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Abstract

This paper presents new methods for stylising video to produce cartoon motion
emphasis cues and modern art. Specifically, we introduce “dynamic cues” as a class
of motion emphasis cue, encompassing traditional animation techniques such as
anticipation and motion exaggeration. We describe methods for automatically syn-
thesising such cues within video premised upon the recovery of articulated figures,
and the subsequent manipulation of the recovered pose trajectories. Additionally,
we show how our motion emphasis framework may be applied to emulate artwork
in the Futurist style, popularised by Duchamp.
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1 Introduction

The paper addresses the problem of stylising real-world video sequences to
create animations. This problem comprises two principal technical challenges.
First, how to generate stable artistic stylisations over the video (for example,
an oil painterly effect)? Second, how to emulate the motion emphasis cues used
by traditional animators? Early attempts to solve the first problem suffered
from a distracting flickering [1,2] that more recent approaches suppress [3,4].
This paper focuses on the second problem of motion emphasis which, until re-
cently, has received little attention in the non-photorealistic rendering (NPR)
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Fig. 1. Anticipation is a common dynamic cue; ghosting and streak-lines are also
shown, as is some deformation.

literature. A limited range of motion emphasis effects have been produced
from three dimensional computer graphics models [5,6], by motion capturing
cartoons [7], or interactively from drawings [8] and video [9]; see [10] for a
wider review. Of greatest relevance to this paper is previous work by the au-
thors addressing the production of both augmentation cues and deformation
cues in real video [11]. The contribution of this paper is to extend the analytic
framework required for augmentation and deformation cues so that dynamic
cues can be automatically produced. Furthermore the Futurist school of paint-
ing, typified by Duchamp, can be emulated; this too is a unique contribution
to NPR.

Traditional animators emphasise motion with a variety of cues that are famil-
iar to anyone who has watched animations. Streak-lines depicting the paths
of objects, and ghosting effects that echo trailing edges, are both examples
of what we call augmentation cues: the animation is visually augmented with
marks of some kind. Animated objects may stretch as they accelerate, squash
as they slow down, or bend to show drag or inertia — we call these deforma-
tion cues. Furthermore objects may “anticipate” movement by a slight prior
movement backwards, or move in a characteristic way that exaggerates ordi-
nary motion. These latter cues we call dynamic cues. Examples of these cues
are illustrated in Figure 1. A deeper understanding of the differences between
them relies on a definition of pose trajectory, as we now explain.

At any given instant in time an object has a particular pose, typically spec-
ified by a vector of numbers (for example, inter-joint orientations and world
position). As this pose vector changes in time we obtain a pose trajectory.
Augmentation cues and deformation cues are rendered as a function of pose
trajectory. Dynamic cues differ because they alter the pose trajectory. This
makes rendering dynamic cues very difficult because both the pose and tim-
ing of the object may change: poor rendering could leave “gaps” in the video,
for example. Furthermore generating dynamic cues is non-trivial: a cartoon
character can “wind up to run” in a way that is unique to them. The essential
simplicities that bind the set of dynamic cues are very difficult to find.



Our purpose here is to provide an initial in-road into an understanding of dy-
namic cues. To this end we show how to generate and analyse a pose trajectory
to produce:

e anticipation effects;
e motion “caricaturing” e.g. exaggeration effects;
e Futurist-like stills, in a style reflecting that of Duchamp.

Our broad approach is to track polygons fitted around rigid objects so as
to estimate their pose trajectory. This is analysed to construct a hierarchi-
cal articulated figure of rigid parts, with its pose trajectory (Section 2). The
dynamic cues we produce from this (Section 3) integrate fully with our early
published framework for synthesising augmentation and deformation cues [11].
Further, all motion emphasis cues integrate with our stable video stylisation
technique [3]. Therefore, the contribution of this paper completes our work in
the automated production of animations from real-world video, see [10] for a
full description of our Video Paintbox.

2 Recovering Articulated Structure

Our problem is to recover the motion of a articulated figure — a doll —
from monocular video. The doll is to be built from rigid parts and have a
hierarchical structure. The hierarchy is a tree in which each part corresponds
to a tree node. Two nodes are linked in the tree if they are physically connected
by a pivot.

Humans are an important class of articulated figures, and the recovery of
human motion from video sequences is a well researched problem, see Hicks
for a review [12]. Briefly, most techniques use a constraint in the form of many
cameras or a prior model of human motion, neither option is open to us for we
have one camera and cannot guarantee that a human is the articulated figure.
The constraint we use is that the object moves in a plane (more formally:
the motion vectors can be sufficiently well represented by a two-dimensional
vector space).

The underlying idea is to consider pairs of rigid parts and observe the motion
of one relative to the other. This allows us to estimate the centre of rotation,
if it exists, at an instant in time. By holding fixed first one object and then
the other we estimate two centres of rotation. If these are sufficiently close
and both lie within the intersection of the polygons associated with the rigid
parts, then we decide that the two objects are pivoted and select the rotation
centre computed when the parent was held still as the pivot point. The root is
arbitrarily assigned, its parent is the world frame. A depth ordering between



Fig. 2. An articulated contraption used for experiments. The full pose vector at
various instants in time is shown alongside.

the parts of the figure is assigned using occlusion information available from
the video, useful when later compositing features. The tracking and depth
recovery processes are beyond the scope of this paper and the reader is referred
elsewhere for details [13].

Our focus here is to recover the pose trajectory, p(¢) of an articulated object:

where c(t) is the location of some identifiable point on the object’s root node,
and the 6;(t) specify the orientation of each branch node relative to its parent;
01(t) orients the whole articulated object using c(t) as a pivot.

We begin by tracking points on polygons. The state of a particle (point) at
any time instant, ¢, is a vector comprising position, x(t), velocity v(t) and
acceleration a(t).

s(t) = | v(t) (2)

Each state is a particle in state space. This state is used by the Kalman fil-
ter [14] to track objects in video. The reader is referred elsewhere [10] for
full details of tracking, which are beyond the scope of this paper — in brief,
tracking operates as follows. Users identify objects in the video by drawing
contours which are “shrink wrapped” to objects in the first frame of video



using snake relaxation [15]. We assume contour motion may be modelled by a
linear conformal affine transform in the image plane, allowing planar motion
plus scaling of objects. An estimate of this inter-frame transformation is es-
timated using a RANSAC search of putative feature correspondences within
the tracked objects, obtained using a Harris corner detector.

Given the state of particles on a rigid body (polygon) we estimate the transla-
tion and rotation of the body in the following manner. At some time ¢ let x; be
the ith identifiable point of a rigid body. Given three such points these trans-
form, under an instantaneous rotation R and translate under an instantaneous
displacement u. In homogeneous coordinates:

Y1 Y2Y3 Ru||xxx
= (3)
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Each matrix is (3 x 3) so the unknown transform is straightforward to compute
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Hence we can compute instantaneous changes in orientation and location. It is
a simple matter to integrate these to obtain a change relative to the starting
orientation to acquire [c(t), 0(t)]T, relative to the starting position.

We next consider whether a given pair of rigid objects are pivoted. Given two
rigid objects, A and B, we assume the pose trajectory for each of them, p 4(t)
and pp(t). Consequently the motion of B relative to A is easy to estimate,
being characterised completely by the difference in pose trajectories pp(t) —
pa(t). Therefore we can observe the movement of B in the reference frame of
A, which reduces the problem of finding a mutual pivot to one of finding a
fixed point about which B rotates (if it rotates at all).

Let x; be a point on B, measured in the fixed reference frame of A. Suppose
B rotates about the fixed point f, relative to A. If motion is uniform, then
after a short time interval dt this point appears at y;

yi=R(x; —f)+f (5)

The problem is to estimate f given a sufficient number of x; and y;. This
problem differs Equation (3) because there rotation about the origin was suf-
ficient, and we computed a translation too; here we seek rotation about an



unknown point. We will later discuss the relationship between these two prob-
lems in greater depth. The important principle here is f is a singularity of the
transform, therefore we cannot invert the system of equations.

We proceed by solving a system of homogeneous linear equations. Writing z;
for the j™ element of some point x, at time ¢ and y; for the corresponding
element at time t + dt. Equation (5) becomes

Y1 =T1121 — T12T2 + U (6)

Y2 =T21T1 — T22T9 + Ug (7)
in which

u=(I-R)f (8)

We can now write
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We may extend the left-most matrix because each identifiable point in B pro-
vides two rows, yielding a design matrix M. The smallest right-singular vector
of M is a suitable solution in the least squared sense. This is normalised so
that its seventh element is unity and in this way we obtain the rotation matrix
elements 7; and a displacement u. The pivot f is obtained from Equation (8)
as

f=I-R)'u (10)

Because this estimate of f is obtained using all identifiable points of B it
tends to be robust to measurement error. If there is no rotation, then R =1,
indicating there is no pivot. We decide that B has a pivot relative to A only
if a pivot f exists that lies within the intersection of A and B.

To further improve robustness we reverse the roles of A and B, recomputing
the pivot point. Furthermore, we compute the pivot for all time instants ¢,
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Fig. 3. Illustrating the difficulty of recovering pivot point location from rotation, in
the case of a moving pivot. Under instantaneous motion, the combination of rotation
and pivot shift causes an apparent translation of pivot location orthogonal to the
direction in which the pivot have moved.

each over a fixed interval dt. We insist that the pivot remains within the
intersection of A and B over all time. Figure 2 illustrates the fact that we can
recover complex articulated structures in this way.

We now return to the relationship between Equations (3) and (5). The first of
these computes rotation about the origin and an accompanying displacement,
the second computes rotation about an unknown fixed pivot. We claim it is not
possible to simultaneously compute a rotation, a pivot and a displacement. As
proof we consider the point x rotating about the origin with constant angular
velocity w. The tangential velocity of this point is X = w(x ® n), where n
is a normal to the plane of rotation and ® is vector cross product (it is not
necessary for this to obey the right-hand screw rule). Now suppose that x not
only rotates about the origin but translates too, with a linear velocity u. The
governing equation now is X = w(x®n)-+u. Since U is a constant we can always
write it in the form u = w(d®n), and therefore obtain x = w(x®n)+w(d®n).
Appealing to the fact that addition distributes over the cross product operator
we obtain X = w((x+d) ® n) from which we conclude that effective centre of
rotation has been shifted as a consequence of the displacement, in a direction
perpendicular to it. This result is analogous to the phenomenon observed in
a gyroscope, which when suffering a force in the plane of its rotation moves,
in the plane, in a direction orthogonal to the applied force. Here it shows
that if we choose an arbitrary pivot we can always determine a compensating
displacement, and vice-versa. Therefore we cannot unambiguously estimate
both at once; this is an in-principle restriction.

Given a pose trajectory for each rigid body, and a pivot for each pair of
linked rigid bodies, it is a matter of book-keeping to assemble a hierarchical
articulated figure, complete with a full pose trajectory of the form in Equation
(1); we have automatically assembled a doll from video data.



3 Dynamic cues and modern art

Given a recovered doll, we can produce not only dynamic cues as seen in
traditional animations, but also emulate the Futurist style of modern art. So
far as we are aware, both represent unique contributions.

As mentioned the general form of dynamic cues is to map one pose trajectory
into another:

p'(t) = Flp()] (11)

The new pose trajectory is used to govern all other cues, so that objects can
be augmented and deformed. Again as mentioned, a full understanding of dy-
namic cues eludes us at the present time, but we can make some progress
by considering two important classes of dynamic cue: anticipation and mo-
tion exaggeration. We now consider each in turn, followed by a discussion on
emulating Futurist art.

3.1 Motion Anticipation

Anticipation is an animation technique applied to objects as they begin to
move; the technique is to create a brief motion in the opposite direction,
which serves to emphasise the subsequent large scale movement of an object.
The anticipation cue communicates to the audience what is about to happen.
Anticipation acts upon a subject locally — only within a temporal window
surrounding the beginning of the movement to be emphasised, and only upon
the feature performing that movement.

We have implemented anticipation as a 1D signal filtering process. Each indi-
vidual, time varying component of the pose vector p(t) (for example, the angle
a metronome beater makes with its base) is fed through an “anticipation fil-
ter”, which outputs an “anticipated” version of that pose signal. The filter also
accepts six user parameters which control the behaviour of the anticipation
motion cue. The filtering process operates in two stages. First, the 1D signal
is scanned to identify the temporal windows over which anticipation should be
applied. Second, the effect is applied to each of these windows independently.

3.1.1 Identifying Temporal Windows for Anticipation

Given a 1D input signal, the filter first identifies temporal windows for appli-
cation of anticipation. These are characterised by the presence of high accel-
eration magnitudes (above a certain threshold), which exist for a significant



number of consecutive frames (a further threshold) in the signal. These two
thresholds form part of the set of user parameters that control the effect. This
process allows us to identify a set of temporal windows corresponding to large
motion changes, which an animator would typically emphasise using antici-
pation. A high acceleration magnitude may or may not generate a change of
direction in the signal and we have determined that the manifestation of the
anticipation cue differs slightly between these two cases:

(1) First, consider the case where acceleration causes a change of direction
in the 1D signal; for example, a pendulum at the turning point of its
swing. Regardless of the acceleration magnitude of the pendulum beater
(which may rise, remain constant, or even fall during such a transition),
the anticipation effect is localised to the instant at which the beater
changes direction i.e. the turning point of the signal; the minimum of the
magnitude of the first derivative with respect to time. In the case of the
METRONOME sequence (Figure 5), a brief swinging motion would be
made, say to the left, just prior to the recoil of the metronome beater
to the right. The object then gradually “catches up” with the spatio-
temporal position of the original, un-anticipated object at a later instant.

(2) Now consider the second case where acceleration does not cause change
of direction in the 1D signal; for example, a projectile already in motion,
which acquires a sudden burst (or decrease) in thrust, i.e. a change in
acceleration magnitude. The anticipation effect is manifested as a short
lag just prior to this sudden acceleration change; i.e. at the maximum in
the magnitude of the third derivative with respect to time. As with case
2, the projectile swiftly accelerates after anticipation to catch up with
the spatio-temporal position of the original, unaffected projectile. Inter-
estingly a projectile moving from rest is equally well modelled by either
the first or second case, since the locations of zero speed (minimum first
derivative) and maximum acceleration change (maximum third deriva-
tive) are coincident.

3.1.2  Synthesising Anticipation within the Temporal Window

Each temporal window identified for application of the anticipation cue is pro-
cessed independently, and we now consider manipulation of one such window.
The first task of the “anticipation filter” is to scan the pose signal to deter-
mine whether a change of direction occurs within the duration of the temporal
window. This test determines which criterion from the respective case (1 or
2) is used to determine the instant at which anticipated motion should be
“inserted” into the sequence; we denote this time instant by 7. We define a
temporal “working interval” as the time window within which the pose is var-
ied from the original signal, in order to introduce anticipation. This working
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Fig. 4. Schematic examples of the anticipation filter under case one (signal direction
of motion changes) and case two (signal direction of motion unaffected). Case two
has been illustrated with pause parameter p = 0. Subsection 3.1.2 contains an
explanation of the user parameters p, s, r, and € which influence the behaviour of
the effect.

interval extends from time 7 to the end of the temporal window, which we
write as 7 + w. In all cases the direction of the anticipatory motion will be in
opposition to the direction in which acceleration acts. We refer the reader to
Figure 4 to assist in the explanation of the subsequent signal manipulation.

We create the anticipation effect by modifying the 1D pose signal to follow
a new curve, interpolating five landmark points L; 55 in space, interpolated
using cubic Catmull-Rom spline functions. Aside from the two parameters
used to control activation of the effect, there are four user parameters p, s, r,
and € (where p < s < r). These influence the location of the five landmark
points [L;_ 5], which in turn influences the behaviour of the anticipation. We
now explain the positioning of each of the five landmarks and the effect the
user parameters have on this process. Throughout, we use the notation 6(t)
to indicate the original (unanticipated) 1D pose signal at time t (taken from
pose vector p(t)), and 0'(t) to denote the new, anticipated signal.

L;. The first landmark marks the point at which the original and anticipated
pose signals become dissimilar, and so L; = (7,6(7))?. Recall 7 is the
determined by the algorithm of either case 1 or 2, as described in the
previous subsection.

L,. At the instant 7, a short pause may be introduced which “freezes” the
pose. The duration of this pause is a fraction of the “working interval” —
specifically w/p frames, where p is a user parameter. The second landmark
directly follows this pause, and so Ly = (7 +w/p, 0(7))7.

L3. Following the pause, the pose is sharply adjusted in the direction opposite
to acceleration, to “anticipate” the impending motion. The magnitude
(E), and so the emphasis of, this anticipatory action is proportional to

the magnitude of acceleration: E = €|0(7)|. Here € is a user parameter
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(a constant of proportionality) which influences the magnitude of the
effect. A further user parameter, s, specifies the instant at which the
anticipation is “released” to allow the movement to spring back in its
original direction. We term s the “skew” parameter, since can be used to
skew the timing of the anticipation to produce a long draw back and quick
release, or a sharp draw back and slow release. Referring to cartoonist
Richard Williams’ guidelines for anticipation [16], one would typically
desire the former effect (s > 0.5), however our framework allows the
animator to explore alternatives. The third landmark is thus located at
the release point of this anticipated signal, and so Lz = (s, E)7.

L;. The rate at which the feature springs back to “catch up” with the unan-
ticipated motion is governed by the gradient between the third and fifth
landmarks. This can be controlled by forcing the curve through a fourth
landmark Ly = (7 +w/r,0(7))7.

L;. Finally the point at which the anticipated and original pose signals coin-
cide is specified by the final landmark, Lz = (7 + w, (7 + w))7.

Figure 5 shows animation frames of a metronome anticipating motion by
“snapping” [16]. The bending is due to our deformation effects acting on the
modified pose trajectory and indicates inertia, which is why the beater bends
as if to oppose motion.

3.2 Motion Caricaturing

Motion exaggeration is another form of dynamic cue. From an animators point
of view, motion exaggeration characterises the way an object moves much as a
newspaper caricaturist might exaggerate facial features or an impersonator ex-
aggerates vocal idioms. Intuitively, these characteristics are outliers compared
to a distribution of common cases.

This principle has been put to use to produce cartoon-like versions of a
face [17], as follows. An eigenmodel is generated from mug-shots of many
people by considering each image as a vector in some high-dimensional space.
An individual mug-shot is projected into this eigenspace, scaled away from
the mean, and then reconstructed to reveal a “cartoon”. We might proceed by
analogy, at least for cyclic motions such as a walk. The set of pose trajectory
for a walking motion must lie on a annular manifold embedded within pose
space (the space comprising all possible pose vectors). The eigenvectors of this
trajectory point in the most important directions. We can scale a pose vector
await from the mean, in proportion to the eigenvalues associated with the
eigenvectors, thus scaled more along the important directions. This approach
is poor: (1) The doll can contradict physical constraints, so that feet appear
to slide along the floor or look as they should penetrate the ground, for ex-

11
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Fig. 5. Top: Time lapse representation of the beater in the METRONOME se-
quence, before (left) and after (right) application of the anticipation filter to the
pose vectors. Bottom: Stills taken from a section of the rendered METRONOME
sequence, exhibiting the anticipation cue combined with a deformation motion cue
emphasising drag (described in [11]).

ample; (2) The output can be aesthetically displeasing — which is difficult to
quantify but is important nonetheless; (3) It offers little scope for animator
control, which is probably related to point 2. We have only indirect evidence to
support this: animators produce output with an aesthetic value greater than
any machine can manage at this point in time.

Our approach is to allow animators to impose physical constraints, so that
feet are fixed to the ground when necessary, but that the remaining motion is
exaggerated by scaling away from some mean. Consider a full pose trajectory
p(t) € R". Animators are able to specify a subspace that remains can move
between times 7, and 7, using a projection matrix M(¢) € R™*™ that “picks
out” those dimensions of the pose trajectory that can be changed at some
time ¢. Thus

12
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Fig. 6. Left: The change in the pose trajectory of the left upper leg. The original
signal (black) is held fixed when then left foot is on the ground, but is altered (red)
when the left foot is off the ground. Right: The pose complete trajectory projected
into the plane defined by the largest two eigenvectors. The original pose(black) is
clearly scaled subject to constraints — some points remain static — to yield an
updated pose trajectory (red).

Fig. 7. A “Monty-Python” walk; the product of motion caricaturing applied to
walking.

q(t) = M(#)p(?) (12)

identifies those elements of pose that can vary at time ¢. Typically each row
of M is drawn from the n? identity matrix. We can now synthesise a new pose
vector:

p'(t) = p(t) + M'()q'(t) (13)
where q'(t) = F[q(t)] is some modified version of the “variable” pose.

We have found that simply scaling away from the mean of the subspace yields
better but nonetheless poor results. This is because scaling along eigenvectors
tends to obscure those high-frequency characteristics a walk (say) as individ-
ual. Our approach is more subtle. We first transform the signal by R so that
is principle eigenvector aligns with the 'x’-axis: r(t) = Rp(t). Next we fit a
piecewise curve s(t) smoothly approximate r(t). Then we measure the error
signal e(t) = r(t) — s(t). We then map as follows:

13



q'(t) = M H(w(t)As(t) + Be(t)) (14)

where A, B are linear transforms and w(t) is a smoothing function that ensures
the scaling is zero at the edges of the time window [77, 75]. Without this weight-
ing the motion suffers a discontinuity at window boundaries. This approach
has the advantage of separating high-frequency detail from low-frequency de-
tail and the effect on a particular signal is shown in Figure 6.

We applied this mechanism to create an animated sequence, stills from which
are shown in Figure 7. The pith-helmet and handle-bar moustache were painted
using techniques described elsewhere [10]. A commercially available product
added the 1920’s cinematography effects.

3.8 Simulating Futurist Artwork

Our attempts at synthesising Futurist art from video are unique in the NPR
literature, although early attempts at generating Futurist-like effect via su-
perimposition and distortion of 3D models are briefly described in [18]. The
closest alternative is the automatic production of Cubist art from three or
four photographs [19]. The futurists were a group of artists working in the
early part of the 20th century, Marcel Duchamp is perhaps their best known
member. Futurist Art and Cubist Art share a number of visual characteristics,
however the difference of relevance here is that the Cubist’s depicted motion
unstructured in time (an object is “here” at some unspecified time) whereas
the Futurists depict structured motion (the object is “here and now”).

We began by studying Duchamp’s “Nude Descending the Stairs”, which he
painted in response to the work of motion scientist Etienne-Jules Marey [20].
“Nude Descending the Stairs” is a complicated piece of Art, a plethora of arms
and legs intertwine and obscure one another; motion blurring, ghosting, streak-
lines, and other artifacts usually associated with animation are also present
into the painting. Duchamp succeeds in creating a sense of motion without
ever painting a single form that can be recognised as definitively human.

We discovered that careful analysis of pose trajectory is the key to synthetic
Futurist art. More specifically, the motion of the feet can be used to control the
whole process. This suggests Duchamp intuitively picked out very particular
phases in the walking cycle as being salient. We now explains which particular
phases Duchamp seemed to be interested in.

The angle that a foot makes to the lower-leg is, to a first approximation,
sinusoidal over one cycle. The cycles of the feet are in anti-phase with respect
to one another. Duchamp appears to use a particular 1/4 cycle of the nearest
foot to “cue in” motion blurring, and the corresponding 1/4 cycle of the rear

14
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Fig. 8. Left: the foot and lower-left pose trajectories are in quadrature, making the
1/4 cycle during which the foot is off the floor relatively easy to identify. Bottom:
The spatial trajectory of the near ankle (red) partitioned into sections between the
onset (black) and offset (white) of the 1/4 cycle. The foot is fixed to the floor for
the remaining period.

foot to cue streak-lines, as shown in Figure 8. The most robust way to identify
these partial cycles is to analyse the pose trajectory of the foot and lower-leg
— the limbs that are pivoted by an ankle. These 1/4 cycles correspond exactly
to those time periods when the relevant foot is not on the floor, as Figure 8
also shows. In fact the start and stop of the cycle corresponds to salient points
on the spatial trajectory of the ankle. We note that such analysis provides an
opportunity to automate motion exaggeration yet further, not least because
it automatically identifies when a foot is solid on the floor.

Finding the minima and maxima of a pose trajectory is complicated by the fact
that the signal can be very noisy. Filtering of some kind is clearly necessary,
giving rise to the important question of the size of the filter — too narrow
a filter leads to too many extrema being identified, too wide a filter yields
too few extrema. Ideally we want a filter of a width that is commensurate
with about 1/2 cycle, but we do not know this width in advance. Therefore
we need a filtering process that both filters the signal and which identifies an
appropriate width.

Before explaining how we do this be must rule out low-pass filtering the signal
using a linear filter, such as a Gaussian, exp(—0.5t%/0?). Linear filters are not
acceptable because they move the signal of interest. We prefer morphological
filters what are non-linear, but which do nor shift signals. Influenced by the
sieves of Harvey and Bangham [21], and also by the concept of “stability”
introduced by Matas [22] that fulfils all the properties we seek, and which
generalises to wider contexts.

Let z(t) be a noisy discrete signal, and let 7 be the half-width of the window
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[2(t — 7)z(t + 7)] which contains 27 4+ 1 points. We define transform signal
s(t;7) as

S(t7) = 1if ma,x(.[z(t —7T)z(t+71)]) = 2(t) -
0 otherwise

which identifies all local maxima that exist within a window of width 27 + 1
— the maxima counts only as a maxima if it is the centre of a window. We
define r(¢; 7) by analogy to define all local minima in a window of the same
size. We account for end conditions, where the window exceeds the boundary
of the image, simply by clipping the window.

We perform the filtering over all values of 7 from 1 to support width of the
discrete signal z(t), there is no value in considering windows of greater width.
Thus we obtain a family of filtered signals that are indexed by window width 7.

Turning now to use “stability”. First we partition “maximum” signals s(¢, 7)
into equivalence classes using a suitable measure of change such as }, ’% ’
Similarly, we then partition the “minimum” signals by analogy. We then inter-
sect the intervals obtained from both the minimum and maximum signals, and
select the intersection of maximum duration. Hence 7 is the minimal filtering
width giving the most stable filtered signal in both maxima and minima. We
filter the signal using 79, which empirically turns out to be about 1/2 a cycle;
and which therefore allows to to identity the points on the original signal z(t)

of interest to us.

Having reliably identified turning points in walking cycle we can return to
a description of synthesising Duchamp. Motion blur effects are recreated by
“welding” polygons around a limb. As a limb moves through the 1/4 cycle we
record the location of its polygon and “weld” these polygons by finding their
convex hull. The depth of this amalgamated polygon is fixed at the depth of
the contributing limb. When all polygons for all limbs have been amalgamated
in this way over the whole time period of the video we acquire a set of depth
ordered amalgamated polygons. These are rendered in back-to-front order.
By making the polygons partly transparent the visual effect is to entwine
the limbs, yet the near polygons appear brighter so that visual sense can be
discerned from the picture.

Ghosting and streak-lines are produced using techniques described elsewhere [11].
Ghosting marks are painted on the near limbs only — rendered on top of the
welded polygons. Streak-lines are traces of the rear polygons, clipped against
the welded polygons of the rear limbs but painted as the top-most layer. Vari-
ations in rendering parameters such as the colour of streak-lines, opacity of
polygons, and colour of ghosting lead to variations in the final image, as shown
in Figure 9.
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Fig. 9. “Figure descending the steps, version I and II”

4 Concluding remarks

This paper described our initial steps towards automatically synthesising dy-
namic cues from video, focusing on anticipation and motion exaggeration.
Whether the principles we have introduced in addressing these cases gener-
alise easily is unknown. It is likely that inverse kinematics of some kind will
play a major role in automating anticipation, although whether pose analysis
will ever be of sufficient power to produce the necessary key-frames is an open
problem.

As presented, our framework for dynamic cues is premised on the automatic
recovery of articulated structures. However initial experiments operated at
a lower level of abstraction, requiring no such model and allowing limbs to
move without the constraints of pivots. Although more generally applicable,
the aesthetics of the resulting motion were disappointing. It is likely that
the conceptually higher level model of the articulated structure confers more
believable movement because it more closely matches our mental model of the
way in which our subjects move. By substituting our hierarchical model with,
say, a facial muscle model, we may be able to create anticipation in alternative
classes of subject commonly used by animators. Future work might address
a methodology for the selection and substitution of models by the computer
animator. We might also seek to extend our analysis to three-dimensional
affine motion, rather than motion in a plane, which currently restricts the
classes of motion that our system is capable of processing.
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Open questions notwithstanding, we have introduced a number of useful anal-
ysis techniques: automatic inference of articulated structure under planar mo-
tion; constrained scaling of pose in eigenspace; a robust signal filter to locate
turning points. The dynamic cues synthesised by this framework have been
integrated into a larger “Video Paintbox” system (see [10]), capable of both
alternative motion emphasis styles (through augmentation and deformation
cues) and also flicker-free visual stylisation of content (for example, cartoon
shading and painting). In addition, our initial experiments in the emulation of
Futurist artwork point toward interesting possibilities for study in NPR, with
respect to generating both static depictions of motion and abstract artistic
styles. We had not anticipated that a simple analytic explanation might lie
behind Duchamp’s artwork, and this has certainly added to our appreciation
of it.
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