Available online at www.sciencedirect.com

SCIENCE@DIRECT® Graphical Models

ELSR Graphical Models 67 (2005) 549-564

www.elsevier.com/locate/gmod

Rendering cartoon-style motion cues
in post-production video

J.P. Collomosse **, D. Rowntree °, P.M. Hall

& Department of Computer Science, University of Bath, Claverton Down, Bath, England, UK
® Nanomation Ltd., 6 Windmill Street, London, England, UK

Received 17 October 2003; accepted 7 December 2004
Available online 13 April 2005
Communicated by Peter Hall and Brain Barsky

Abstract

The contribution of this paper is a novel non-photorealistic rendering (NPR) system capa-
ble of rendering motion within a video sequence in artistic styles. A variety of cartoon-style
motion cues may be inserted into a video sequence, including augmentation cues (such as
streak lines, ghosting, or blurring) and deformation cues (such as squash and stretch or drag
effects). Users may select from the gamut of available styles by setting parameters which influ-
ence the placement and appearance of motion cues. Our system draws upon techniques from
both the vision and the graphics communities to analyse and render motion and is entirely
automatic, aside from minimal user interaction to bootstrap a feature tracker. We demon-
strate successful application of our system to a variety of subjects with complexities ranging
from simple oscillatory to articulated motion, under both static and moving camera conditions
with occlusion present.
© 2005 Elsevier Inc. All rights reserved.

Keywords: Video paintbox; Motion cues; NPR; Cartoon rendering

" Corresponding author.
E-mail addresses: jpc@cs.bath.ac.uk (J.P. Collomosse), david@nanomation.co.uk (D. Rowntree),
pmh@cs.bath.ac.uk (P.M. Hall).

1524-0703/$ - see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.gmod.2004.12.002

mailto:jpc@cs.bath.ac.uk
mailto:david@nanomation.co.uk
mailto:pmh@cs.bath.ac.uk

550 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564
1. Introduction

This paper presents a novel non-photorealistic rendering (NPR) system capable of
rendering motion within a 2D image sequence in artistic styles. The user may stylise
the rendering through a parameterised framework encompassing a diverse gamut of
motion cues commonly used in animation; augmentation cues such as streak lines,
ghosting, and blurring are available, as are deformation cues such as the squash
and stretch techniques used to emphasise motion in cartoons. The algorithm draws
upon techniques from both the vision and the graphics communities to analyse and
render motion. Aside from minimal interaction when bootstrapping a feature track-
er, the system is entirely automatic.

Our work is motivated by a desire to render 2D image sequences in cartoon-like
styles, a problem that decomposes into two separable sub-goals: (1) producing tem-
porally coherent shading effects in the video; (2) emphasising motion in the image
sequence. Whilst we do address the former issue, this paper is primarily concerned
with the latter issue of visually depicting motion through artistic rendering. To the
best of our knowledge we believe that artistic rendering of motion within a video se-
quence is a novel contribution to NPR, and one that implies interesting new appli-
cation areas for Computer Vision.

The majority of research in non-photorealistic animation focuses upon the syn-
thesis of 2D artistically rendered sequences from 3D geometries [1,2]. Some progress
has been made in processing 2D video sequences into non-photorealistic styles, for
example the animated painterly effects proposed by Litwinowicz [3], and later Hertz-
mann [4]. Such algorithms focus primarily upon the task of extending static NPR
techniques to moving video whilst maintaining temporal coherence (avoiding flicker-
ing) in the image sequence. Whilst such methods seek to mitigate against the effects
of motion for the purposes of coherence, the literature is relatively sparse concerning
the emphasising and rendering of motion within the image sequence itself.

In an early paper [5], Lasseter highlights many of the motion emphasis techniques
commonly used by animators for the benefit of the computer graphics community,
though presents no algorithmic solutions. Streak lines, anticipation, and deforma-
tion for motion emphasis are discussed. Recent work addresses one of these tech-
niques by applying a squash and stretch effect to spheres and cylinders in object
space prior to ray-tracing [6]. Strothotte et al. [7], after Hsu et al. [8], also identify
depiction of motion as important, though the former are concerned primarily with
the effect of motion cues on temporal perception. In both studies streak lines are gen-
erated via user-interactive processes. Earlier work by the authors renders motion
within an image sequence by composing salient features to produce paintings remi-
niscent of Cubist art [9].

Animators have evolved various ways of emphasising characteristics of a moving
object (Fig. 1). Streak lines are commonly used to emphasise motion, and typically
follow the movement of the tip of the object through space. The artist can use addi-
tional ‘ghosting’ lines which indicate the trailing edge of the object as it moves along
the streak lines. Ghosting lines are usually perpendicular to streak lines. Deforma-
tion is often used to emphasise motion, and a popular technique is squash and

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 551

Fig. 1. Examples of motion cues used in traditional animation (above) and the corresponding cues
inserted into a video sequence by our system (below). From left to right: two examples of streak line
augmentation cues, the latter with ghosting lines. Two examples of deformation cues; squash and stretch
and suggestion of inertia through deformation.

stretch in which a body is stretched tangential to its trajectory, whilst conserving area
[5]. Other deformations can be used to emphasise an object’s inertia; a golf club or
pendulum may bend along the shaft to show the end is heavy and the accelerating
force is having trouble moving it. The magnitude of deformation is a function of mo-
tion parameters such as tangential speed, and of the modelled rigidity of the object.
In this paper, we process real video to introduce these motion cues; examples are gi-
ven in Fig. 1.

An attempt to automatically render motion cues presents the following
challenges:

(1) Motion cues tend to emphasise fast, large-scale feature motions, the filming of
which often requires the camera to move. Features may also become occluded
during motion. How shall we track features through a video sequence in these
circumstances, and what constraints must we impose to make the tracking
problem tractable?

(2) How will motion cues be generated and attached to tracked features? How will
such cues adapt to variations in velocity and acceleration? How will motion
cues be embedded coherently in the existing image sequence?

(3) How can we render the final scene to produce coherent artistic shading styles?

The first point falls within the bounds of Computer Vision, the latter two are pri-
marily Computer Graphics issues.

552 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

The remainder of the paper is organised as follows. In Section 2, we give an over-
view of the system. In Section 3, we discuss the vision algorithms for camera motion
correction and tracking. In Section 4, we describe the algorithms for generating mo-
tion cues and inserting them into video. We conclude in Section 5 with a discussion
of future work.

2. Overview of the system

We now describe the major components of the system, leaving detailed explana-
tion to subsequent sections of the paper. The system has two major components: the
Computer Vision component which is responsible for tracking motion of features
(e.g., arm, leg, bat or ball), camera motion compensation, and depth ordering of fea-
tures; and the Computer Graphics component, responsible for the generation of mo-
tion cues, and their rendering at the correct depth. We wish for minimal user
interaction with the Computer Vision component, which must be robust and general;
currently users draw polygons in a single frame to identify features which are then
tracked automatically. In contrast, the user is given control over the graphics com-
ponent via a set of parameters which influence the style in which the motion cues are
synthesised.

3. The computer vision component

The Computer Vision component is responsible for the tracking of features over
the video sequence. A camera motion compensated version of the sequence is first
generated, thereby ensuring that camera motion does not influence the observed tra-
jectories. Features are then tracked over the sequence using standard techniques. By
analysing occlusion during tracking we determine a relative depth ordering of fea-
tures, later used in the rendering stage to insert motion cues at the correct scene
depth.

We compensate for camera motion using a robust motion estimation technique
proposed by Torr [10]. Harris interest points [11] are identified in adjacent video
frames, and RANSAC [12] use to produce an initial estimate of the homography be-
tween frames. This estimate is then refined using a Levenburg-Marquadt iterative
search [13]. Frames are projected via their homographies to produce a motion com-
pensated sequence in which the tracking of features is subsequently performed.

3.1. Tracking features over the compensated sequence

The general problem of tracking remains unsolved in Computer Vision and, like
others, we now introduce constraints on the source video in order to make the prob-
lem tractable. Users identify features by drawing polygons, which are ‘“‘shrink
wrapped” to the feature’s edge contour [14]. We assume contour motion may be
modelled by a linear conformal affine transform (LCAT) in the image plane, which

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 553

has four parameters (scale, orientation, and spatial position). Variation of these
parameters is assumed to well approximate a second order motion equation over
short time intervals.

The LCAT is a degenerate form of the affine transform consisting of a uniform
scale s, orientation 6, and a translation (u, v)T. In homogeneous coordinates we have
a product of matrices

M(s,0,u,v) = L(u, 0)R(0)S(s) (1)

A feature, F, comprises a set of points whose position varies in time; we denote a
point in the rth frame by the column vector x, = (x,y)!. In general these points are
not pixel locations, and so we use bilinear 1nterpolat10n to associate a colour value,
I(x,) with the point. The colour value comprises the hue and saturation components
of the HSV colour model; we wish to ignore variations in luminance to mitigate
against errors introduced by lighting changes. Although the LCAT can be derived
from two point correspondences we wish to be resilient to outliers, and therefore
seek the LCAT M which minimises EJ.]

\Fl

X 2
_tt’ |F| ZV t’ - ”/ t)l) (2)

where the ¢7' subscript denotes the matrix transform from frame ¢ to ¢. In a similar
manner to camera motion correction, the transformation M , is initially estimated by
RANSAC, and then refined by Levenburg-Marquadt search

By default, several well distributed interest points are identified automatically
using the Harris [11] detector (see sequences CRICKET, METRONOME). In some
cases a distinctively coloured feature itself may be used as a marker (see VOLLEY,
Fig. 2). In more complex cases where point correspondences for tracking can not be
found (perhaps due to signal flatness, small feature area, or similarity between

Fig. 2. Left: The camera compensated VOLLEY sequence sampled at regular time intervals. The camera
view-port at each instant is outlined in yellow, the tracked feature in blue. Right: STAIRS sequence. (Top)
markers are required to track this more complex subject but are later removed automatically (middle).
Recovery of relative depth ordering permits compositing of features in the correct order (bottom); labels
A-K correspond to the graph of Fig. 3. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this paper.)

554 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

closely neighbouring features), distinctively coloured markers may be physically at-
tached to the subject and later removed digitally (see STAIRS, Fig. 2). In these cases
the Harris interest points are substituted for points generated by analysis of the col-
our distribution in a frame.

So far we have overlooked noise and occlusion. The ‘best’ M, , estimate may be con-
sidered to be arbitrary in the case of total occlusion, and exact i in the case of no noise or
occlusion. The likelihood L, of the feature being unoccluded at any time ¢ may be writ-
ten as a function of detected pixel error L, = exp(— AEL); 4 is the reciprocal of the
average time an object is unoccluded. At each frame ¢ we pass the estimated LCAT
M o and the confidence in that estimate, L,, through a Kalman filter to obtain our opti-
mal estimate for the LCAT. The Kalman filter state describes the second order motion
equation in the 4D parameter space of the LCAT, trained over the immediate history
of contour motion. We threshold L, at 0.5 to decide whether an object is occluded in a
given frame, and interpolate the LCAT from unoccluded neighbours in these cases.

The ability of the algorithm to re-establish tracking following occlusion has been
found sufficiently robust for our needs, providing occluded motion approximately
follows the second order model estimated by the Kalman filter. However the pre-
dicted LCAT during occlusion is often inaccurate. We refine the tracked motion
by deciding at which time intervals a feature is occluded and interpolating between
the parameters of known LCATs immediately before and after occlusion. Knowl-
edge of the correct positions of features during occlusion is important when render-
ing as although a feature may not be visible, any attached motion cues may be.
Occlusion is also used to determine relative feature depth.

3.2. Recovering relative depth ordering of features

We now determine a partial depth ordering for tracked features, based on their
mutual occlusion over time. The objective is to assign an integer value to each feature
corresponding to its relative depth from the camera. We introduce additional
assumptions at this stage: (1) the physical ordering of tracked features cannot change
over time (potential relaxation of this assumption is discussed in Section 5); (2) a
tracked feature can not be both in front and behind another tracked feature; and
(3) lengthly spells of occlusion occur due to tracked features inter-occluding.

For each instance of feature occlusion we determine which interest points were
occluded by computing a difference image between tracked and original feature bit-
maps. A containment test is performed to determine if occluded points lie with the
bounding contour of any other tracked features; if this is true for exactly one feature,
then the occlusion was caused by that feature. We represent these inter-feature rela-
tionships as a directed graph, which we construct by gathering evidence for occlusion
over the whole sequence. Formally, we have a graph of nodes G, corresponding
uniquely with the set of tracked features, where G;— G; implies that feature G; oc-
cludes G; (Fig. 3). Each graph edge is assigned a weight; a count of how many times
the respective occlusion is detected.

This graph has several important properties. First, the graph should be acyclic
since cycles represent planar configurations which cannot occur unless our previous

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 555

Depth 1 Depth 2 Depth 3 Depth 4 Depth 5

occludes

Fig. 3. An occlusion graph constructed over 150 frames of the STAIRS sequence, node letters correspond
with Fig. 2. Dotted lines indicate unoccluded nodes.

assumptions are violated or, rarely, noise has cause false occlusion. Second, groups
of polygons may not interact via occlusion, thus the resulting graph may not be con-
nected (a forest). Third, at least one ‘unoccluded node’ G, must exist per connected
graph such that VG, = 1...n—-3G; — G,,.

First, we verify that the graph is indeed acyclic. If not, cycles are broken by
removing the cycle’s edge of least weight. This removes sporadic occlusions which
can appear due to noise. We now assign an integer depth code to each node in the
graph; smaller values represent features closer to the camera. The value assigned
to a particular node corresponds to the maximum of the hop count of the longest
path from any unoccluded node to that node (Fig. 3). By definition features within
disconnected graphs do not occlude each other, thus it is not possible to determine a
consistent ordering over all connected graphs using occlusion alone. However, since
these data are required later only to composite features in the correct order, such
consistency is superfluous to our needs.

4. The computer graphics component

The graphics component composits cells to create each frame of the animation.
Each feature has two cells associated with it, one for augmentation cues such as streak
lines, the other for deformation cues such as squash and stretch. The cells are compos-
ited according to the depth ordering of features, from the furthest to the nearest; for a
given feature, deformation cells are always in front of augmentation cells.

4.1. Motion cues by augmentation

Augmentation cues such as streak lines and ghosting, are common in traditional
animation (Fig. 1). Streak lines can be produced on a per frame basis by attaching

556 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

lines to a feature’s trailing edge, tangential to the direction of motion [8]. Such an
approach is only suitable for visualising instantaneous motion, produces only
straight streak lines, and is highly susceptible to noise. In contrast animators tend
to sketch elegant, long curved streaks which emphasise motion historically. For
the same reasons, optical flow cannot be used to create streak lines.

Streak line placement is a non-trivial problem: they are not point trajectories, fea-
tures tend to move in a piecewise-smooth fashion, and we must carefully place streak
lines on features. To produce streak lines we generate correspondence trails over the
trailing edge of a feature as it moves, we then segment trails into smooth sections,
which we filter to maximise some objective criteria. We finally render the chosen sec-
tions in an artistic style.

We sample the feature boundary at regular intervals, identifying a point as being
on the trailing edge if the dot product of its motion vector with the external normal
to the boundary is negative. Establishing correspondence between trailing edges is
difficult because point ordering can vary from frame to frame, as well as shape
(and even connectivity). The full LCAT determined during tracking cannot be used,
as this establishes point trajectories (which we have observed are not streak lines); we
wish to establish correspondence between feature silhouettes.

We establish correspondence trails by computing the instantaneous tangential
velocity of a feature’s centroid p. A translation and rotation is computed to map
the normalised motion vector from yu at time ¢ to time #. Any scaling of the feature
is performed using the scale parameter of the LCAT determined during tracking.
Points on the trailing edge at time ¢ are now translated, rotated, and scaled. Corre-
spondence is established between these transformed points at time #, and their near-
est neighbours at time 7, this forms an link in a correspondence trail. This method
gives independence on point ordering, and allows the geometry of the trailing edge to
vary over time, as required.

Animators tend to draw streak lines over smooth sections of motion. Therefore, the
correspondence trails are now segmented into smooth sections, delimited by sharp
changes in trajectory. Such motion is usually caused by rapid translational, rotary or
projectile motion in a scene, resulting in simple linear or curved trajectories. We have
therefore chosen to model these trajectories using a subset of conics; elliptic curve frag-
ments, parabolic curve fragments (which permit linear forms as a degeneracy).

We use a greedy algorithm to fit curves: (1) begin at the start of the correspon-
dence trail; (2) iterate forward capturing points and fitting elliptical [15] and para-
bolic curves along the way using least-squares; and (3) when no curve fits
sufficiently well (below a threshold), or average velocity falls too low, the smooth sec-
tion is terminated and the best fitting curve used as a model for that section.

We fit piecewise smooth models to every correspondence trail, as just described.
This results in a set of smooth sections, each with a pair of attributes: (1) a function
G(s) where s is an arc-length parameterisation of the spatial trajectory of the fitted
curve s =[0,1]; (2) a lookup table g(.) mapping from an absolute time index ¢ to the
arc-length parameter, i.e., s = g(¢), thus recording velocity along the spatial path
G(s). The inverse lookup function g’(.) is also available. Clearly the curve exists only
for a specific time period [g'(0), g’ (1)]; we call this interval the duration of the curve.

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 557

The association between each smooth section and its data points is maintained.
These data points are used to filter the set of smooth sections to produce a subset
¢ of manageable size, which contains optimal paths along which streak lines will
be drawn.

Our filtering selects curves based on heuristics derived from the practise of tradi-
tional animators who favour placement of streak lines on sites of high curvature and
on a feature’s convex hull. Long streak lines and streak lines associated with rapid
motion are also preferred, but close proximity to other co-existing streak lines is dis-
couraged. We select streak line curves, on each iteration i adding a new element to ¢
(initially empty) to maximise the recursive function H(.):

H(0) =0,
H(i+ 1) = H(i) + (ow(x) + BL(x) = yD(x) — dox(x, a3 w) + {p(x)),

where x is the set of points associated with a smooth section. L(x) is the length of a
smooth section, v(x) is the “mean velocity” defined as L(x)/¢(x) in which 7(x) is the
duration of x. p(x) is the mean curvature of feature boundary at points in x. D(x) is
the mean shortest distance of points in x from the convex hull of the feature.
o (x,0;w) measures the maximal spatio-temporal overlap between x and the set of
streak lines chosen on previous iterations. From each curve we choose points which
co-exist in time, and plot the curves with width w returning the intersected area. Con-
stant w is user defined, as are the constant weights a, f3, 7, 4, and {; these give artistic
control over the streak line placement (see Fig. 4). Iteration stops when the additive
measure falls below a lower bound.

We are now in a position to synthesise two common forms of augmentation cue;
streak lines and ghosting lines—both of which are spatio-temporal in nature. A
streak line is made visible at some absolute time z and exists for a duration of time
A. The streak line is rendered by drawing a sequence of discs along the smooth sec-
tion with which it is associated, starting at spatial location (G(g(¢)) and ending at

(3)

Fig. 4. A selection from the gamut of streak and ghosting line styles available: ghosting lines may be
densely sampled to emulate motion blur effects (B, C, and F) or more sparsely for traditional ghosting (A
and D). The feature itself may be ghosted, rather than the trailing edge, to produce Futurist-like echoes (E
and G). Varying the overlap constant w influences spacing of streak lines (B and F). The decay parameters
of streak and ghosting lines may be set independently (A).

558 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

Motion

abl to comrespond

User parameters.

Py rmdmay Start streak radius
3 E X

system erceted for warping
rate of decay

width
lag) of ghosting lines
Max duration (lag) of streak lines
Ghasting uses cdges or features
Opacity fade rate for inactive cues

a streak line
i y

Fig. 5. Left: User parameters used, in conjunction with weights of Eq. (3), to influence augmentation cue
placement. Right: Summarising the generation of motion cues in our framework.

(G (g(arg max(g'(0),t — A4))). The streak line is rendered by sweeping a translucent
disc along the smooth section (backwards in time) which grows smaller and more
transparent over time. These decays are under user control. Secondary streak lines
may be generated at small spatio-temporal offsets to produce sketchy or turbulent
effects.

Ghosting lines depict the position of a feature’s trailing edge along the path of the
streak line, and are useful in visualising velocity changes over the course of the
streak. Ghosting lines are rendered by sampling the trailing edge at regular time
intervals as the streak line is rendered, interpolating if required. The opacity of
ghosting lines is not only a function of time (as with streak lines) but also a function
speed relative to other points on the trailing edge; this ensures only fast moving re-
gions of edge are ghosted. Users may control the sampling rate, line thickness, and
decay parameters to stylise the appearance of the ghosting lines (Fig. 5).

4.2. Motion cues by deformation

Our framework offers the facility to emulate effects such as ‘squash and stretch,” or
to suggest inertia or drag through deformation. Features are cut from the current
video frame, and motion dependent warping functions applied to render the defor-
mation cue cell for each feature.

Deformations are performed by forming a curvilinear space, the basis of which is
defined by the local trajectory of the feature centroid, and lines normal to this curve;
this trajectory has exactly the same properties as any smooth section. A local time-
window selects a section of the centroid trajectory, and this window moves with the
object. The instantaneous spatial width of this window is proportional to instanta-
neous centroid velocity. At each instant, £ we use the centroid trajectory to establish
a curvilinear basis frame. First, we compute an arc-length parameterisation of the
trajectory: u(r) in which r = f: u(t)dz, note ¢ < ¢ gives negative displacements. Next

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 559

we develop an ordinate at an arc-length distance r from the instant; the unit vector
n(r) perpendicular to u(z). Thus, at each instant # we can specify a point in the world-

frame using two coordinates, r and s
x,(r,s) = u(r) + sa(r). (4)

We can write this more compactly as x,(r) = C(r), where r = [r,s]”, and maintain
the inverse function r,(x) = C '(x) via a look-up table. This mapping, and its in-
verse, comprise one example of a deformation basis.

The above analysis holds for most points on the centroid trajectory. It breaks down
at collision points, because there is a discontinuity in velocity. We define a collision
point as a point on a trajectory whose location cannot be satisfactorily predicted by
a second order motion equation (constructed with a Kalman filter). This definition
discriminates between G' discontinuities in trajectory which are formed by, say, sim-
ple harmonic motion, and true collisions which are C' discontinuous (see Fig. 6).

At a collision point we establish an orthonormal basis set aligned with the ob-
served collision plane. We assume the angle of incidence and reflection are equal,
and hence the unit vector which bisects this angle is taken to be the ordinate. The
abscissa lies in the collision plane. We define this new basis set as an additional in-
stance of a deformation basis, and write the mapping to and from the world frame
using notation consistent with the curvilinear basis. In addition, we compute the im-
pact parameter of the collision, which we define as the distance from the object’s cen-
troid to its boundary, in the direction of the negative ordinate. Note we compensate
for temporal sampling around the true collision instant by intersecting extrapolated
impact and rebound trajectories (Fig. 6).

An animated object is, in general, a deformed version of the original. Squash and
stretch tangential to instantaneous motion leads to visually unattractive results; it is
better to not only squash and stretch, but also to bend the object along the arc of its
centroid trajectory. Let x(¢) be any point in the object. We transform this point with
respect to a single deformation basis into a new point y(¢), given by

() = CA[C (x(1))]), (5)

N

~
~
instant of
collision
~
v

rangent
at impact

B

R
collision
plane

7

no collision

\ calision
N N |

Fig. 6. Collision geometry (left); bounces are detected as collisions (middle); whilst the simple harmonic
motion of the metronome is not (right).

7

560 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

where A,[.]is some deformation. In the case of squash and stretch the deformation is
an area-preserving differential scale that depends on instantaneous speed |j(¢)| (see

Fig. 7):
k 0 6
o 1p (6)
> +1
k—1+3<1—cos(n 3)),
0 if [ft] < Vinin,
U= 1 if |H| = Vmam (7)

(|:u| - Vmin)/(Vmax - Vmin) otherwise.

Around collision points we need to squash and stretch the other way around—so
that the object compresses on impact. We linearly interpolate between the deforma-
tion caused by a “standard” deformation basis with that caused by a “collision”
deformation basis. Suppose p(¢) — ¢(¢) and p(z) — ¢’ (¢), respectively, then

r(t) = f(d)q(t) + (1 = f(d))q (1), (8)

where f(d) = sin(5argmin(1,d/(sD)) in which D is the impact parameter of the col-
lision, and s is a user parameter which controls the spatial extent over which collision
influences the deformation. As a note, the mapping to ¢’ (¢) not only has to scale the

oy

Tracked spesd (pixais/sac)

Folow e

vt eyt e

[) % [
Time index (frames)

lﬂlﬂ'ﬁ'.

|]
al,
| e

Fig. 7. Top left: Illustrating the squash and stretch effect; eccentricity varies as a function of tangential
speed. Bottom: Frames from the VOLLEY sequence exhibiting squash and stretch. Observe the system
handles both large scale camera motion, and lighting variation local to the ball. Top right: Curvilinear
space used to deform features in VOLLEY and METRONOME.

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 561

object but shift it toward the impact point, so that the edge of the deformed object
touches the collision plane.

Non-linear deformations are also possible, and these can be used to create bending
effects. We can form warping functions which depend on each point’s velocity and
acceleration as well as its position. We write X' = C(4,[C" (x), 1, ¥]), where 4 is a func-
tional used, for example, to suggest increased drag or inertia. A typical functional oper-
ates on each component of r = (r1,7,)” independently; to create effects suggesting drag
we use:

e = F(Zatan(i)) sien(s) ©)

where F'is a function of suggested mass and P influences the apparent rigidity of the
object. By substituting acceleration for velocity, and adding rather than subtracting
from r; we can emphasise inertia of the feature (see Fig. 8).

Finally, we ensure visual consistency by deforming not only features, but also
their associated augmentation cue cells containing streak lines or ghost lines.

4.3. Rendering in the presence of occlusion

In any real video a tracked feature may become occluded by other elements of the
scene. Naively, all pixels inside the bounding contour of a feature will be included in
that feature and so are subject to deformation. Consequently, it is easy to warp parts
of occluding objects; we now explain how to avoid such unwelcome artifacts.

We identify pixels as belonging to an occluding object by forming a difference im-
age (using the hue and saturation components in HSV space) between the feature re-
gion in the current frame and the feature itself. This yields a template of occluding
pixels which can be re-textured by sampling from feature regions in neighbouring
unoccluded frames. The unoccluded feature is thus reconstructed, and after defor-
mation occluding pixels may be recomposited to give the illusion of the ball passing
’behind’ occluding objects (Fig. 9).

Fig. 8. Frames from METRONOME suggesting inertia (left) and drag (right) effects through deformation,
original feature outline in green. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this paper.)

562 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

Fig. 9. Above: three frames from BASKETBALL, demonstrating occlusion handling. The system fails
when the netting moves erratically after impact, causing the buffer to empty and streak lines to be drawn in
front of the netting (E). Below left: A coherent cartoon effect created by applying Q-maps to cells [16];
Below middle: Streak lines are inserted at the correct scene depth; cues attached to the far leg pass behind
the near leg. Right: Time lapse image of BOUNCE sequence showing deformation effect, augmentation
cues omitted.

Similarly, augmentation cues should pass behind occluding objects. Fortunately
these cues traverse an identical path to that of the feature in prior frames. We con-
struct an occlusion buffer over time, summing the difference images generated whilst
handling occlusion for deformation cues (Fig. 9D). Using this buffer we may deter-
mine which pixels will occlude the streak lines, so long as those pixels do not change
in the time interval between the feature passing and the augmentation cues being
drawn. The occlusion buffer contains a difference image for occlusion and the
RGB value of each pixel. Pixels in the buffer are deleted when the difference between
the stored colour for a pixel, and the measured colour of that pixel at the current
time is significant. In this case the occluding pixel has moved, obsoleting our knowl-
edge of it. This algorithm works acceptably well over short time intervals (Fig. 9E).

4.4. Compositing and rendering

We generate a background for each video frame by subtracting features from the
original video; determining which pixels in the original video constitute features by
projecting tracked feature regions from the camera-compensated sequence to the ori-
ginal viewpoint. Pixels contributing to feature regions are deleted and absent back-
ground texture is reprojected from locally neighbouring frames in alternation until
holes are filled with non-feature texture. This sampling strategy mitigates against
artifacts caused by local lighting changes or movement.

Once augmentation and deformation cells have been rendered for each feature,
cells are composited to produce an output video frame. Cells are projected by

J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564 563

homography to coincide with the original camera viewpoint, and composited onto
the background in reverse depth order. Thus motion cues appear to be inserted into
video at the correct scene depth (Fig. 9G). Additionally, temporally coherent NPR
shading effects may be generated by rigidly attaching strokes or texture to each fea-
ture; strokes are subjected to the identical LCAT motion and deformations as their
respective feature (Fig. 9F).

5. Conclusion and discussion

We have described and demonstrated a system for the artistic rendering of motion
within video sequences. The system can cope with a moving camera, lighting
changes, and presence of occlusion. Users may stylise both the placement and
appearance of motion cues using the parameterised framework described in Section
4. Novel effects may be produced by interpolating between points in this parameter
space, gradually changing the appearance of motion cues over time.

Further developments could address the relaxation of some of the assumptions
made in the design of the system. For example, violations of depth assumptions
are detectable by the presence of heavily weighted cycles in the depth graph. It
may be possible to segment video into a minimal number of chunks exhibiting
non-cyclic depth graphs, and in doing so recover relative feature depth under more
general motion. The robustness of the algorithm could be evaluated both with
ground truth comparisons for measures such as velocity, as well as processing se-
quences exhibiting distinctly non-planar motion. We might also extend the possible
gamut of motion cues; investigating whether additional techniques in Lasseter’s pa-
per [5] such as anticipation, can be rendered automatically.

We briefly described a means of coherently shading the animation by applying
strokes or adaptive texture (such as Q-maps) to cells. Coherence is maintained so
long as the LCAT-derived motion of cells matches the perceived motion of content
within them; in cases of movement within the background cell some deterioration in
temporal coherence may be observed. Current work focuses upon extending our sys-
tem to incorporate our recently proposed “Stroke Surfaces” NPR video framework
[17]. Briefly, background and deformation cue cells are buffered prior to output
yielding a set of spatio-temporal voxel volumes, with time as the third dimension.
The stroke surface rendering framework is then applied to these volumes to generate
a variety of coherent stylised shading effects in tandem with the motion cues gener-
ated by our system.

We have shown that through high-level analysis of features (examining motion
over the entire video, rather than on a per frame basis) we may produce motion cues
closely approximating those used in traditional animation (Fig. 1). We believe the
most productive avenues for future research will not be in incremental refinements
to the current system, but rather will examine alternative uses for higher-level spat-
io-temporal analysis of video with applications to NPR.

A selection of rendered video sequences, and further details of the Video Paintbox
project, are available on-line at: http://www.cs.bath.ac.uk/~vision/cartoon.

http://www.cs.bath.ac.uk/~vision/cartoon

564 J.P. Collomosse et al. | Graphical Models 67 (2005) 549-564

References

[1] B. Meier, Painterly rendering for animation, in: Proceedings Computer Graphics (ACM SIG-
GRAPH), 1996, pp. 447-484.

[2] E. Daniels, Deep canvas in disney’s tarzan, in: Proceedings Computer Graphics (ACM SIGGRAPH,
Abstracts and Applications), 1999, p. 200.

[3] P. Litwinowicz, Processing images and video for an impressionist effect, in: Proceedings Computer
Graphics (ACM SIGGRAPH), Los Angeles, USA, 1997, pp. 407-414.

[4] A. Hertzmann, K. Perlin, Painterly rendering for video and interaction, in: Proceedings NPAR
Symposium, 2000, pp. 7-12.

[5]J. Lasseter, Principles of traditional animation applied to 3D computer animation, in: Proceedings
Computer Graphics (ACM SIGGRAPH), vol. 21, 1987, pp. 35-44.

[6] S. Chenney, M. Pingel, R. Iverson, M. Szymanski, Simulating cartoon style animation, in:
Proceedings NPAR Symposium, 2002.

[7] T. Strothotte, B. Preim, A. Raab, J. Schumann, D.R. Forsey, How to render frames and influence
people, in: Proceedings Computer Graphics Forum (Eurographics), vol. 13, Oslo, Norway, 1994, pp.
C455-C466.

[8] S.C. Hsu, I.LH.H. Lee, Drawing and animation using skeletal strokes, in: Proceedings Computer
Graphics (ACM SIGGRAPH), 1994, pp. 109-118.

[9] J.P. Collomosse, P.M. Hall, Cubist style rendering from photographs, IEEE Trans. Vis. Computer
Graph. 4 (9) (2003) 443-453.

[10] P.H.S. Torr, Motion segmentation and outlier detection, Ph.D. thesis, University of Oxford, 1995.

[11] C.J. Harris, M. Stephens, A combined corner and edge detector, in: Proceedings 4th Alvey Vision
Conference, Manchester, 1988, pp. 147-151.

[12] M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography, Commun. ACM 24 (6) (1981) 381-395.

[13] R. Szeliski, Image mosaicing for tele-reality applications, Tech. rep., Digital Equipment Corporation,
1994.

[14] D. Williams, M. Shah, A fast algorithm for active contours and curvature estimation, CVGIP: Image
Understanding 55 (1) (1992) 14-26.

[15] A.W. Fitzgibbon, R.B. Fisher, A buyer’s guide to conic fitting, in: Proceedings BMVC, Birmingham,
1995.

[16] P. Hall, Non-photorealistic rendering by Q-mapping, Computer Graphics Forum 1 (18) (1999) 27-39.

[17] J.P. Collomosse, D. Rowntree, P.M. Hall, Stroke surfaces: A spatio-temporal framework for
temporally coherent non-photorealistic animations, Tech. Rep. 2003-01, University of Bath, UK
(June 2003).

	Rendering cartoon-style motion cues in post-production video
	Introduction
	Overview of the system
	The computer vision component
	Tracking features over the compensated sequence
	Recovering relative depth ordering of features

	The computer graphics component
	Motion cues by augmentation
	Motion cues by deformation
	Rendering in the presence of occlusion
	Compositing and rendering

	Conclusion and discussion
	References

