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Abstract. This paper investigates the feasibility of evolutionary search
techniques as a mechanism for interactively exploring the design space of
2D painterly renderings. Although a growing body of painterly render-
ing literature exists, the large number of low-level configurable parame-
ters that feature in contemporary algorithms can be counter-intuitive for
non-expert users to set. In this paper we first describe a multi-resolution
painting algorithm capable of transforming photographs into paintings
at interactive speeds. We then present a supervised evolutionary search
process in which the user scores paintings on their aesthetics to guide the
specification of their desired painterly rendering. Using our system, non-
expert users are able to produce their desired aesthetic in approximately
20 mouse clicks — around half an order of magnitude faster than manual
specification of individual rendering parameters by trial and error.

1 Introduction

Techniques for processing photographs into artwork have received considerable
attention in recent years and comprise a rapidly developing branch of computer
graphics known as image based non-photorealistic rendering (NPR). Perhaps the
most well studied NPR problem is that of painterly rendering; the automated
stylisation of imagery to give a hand-painted appearance. A number of these
algorithms now exist capable of emulating a variety of styles, such as water-
colour [1] and oil [2–7].

Although the output of contemporary painterly rendering algorithms is often
of high aesthetic quality, the usability of such algorithms is impeded by the
plethora of low-level parameters that must be set in order to produce acceptable
output. Many of these parameters are data dependent, for example determining
the scale of image features to paint [3, 4]. The presence and fine-tuning of such
parameters is necessary to retain generality of the algorithm, but can be difficult
for the non-expert user to achieve. Furthermore, some algorithms [3, 6] seek
to emulate a broad range of artistic styles using additional user configurable
parameters. For example, [3] varies brush size, colour jitter, and stroke length to
interpolate between pseudo ”expressionist” and “pointillist” styles. Often these
parameters can be time consuming to set — both due to their number, and due



to their low-level nature, which can make them non-intuitive for inexperienced
users to manipulate when aiming for a conceptually higher level effect (e.g. a
gloomy painting, or an energetic, cheerful composition). Moreover, parameters
can interact in complex ways leading to emergent behaviour within the painting
that the user may not expect or understand. The end result is often a slow,
iterative trial and error process before the user is able to instantiate their desired
results.

This paper presents a solution to the problem of NPR parameter selection
by framing the task as a goal-centred evolutionary search to be solved using a
Genetic Algorithm (GA). We do not wish to eschew interaction, for this is of-
ten where artistic creativity is expressed when applying NPR algorithms (such
techniques are better regard as tools, rather than black-box processes for cre-
ating artwork). Instead we draw inspiration from Sims [8] who adopted user
supervision in his evolutionary artistic processes. Our system iteratively evolv-
ing a population of painterly renderings towards the user’s aesthetic ideal, and
on each evolutionary cycle presenting a sample of the population to the user
for fitness evaluation. The user’s evaluation affects the natural selection phase
of the GA, and so affects the composition of subsequent generations of paint-
ings. Similar architectures have also been applied in a other computer graph-
ics domains; for example recent work facilitating the interactive evolution of
pixel-vertex shaders [9] and animated screen-savers [10]. To facilitate timely in-
teraction in our system we make use of a fast, segmentation based algorithm
for painterly rendering. This algorithm not only draws upon existing painterly
rendering literature (encapsulating many of the styles available using existing
techniques), but also draws upon colour psychology to allow tonal variations
that influence the emotional context or “mood” of the painting. This is achieved
by mapping HSV colour transformations on to Russell’s 2D “pleasure-arousal”
emotional state space [11], and harnessing emotional state as a high level NPR
parameter for painterly rendering [12].

The remainder of the paper is organised as follows. We begin by briefly
surveying existing painterly techniques in Section 1.1. We then give detailed
descriptions of our painting algorithm (Section 2) and interactive GA search
(Section 3). We conclude with a gallery of results and discussion in Section 4.

1.1 Related Work

The majority of image based painterly rendering algorithms adopt the stroke-
based rendering paradigm, generating paintings by compositing ordered lists of
virtual “brush strokes” on a 2D virtual canvas. The development of such algo-
rithms arguably began to gain momentum with Haeberli’s semi-automatic “im-
pressionist” painting system [13]. In Haeberli’s system, stroke attributes such as
colour or orientation were sampled from a source photograph whilst stroke size,
shape and compositing order was set interactively by the user. Litwinowicz [2]
was the first to propose a fully automated 2D painting algorithm, again focus-
ing upon the impressionist style. Paintings were synthesised by aligning small



rectangular strokes to Sobel edge gradients in the image and stochastically per-
turbing the colour of those strokes. Hertzmann later proposed a “coarse to fine”
approach to painting using curved β-spline strokes . Spline control points were
extracted by hopping between pixels in directions tangential to Sobel edges.
The process operated at several discrete spatial scales, concentrating stroke de-
tail in high frequency areas of the image. The β-splines used in this technique
were later extended to active contours, enabling a relaxation based approach
to curved stroke painting [14]. Other early painterly rendering algorithms such
as [15] and [4] also made use of local image processing operators; placing strokes
according to variance measures within a local window.

Our approach contrasts with these early painterly rendering algorithms in
that we operate using multi-scale segmentation only, substituting image gradi-
ent and variance measures for region shape properties to guide stroke placement.
Among the first to propose the use of segmentation algorithms for painting were
Gooch et al. [5], who placed strokes along medial axes of segmented regions to
produce painterly artwork. The benefits of their approach included a significant
reduction in the number of brush strokes whilst preserving fine detail in the ren-
dering. Segmentation was also used by [16, 17] to produce painterly abstractions.
Notably these systems used a human gaze tracker to correlate level of detail in
the painting with perceptually salient detail in the source image. An automatic
system for salience adaptive painting, driven by machine learning rather than
run-time interaction, was recently presented by Collomosse and Hall [7]. This
work also applied evolutionary search techniques to NPR, harnessing GAs as a
relaxation mechanism for automatically controlling level of detail in paintings
within a single artistic style. By contrast we here apply GAs for style selec-
tion using interactive aesthetic evaluation, and as such, our work is also closely
aligned with algorithms encompassing a range of visual styles selectable via user
parameterisation. Hertzmann [3] claims expressionism, pointillism, impression-
ism and “abstract” styles through the variation of low level parameters such as
stroke length. Similarly low-level parameters are used to tune the visual style of
paintings in [6]. We have encompassed a similar gamut of rendering styles within
our painterly framework.

2 Painterly Rendering Algorithm

In this section we briefly describe our fast multi-resolution technique for stylising
photographs at interactive speeds. The scope of this paper is such that we have
focused on the parameterisation of the algorithm and interested readers are
directed to [12] for a more detailed description. The algorithm accepts a 2D
photograph as input, and outputs a 2D painterly rendering of that photograph —
the visual style of which is a function of eight user-configurable scalar parameters,
p1..8 (Figure 1) which are output by the evolutionary search step (Section 3).

We begin by creating a colour band-pass pyramid segmentation of the source
image by applying the EDISON [18] algorithm at several spatial scales. This
segmentation is computed only once, during system initialisation, to facilitate



Param Description

p1 Colour jitter
p2 Maximum hop angle
p3 Region turbulence
p4 Colour (pleasure)
p5 Colour (arousal)
p6 Stroke jaggedness
p7 Stroke undulation
p8 Region dampening

Fig. 1. Summary of the eight rendering parameters p1..8 used to control visual style in
our painting algorithm.

real-time interaction during the search process. To produce a painting, the pyra-
mid layers are rendered in coarse to fine order. Segmented regions within each
layer are painted using a combination of “interior” and “boundary” strokes; as
we explain in the next subsection. For each layer, the “interior” strokes of all
regions are first rendered, followed by the “boundary” strokes of all regions.

2.1 Interior and Boundary Stroke Placement

Brush strokes are formed using Catmull-Rom piecewise cubic splines, the control
points of which are computed from the binary mask of each region as follows.

Interior Strokes. The interior of a segmented region is first filled using a
modified boundary-fill algorithm that paints strokes tangential to the region’s
principal axis, obtained by computing the eigenvectors of pixel coordinates in-
side the region. Lines parallel to the principal axis are traversed, and strokes
are started and terminated as region boundaries are encountered. The spacing
between these traversal lines is proportional to stroke thickness. As each stroke
is placed, control points are distributed uniformly over the stroke’s length, and
jittered via small translations to disguise the regularity of the stroke placement
process. Stroke colour is set to the mean colour under the stroke, computed from
the source image. This colour is subject to random perturbation, the magnitude
of which forms one parameter of the rendering process, written p1. Stroke thick-
ness is set on a per region basis, in proportion to region area. In the case of very
large regions, thickness is capped and strokes are painted horizontally (after [19])
to preserve natural appearance.

Boundary Strokes. The boundary of the segmented region is vectorised to
produce a closed polygon. Points on the polygon are visited in order, and added
to an initially empty “working set”. Upon each point’s addition, we sum the dis-
tance between all points in the working set to a line drawn between the first and
last points in that set. If the distance is above a threshold (or no further points
remain in the chain code), we output the most recently added point as a stroke



Fig. 2. Left: Russell’s 2D pleasure-arousal space used to parameterise tonal variation
in the painting. Right: False colour schematic illustrating the various colour transfor-
mations performed within regions of the pleasure-arousal space. Functions G, U , L, D,
T1 and T2 are defined in Section 2.2.

control point. The working set is then emptied. A brush stroke is terminated,
and a new stroke started, when the angle between adjacent control points rises
above a preset threshold. In practice this threshold governs the typical length
of brush strokes, and we allow this to vary between 0 − 50◦ as another of our
rendering parameters (written p2). The stroke must also be terminated if the
colour of a new control point differs significantly from the mean colour of those
already present in the stroke. Stroke thickness and colour are set as with the
interior stroke placement process.

2.2 Rendering Parameters

In addition to the two rendering parameters (p1, p2) governing stroke placement
(Section 2.1), we also incorporate the following six parameters that allow modu-
lation of the painting’s visual style. All parameters are summarised in Figure 1.

Region Turbulence. Flat expanses within paintings, for example sky or water,
may be depicted in a variety of artistic styles. Our system encompasses a gamut
of rendering styles ranging from the calm, serene washes of a watercolour to the
energetic swirls of a Van Gogh oil or the chaotic strokes of a Turner seascape. We
introduce similar effects by repeatedly performing boundary stroke placement
(Section 2.1) subjecting region masks to morphological erosion prior to each
iteration. The number of iterations is proportional to rendering parameter p3.
This has the effect of allowing boundary strokes to grow into the interiors of
regions in an unstructured manner, so breaking up flat expanses in the painting.

Tonal Variation. Certain combinations of colours can evoke particular emo-
tions, so helping to convey a particular mood to a composition. We have iden-
tified a number of cues from colour psychology, and mapped these to regions
of Russell’s 2D pleasure-arousal emotional space [11] — see Figure 2 (left). By
specifying an emotional state (a point (p4, p5) in this space defined by two fur-
ther rendering parameters), we allow the user to interactively vary the emo-
tional ambiance or “mood” of the composition. Wright and Rainwater [20] have
found the notion of happiness (pleasantness) to be primarily dependent on colour
brightness (luminance), and to a lesser degree on saturation. Intuitively arousal
corresponds to colour saturation, but can also be linked to hue. Wright and
Rainwater’s study has shown calmness to be blue-correlated [20], but according
to Mahnke blue may also suggest depression and cold [21].

We have defined a number of transfer functions that operate upon hue, satu-
ration and luminance as a mechanism for instantiating the colour heuristics we



have distilled from the literature [20, 21]. The complex psychological theories un-
derpinning colour and emotion generate non-linear mappings of hue, saturation
and luminance variation to the pleasure-arousal space. We approximate these
piecewise with a collection of linear transfer functions — different functions are
applied in each of six regions of the space. Figure 2 (right) illustrates the bound-
aries of these regions, and the transfer functions used over the pleasure-arousal
space. Functions G(x) and U(x) correspond to greying and un-greying (scaling
saturation in proportion to x), while D(x) and L(x) correspond to lightening
and darkening (scaling luminance in proportion to x). The operation of the lat-
ter function is capped for “boundary” brush strokes to prevent bleaching of fine
detail. Care is taken in blending the constants of proportionality to prevent vis-
ible discontinuities near the boundaries defined over the pleasure-arousal space.
Functions T1(x) and T2(x), indicated in Figure 2, are two special cases that
encode hue variation consistent with aroused displeasure (anger) and apathetic
displeasure (depression). Hue is manipulated via an RGB space transformation
prior to saturation and luminance manipulations. In the former case T1(x), pre-
dominantly red colours are reddened and green (associated with calm) is reduced
(in proportion to x). These effects combine with the saturation and luminance
transformations already present to produce the combination of aroused reds and
dismal darks that appear in psychological literature in association with anger.
In the latter case T2(x) we increase the blue in proportion to x to generate
a monotonous shift into the blue spectrum, associated with sadness and calm.
Colours are also desaturated and darkened in accordance with transformations
already present in that quadrant of the space.

Brush Stroke Style. We have introduced two parameters to control variation
of stroke style in our system. These afford the user some control over stroke
accuracy (p6) and angularity (p7) in the painterly rendering.

When rendering a brush stroke we create an arc-length parameterisation over
the piecewise Catmull-Rom spline that smoothly interpolates its control points.
To enhance the angularity or “jaggedness” of strokes we create an additional
linear interpolation over the control points using the same arc-length param-
eterisation. Lineally interpolating between these two functions, in proportion
to p7, yields our desired style of stroke. We then introduce inaccuracies into the
stroke placement process by inducing undulations in the trajectory of the stroke.
Whilst rendering, we translate points on the stroke along their normal vectors
— the distance a particular point is moved is set by a periodic function with
frequency and amplitude proportional to p6. Finally, we introduce a further pa-
rameter (p8) to dampen the effects of undulation (p6) on interior strokes. This
can lead to visually chaotic stroke placements in the backgrounds of paintings
that may or may not be desirable depending on the user’s intended visual style.



3 Evolutionary Search for Parameter Selection

Given this parameterised rendering framework, the painting process is reduced to
a search for the point in our parameter space [p1p2...p8] ∈ <8) that corresponds
to a painting expressing the target aesthetics of the user. Our system adopts a
genetic algorithm (GA) search strategy. GAs are often cited as appropriate for
exploring high dimensional parameter spaces as large regions of problem space
can be covered quickly, and local minima (e.g. arising due to interactions.between
painting parameters) are more likely to be avoided [22, 23]. We now describe the
initialisation and iterative stages of our GA search.

3.1 Initialisation

We begin by initialising a fixed size population of individuals. We have opted for a
population size of 1000 individuals, determined empirically to be a suitable trade-
off between diversity the real-time processing constraints of our system. Each
individual contains eight normalised scalar values that comprise the genotype of
a particular painting. These values are seeded randomly in the initial generation.

3.2 Iterative Search

Genetic algorithms (GAs) simulate the process of natural selection by breeding
successive generations of individuals through cross-over, fitness-proportionate
re-production and mutation. In our implementation we terminate this iterative
process when successive improvements in fitness become negligible (the change
in both average and maximum population fitness over a sliding time window fall
below a threshold). We now describe a single iteration of this process.

Interactive Evaluation The first step in each iterative cycle is population
evaluation. We wish to measure the proximity of each individual’s phenotype to
the user’s “ideal” aesthetic. Specifically we require a mapping M([p1p2...p8]) 7→
f ∈ < where f is a normalised fitness score; higher values correspond to aestheti-
cally superior paintings. As our aim is to assist the user in style specification it is
not possible to write an automatic function for M(.). Our objective is therefore
twofold. First, to estimate the mapping function M(.) through user interaction.
Second, to search for the point p ∈ <8 such that:

p = argmaxi [M(i)] (1)

Our approach is to sparsely evaluate M(.) over a subset of the population,
and use this data to extrapolate the behaviour of M(.) over the entire population.
We have designed a simple user interface, allowing us to prompt for the fitness
of a given individual drawn from the population (so obtaining a sparse domain
sample of M(.)). The user is supplied with a graduated colour bar, and asked
to rate the aesthetics of the painting rendered from a given individual on a



Fig. 3. Snapshot of the interactive evaluation screen. The user is presented with thumb-
nails of the highest ranking 9 paintings and asked to rate one by clicking with the mouse.
Depending on the horizontal location of the click within the thumbnail, a fitness score
[-1,1] is assigned to the chosen rendering. This snapshot shows images from the first
generation of paintings — hence the diverse selections available.

continuous scale spanning red (bad), amber (neutral) and green (excellent) — see
Figure 3. Manually evaluating the entire population on each iteration would be
impractical, and to reduce user load we request evaluation of only one individual
per generation. The user is presented with the nine fittest individuals from the
previous iteration, and asked to rate the individual that they feel most strongly
about. Note that in the first iteration individuals are deemed to exhibit equal
fitness (see equation 2) and so are chosen from the population at random.

We use a Gaussian “splatting” technique to encode the results of our sparse
user interactions, and transform these into a continuous estimate for M(.). Each
time a user evaluates an individual we obtain a point q and a user fitness rating
U(q) = [−1, 1]. These data are encoded by adding a Gaussian to a cumulative
model, built up over successive user evaluations. Each Gaussian distribution is
centred at point q, and multiplied by the factor U(q). We assume the integral
under the Gaussian to be well approximated by unity in space <8 ∈ [0, 1], and
so infer the continuous function M(.) as:

M(p) = 0.5 +
{

0 if N = 0,
1

2N

∑N
i=1 U(q

i
)G(p, q

i
, σ) otherwise

(2)

where p is an individual to be evaluated in the current generation, q
i

are indi-
viduals evaluated by the user in the previous N iterative cycles, and U(x) is the
user’s score of a given genotype x. The function G(x, µ, σ) denotes a Gaussian
distribution with mean µ and standard deviation σ, evaluated at x. The stan-
dard deviation σ governs the locality in problem space over which a single user
evaluation holds influence. We have used the value σ = 0.1 for all of the results
presented here. Equation 2 provides us with an estimate for M(.) defined over
the entire problem space, which we then apply to evaluate the whole population.

Selection and Propagation Once the current population has been evaluated,
pairs of individuals are selected and bred to produce the next generation of
painting solutions. Parent individuals are selected with replacement, using a
stochastic process biased toward fitter individuals. A single offspring is produced
from two parents by way of stochastic cross-over and mutation operators. Each
of the eight parameters that comprise the genome of the offspring has an equal
chance of being drawn from either parent. Mutation is implemented by adding
a random normal variate to each of the eight parameters. These variates have
standard deviations of 0.1, i.e. 97% of mutations will produce less than ±0.3
variation in a particular rendering parameter.



Fig. 4. Population statistics corresponding to the evolution of the paintings shown in
Figure 5c1 (blue, dotted), Figure 5c2 (red, dashed), Figure 5c3 (green, solid) respec-
tively. The + symbol indicates algorithm termination. ∗ indicates a negative fitness
rating from the user.

Fig. 5. A gallery of painterly renderings produced by our system, original images inset.

4 Results and Conclusion

We have tested our system on a wide range of images, a give representative ex-
amples in Figure 5. In Figures 5a we show single photograph (BIGBEN) evolved
into “abstract” and “expressionist” styles reminiscent of those presented in [3,
24]. Convergence took 15 and 17 mouse clicks respectively — less than one minute
of user time. Furthermore, our segmentation based painting algorithm did not
require technical parameters (e.g. scale or low-pass kernel size [3]) to be specified
explicitly by the user. Figures 5e1, e2 give examples of further painterly styles,
contrasting two different stroke placement styles encompassed by our system.
The first is reminiscent of the “impressionist” style paintings generated by [2],
the latter the impasto style oil paintings generated by [7]. Figure 5b gives a
further examples of the broad classes of image handled by our system. Figure 5c
demonstrates a single photograph (DRAGON) evolved into three distinct visual
styles. A non-expert was asked to use our system to create paintings depicting
high-level concepts such as anger (Figure 5c1), cheerfulness (Figure 5c2) and de-
spair (Figure 5c3). Graphs recording the mean population fitness, and standard
deviation (diversity) during the evolution of these paintings are also supplied in
Figure 4. Convergence took between 20 to 25 generations before the termination
criteria was triggered. In Figure 4 we have forced evolution to continue beyond
30 generations, however improvements in mean fitness beyond the automated
termination point are negligible.

To evaluate the usability of our system we developed an alternative low-level
interface using sliders to independently control p1..8. Users were asked to pro-
duce identical renderings to those previously generated using our GA. Users were
usually able to reproduce results, but required five or six minutes of experimen-
tation (and several hundred mouse clicks) before doing so — approximately five
times longer than when using our GA goal-based search.

When working with our system, we have found that users will often focus on
a particular aesthetic property of the painting and focus on the improvement of
that property. For example, users might address the issue of edge detail over,
say, the style of the in-filled background. Often these properties have no direct
mapping onto individual rendering parameters, providing some explanation of
the timing improvements of a top-down goal seeking approach to style selection
over a bottom up configuration of low-level painting parameters. The impact of
this behaviour can be observed in the graph of Figure 4 (left). Gradual increases
in painting “fitness” are observed over time, interrupted by short-lived dips.



These dips become less pronounced as the generation count increases. We have
found the presence of dips to correlate with the issuing of negative ratings by
users; typically these are issued when a user has refined one aspect of the painting
to their liking, and begun to address a further aspect of the composition that
they had so far neglected. By neglecting refinement of the latter aspect, a false
representation of the user’s “fitness function” M(.) (see Section 3.2) has been
conveyed to the system and encoded in the Gaussian distribution model. This
requires user correction, often in the form of rating penalisation.

Throughout our work we have assumed the user has an ideal painting in
mind, and wishes to express instantiate that ideal through NPR. An alternative
application of our system might be in style exploration, where the user has no
well-developed goal state in mind. Early indications are that the guided search
provided by our system may be suitable for such activities. However if the user
substantially revises their aesthetic ideals late in the search, the reduced popu-
lation diversity can require tens of iterations before the user is able to explore
new regions of the problem space. If our system were to be used in this manner,
we would suggest increasing the standard deviation of the variates used during
mutation to maintain population diversity further into the search.
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