime to solve routing between the two trellis
at interactive speeds. Figure 7 provides examples of animation generated under this
parametric framework.

4 Summary and Future Directions

This chapter has surveyed techniques for interactive character animation, broadly
categorising these as either data-driven or physical simulation based. Arguably the
major use cases for interactive character animation are video games and immersive
virtual experiences (VR/AR). In these domains, computational power is at a pre-
mium — developers must seek highly efficient real-time algorithms, maintaining
high frame-rates (especially for VR/AR) without compromising on animation qual-
ity. This has led interactive animation to trend toward data-driven techniques that
sample, blend and concatenate fragments of performance capture rather than spend
cycles performing expensive online physical simulations.

This chapter has therefore focused upon synthesis techniques that sample, con-
catenate and blend motion fragments to create animation. The chapter began by sur-
veying commercial technologies and academic research into performance capture.
Although commercial systems predominantly focus upon skeletal motion capture,
research in 4D performance capture is maturing toward practical solutions for si-
multaneous capture of skeletal and surface detail. The discussion of motion graphs
focused upon the their original use for skeletal data, and their more recent extensions
to support not only 4D surface capture but also their parametric variants that enable
blending of sequences in addition to their concatenation. Physical simulation based
approaches for character animation were examined within the context of interactive
animation, deferring broader discussion of this topic to chapter C-2.

Open challenges remain for interactive character animation, particularly around
expressivity and artistic control. Artistic directors will often request editting of ani-
mation to move in a particular style (jaunty, sad); adjustments that can be performed
manually by professional tools such as Maya (Autodesk) or MotionBuilder (Vicon),
but that cannot be applied automatically in an interactive character animation en-
gine. Whilst work such as Brand et al.’s Style Machines [6] enables stylisation of
standalone skeletal mocap sequences, algorithms have yet to deliver the ability to
modulate animation interactively e. g. to react to emotional context in a game. An
interesting direction for future research would be to integrate stylisation and other
high level behavioural attributes into the motion graph optimization process.
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