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Abstract. The contribution of this paper is a novel non-photorealistic
rendering (NPR) algorithm for rendering real images in an impasto
painterly style. We argue that figurative artworks are salience maps, and
develop a novel painting algorithm that uses a genetic algorithm (GA) to
search the space of possible paintings for a given image, so approaching
an “optimal” artwork in which salient detail is conserved and non-salient
detail is attenuated. We demonstrate the results of our technique on a
wide range of images, illustrating both the improved control over level of
detail due to our salience adaptive painting approach, and the benefits
gained by subsequent relaxation of the painting using the GA.

1 Introduction

Paintings are abstractions of photorealistic scenes in which salient elements are
emphasised. In the words of art historian E.H. Gombrich, “works of art are not
mirrors” [1] — artists commonly paint to capture the structure and elements
of the scene that they consider to be important; remaining detail is abstracted
away in some differential style. This differential level of emphasis is evident in all
artwork, from the sketches of young children to works of historical importance.

Processing images into artwork remains an active area of research within the
field of non-photorealistic rendering (NPR). This paper presents a novel auto-
matic NPR technique for rendering images in an impasto painterly style. Our
approach contrasts with those before us in that we seek to emulate the afore-
mentioned differential emphasis practised by artists — automatically identifying
salient regions in the image and concentrating painting detail there.

Our algorithm makes use of a new image salience measure [2], that can be
trained to select features interesting to an individual user, and which performs
global analysis to simultaneously filter and classify low-level features to detect
artifacts such as edges and corners. This enables us both to adaptively vary level
of detail in painted regions according to their salience, and to vary brush stroke
style according to the classification of salient artifacts. Further, we use a genetic
algorithm (GA) to search the space of possible paintings for the given image,
and so approach an optimal painting. A painting is deemed “better” if its level of
detail coincides more closely with the salience magnitude of the original image,
resulting in conservation of salient detail and abstraction of non-salient detail.
Although we are not the first to propose relaxation approaches to painting [4,
5], our approach is novel in that we converge toward a globally defined minimum
distance between salience and corresponding detail in the painting.



1.1 Related Work and Context

The development of automated painterly renderers arguably began to gain mo-
mentum with Haeberli’s semi-automatic painting environments [6]. Fully auto-
matic data dependent approaches were later presented, driven by heuristics based
on local image processing techniques that estimated stroke attributes such as
scale or orientation. Litwinowicz [7] employed short, linear paint strokes, which
were clipped to thresholded edges. Treavett and Chen [8] proposed the use of lo-
cal statistical measures, aligning strokes to axes of minimum intensity variance.
A similar approach using chromatic variance was proposed in [9]. Hertzmann
proposed a coarse-to-fine approach to painting [10] and was the first to auto-
matically place curved (β-spline) strokes rather than dabs of paint. Our stroke
placement algorithm is based firmly upon this technique. Gooch et al. [11] also
use curved strokes fitted to skeletons extracted from locally connected regions.

A commonality exists between all of these algorithms; the attributes of each
brush stroke are determined independently, by heuristics that analyse small pixel
neighbourhoods local to that stroke’s position. Rendering is, in this sense, a spa-

tially local process. The heuristics typically seek to convey the impression of
an artistic style whilst preserving content such as edges, and other artifacts
contributing to the upper frequencies of the Fourier spectrum. Indeed, existing
relaxation-based painting algorithms [4, 5] actively seek to maximise conserva-
tion of high-frequency content from the original image. Measures of variance [8,
9], or more commonly, simple edge detectors (such as Sobel) [7, 10] drive these
heuristics. This results in a painting in which all fine detail is emphasised, rather
than only the salient detail. Arguably this disparity contributes to the undesir-
able impression that such paintings are of machine rather than natural origin.

In Fig. 1 (left) we demonstrate that not all fine scale artifacts are salient;
indeed in these images, salient and non-salient artifacts are of similar scale. Such
examples make the case for some other measure of salience incontrovertible.
When one speaks of the salience of image regions, one implicitly speaks of the
importance of those regions relative to the image as a whole. It follows that global

image analysis is a prerequisite to salience determination, rather than restricting
attention to spatially local image properties.

Our desire to control level of detail in NPR is most strongly aligned with re-
cent techniques, which appeal to user interaction to control emphasis. De Carlo
uses a gaze-tracker [12] to guide level of detail in painting. Masks, specified man-
ually or a priori, have also been used to interactively reduce level of detail [10,
13]. Yet the problem of automatically controlling painting emphasis remains;
this paper presents a solution.

2 A Salience Measure for Painting

Salience is subjective; faces photographed in a crowd will hold different levels of
salience to friends or strangers. User training is one way in which subjectivity
can be conveyed to an automated salience measure, although current Computer
Vision restricts general analysis to a lower level of abstraction than this example.



Source Edge map Salience map Ground truth

Fig. 1. Left: Examples of images edge detected, salience mapped, and a hand-sketched
ground truth. We observe that the global, rarity based salience maps [2] are qualita-
tively closer to sketches, and can “pick out” the circle and face where local methods
such as edge detection fail. The salience measure estimates salience magnitude and also
classifies artifacts into trained categories (bottom row). Edges are red, ridges green,
and corners blue. Right: Sobel edges (top) and salience map (bottom), corresponding
to Fig. 6b. Salient edges are discriminated from non-salient high frequency texture.

We make use of a trainable salience measure, described more fully else-
where [2], that combines three operators to estimate the salience map of an
image — a scalar field in which the value of any point is directly proportional to
the perceived salience of the corresponding image point. The first of the three
operators performs unsupervised global statistical analysis to evaluate the rel-
ative rarity of image artifacts (after Walker et al.[14] who observe that salient
features are uncommon in an image). Salient artifacts must also be visible, and a
second operator filters detected artifacts to enforce this constraint. Finally, cer-
tain classes of artifact, for example edges or corners, may be more salient than
others. This observation is accommodated by a third operator that is trained
by the user highlighting salient artifacts in photographs. Signals corresponding
to these artifacts are clustered to produce a classifier which may be applied to
to estimate salience in novel images. This definition holds further advantage in
that classes of salient features may be trained and classified independently.

This trainable salience measure is well suited to our NPR painting applica-
tion for two reasons. First, the salience maps produced have been shown to be
measurably closer to human figurative sketches of scenes than edge maps and a
number of other prescriptive salience measures [3]. Second, the ability to estimate
both the salience and the classification of image artifacts simultaneously allows
us to vary stroke style according to the class of artifact encountered (Fig. 2).
We begin by applying the salience measure to the source image; obtaining both



a salience map and a classification probability for each pixel. An intensity gra-
dient image is also computed using Gaussian derivatives, from which a gradient
direction field is obtained. The source image, direction field, salience map and
classification map are used in subsequent stages of our painting algorithm.

3 Painting as a Search

Our observations of artists lead us to assert that the level of detail in a painting
should closely correlate with the salience map of its source image. In this sense,
the optimality criterion for our paintings is a measure of the strength of this
correlation (defined in subsection 3.2, step I). We treat the painting process as
a search for the “optimal” painting under this definition. Our search strategy is
genetic algorithm (GA) based. When one considers the abstraction of a painting
as an ordered list of strokes [6] (comprising control points, thickness, etc. with
colour as a data dependent function of these), the space of possible paintings
for a given source image is very high dimensional, and our optimality criterion
makes this space extremely turbulent. Stochastic searches that model evolution-
ary processes, such as GAs [15], are often cited among the best search strategies
in such situations; large regions of problem space can be covered quickly, and
local minima more likely to be avoided [16, 17].

Our algorithm accepts as input a source image I; paintings derived from I

are points in our search space. We begin by initialising a fixed size population
of individuals. Each individual is single point in our search space, represented
by an ordered list of strokes that, when rendered, produces a painting from I.
Having initialised the population, the iterative search process begins. We now
describe the initialisation and iteration stages of the search in detail.

3.1 Initialising the Painting Population

We initialise the search by creating an initial population of fifty paintings, each
derived from the source image via a stochastic process. We now describe this
derivation process for a single painting.

A painting is formed by compositing curved spline brush strokes on a 2D
canvas of identical size to the source image. We choose piecewise Catmull-Rom
splines for ease of control since, unlike β-splines (used in [10, 11]), control points
are interpolated. A collection of “seed points” are scattered over the canvas
stochastically, with a bias toward placement in more salient regions. Brush
strokes are then grown to extend bi-directionally from each seed; each end grows
independently until halted by one or more preset criteria. Growth proceeds in a
manner similar to [10] in that we hop between pixels in the direction tangential
to intensity gradient. The list of visited pixels forms the control points for the
stroke. However, noise forms a component of any real image, and hop directions
are better regarded as samples from a stochastic distribution. We have observed
this noise to obey the central limit theorem [18], and so model this distribution



Fig. 2. Left: a still-life composition and corresponding salience map. Right: a loose
and sketchy painting, exhibiting differential stroke style determined by local feature
classification. Edges are drawn with hard, precise thick strokes; ridges with a multitude
of light, inaccurate strokes. Rendered prior to the relaxation step of subsection 3.2.

as a zero centred Gaussian, G(0, σ); we determine σ empirically (see subsec-
tion 3.1.1). Given a locally optimal direction estimate θ we select a hop direction
by adding Gaussian noise G(0, σ). The magnitude of the hop is also Gaussian
distributed; G(µ′, σ′), both parameters being inversely proportional to the local
value of the salience map. The growth of a stroke end is halted when either the
curvature between adjacent pixels, or the difference between the colour of the
pixel to be appended and the mean colour of visited pixels exceeds a threshold.
This method initially yields a sub-optimal trajectory for the stroke with respect
to our optimality criterion. However, for a “loose and sketchy” painting this is
often desirable (see Fig. 2).

The degrees of freedom available from each of the many hops combine to
create a range of stroke loci, at least one of which will result in the maximum
conservation of salient detail. The combination of these optimally positioned
strokes comprises the optimal painting, and it is by means of breeding the fittest
paintings to create successively superior renderings, that we later search for
such a painting in our iterative process. This process can out-perform stroke
placements based purely on local estimates of direction.

3.1.1 Calibration for image noise

The choice of σ significantly influences stroke growth, and later the relaxation
process. A value of zero forces degeneration to a loose and sketchy painting
system; a high value will lengthen the relaxation process unnecessarily and also
may introduce unnecessary local minima. We propose a one time user calibration
process to select σ as follows.

The user is asked to draw a window around an image region where direction
of image gradient is perceived to be equal; i.e. along which they would paint
strokes of similar orientation. Gradient direction within this window is sampled,
and σ computed as twice the unbiased standard deviation of the sampled angles.



We typically obtain similar σ values for similar imaging devices, which allows us
to perform this calibration very infrequently. A typical σ ranges from around 2 to
5 degrees. This variation allows between 12 and 30 degrees of variation per hop
which, given the number of hops per stroke, yields a wide range of stroke loci.
This adds credence to our argument for a relaxation process taking into account
image noise; local variations due to uncompensated image noise will likely cause
inaccurate stroke placements in single iteration painterly systems [7, 10, 9, 11].

3.1.2 Rendering a Painting

At this stage we may render one of the paintings in our initial population to
produce a “loose and sketchy” painting (Fig. 2). Alternatively we may proceed
to the iterative search stage of subsection 3.2 to locate a more optimal painting
— each iteration also requires paintings to be rendered to evaluate fitness. We
now describe how paintings are formed from individuals in the population.

A painting is formed by scan-converting and compositing its list of curved
spline brush strokes. Stroke thickness is set inversely proportional to stroke

salience; taken as the mean salience over each control point. Stroke colour is
uniform and set according to the mean of all pixels encompassed in the footprint
of the thick paint stroke. During rendering, strokes of least salience are laid down
first, with more salient strokes being painted later. This prevents strokes from
non-salient regions encroaching upon salient areas of the painting. The ability of
our salience measure to differentiate between classes of salient feature (e.g. edge,
ridge) also enables us to paint in context dependent styles. In Fig. 2 the clas-
sification probability of a feature is used as a parameter to interpolate between
three stroke rendering styles flat, edge and ridge.

3.2 Iterative Relaxation by GA

Genetic algorithms (GAs) simulate the process of natural selection by breeding
successive generations of individuals through cross-over, fitness-proportionate re-
production and mutation [17]. In our implementation such individuals are paint-
ings; their genomes being ordered lists of strokes. We now describe a single
iteration of the GA search, which is repeated until the improvements gained
over the previous few generations are marginal (the change in both average and
maximum population fitness over a sliding time window fall below a threshold).

I. Fitness and Selection. The entire population is rendered, and edge maps
of each painting are produced using by convolution with Gaussian derivatives,
which serve as a quantitative measure of local fine detail. The generated maps
are then compared to a precomputed salience map of the source image. The
mean squared error (MSE) between maps is used as the basis for determining
the fitness of a particular painting; the lower the MSE, the better the painting. In
this manner, individuals in the population are ranked according to fitness. The
bottom 10% are culled, and the top 10% percent pass to the next generation; this
promotes convergence. The top 90% percent are used to produce the remainder
of the next generation. Two individuals are selected stochastically with a bias



1st 70th

Fig. 3. Relaxation by GA search. Detail in the salient region of the ‘dragon’ painting
sampled from the fittest individual in the 1st, and 70th generation of the relaxation
process. Strokes converge to tightly match contours in salient regions of the image thus
conserving salient detail.
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Fig. 4. Left: Three runs of the relaxation process; dotted line corresponds to the model
(Fig. 6a), dashed line the dragon (Fig. 3) and solid line the truck (Fig. 6g). MSE of the
fittest individual is plotted against time. Right: MSE averaged over each generation

to fitness, and bred via cross-over and mutation to produce a novel offspring for
the successive generation. This process repeats until the population count of the
new generation equals that of the current generation.

II. Cross-over. Two difference images, A and B, are produced by subtract-
ing the edge maps of the parents from the salience map of the source image.
By computing the binary mask A > B, and likewise B > A, we are able to
determine which pixels in one parent contribute toward the fitness criterion to
a greater degree than those in the other. Since the primitives of our paintings
are thick strokes rather than pixels, we apply dilation to both masks. Strokes
seeded within the set regions in each mask are copied from the respective parent
to the new offspring. A binary AND operation between masks yields mutually
preferred regions, for which the contributing parent is decided arbitrarily.

III. Random Mutation. A “temporary” painting individual is synthesised
as described in subsection 3.1. A binary mask is produced containing several
small discs of stochastic number, location and radius. Strokes seeded within set



Fig. 5. Detail from Fig. 6g, region A. Using our adaptive approach, salient detail
(sign-post) is conserved, and non-salient texture (shrubbery) is abstracted away. Left:
original. Middle: existing approach [7]. Right: our proposed GA approach.

regions of the mask are substituted for those in the temporary painting. On
average, mutation occurs over approximately 4% of the canvas area.

Implementation Notes. The evaluation step is the most lengthly part of
the GA process, and rendering is farmed out to several machines concurrently. In
our implementation we distribute rendering over a small heterogeneous (Pentium
III/UltraSPARC) cluster. The typical time to render a 50 painting generation
at 1024 × 768 resolution is on average 15 minutes over 6 workstations. Relax-
ation of the painting can therefore take in the order of hours, but significant
improvements in stroke placement can be achieved, as can been seen in Fig. 3.

4 Results and Discussion

We present a gallery of rendered paintings in Fig. 6. The painting of the model
in Fig. 6b converged after 92 generations. Thin precise strokes have been painted
along salient edges, while ridges and flats have been painted with coarser strokes.
Observe that non-salient high-frequency texture on the rock has been attenuated,
yet tight precise strokes have been used to emphasise salient contours of the face.
In the original, the high frequency detail in both regions is of similar scale and
magnitude; existing painterly techniques would, by contrast, assign both regions
equal emphasis. With current techniques, one might globally increase the kernel
scale of a low-pass filter [10] or raise thresholds on Sobel edge magnitude [7] to
reduce emphasis on the rock. However this would cause a similar drop in the
level of detail on the face (Fig. 6a). Conversely, by admitting detail on the face
one would unduly emphasise the rock (Fig. 6c). We automatically differentiate
between such regions using a perceptual salience map (Fig. 1) – contrast this
with the Sobel edge field where no such distinction can be made.

We present a still-life in Fig. 6e which achieved convergence after 110 genera-
tions. In Fig. 6f we present a similar painting prior to relaxation, demonstrating
differential rendering style; strokes with a high probability of being edges are
darkened to give the effect of a holding line. Further examples of level of detail
adaptation to salience are given in Fig. 6g. In region A, the salient sign is empha-
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Fig. 6. A gallery of paintings illustrating application of our algorithm. Higher resolution
electronic versions of all our paintings are included in the material accompanying this
paper.



sised whilst non-salient texture of the background shrubbery is not (see Fig. 5).
For the purposes of demonstration we have manually altered a portion of salience
map in region B, causing all detail to be regarded as non-salient.

All of our experiments have used populations of 50 paintings per generation.
We initially speculated that population level should be set in order of hundreds
to create the diversity needed to relax the painting. Whilst convergence still oc-
curs with such population limits, it requires, on average, 2 to 3 times as many
iterations to achieve. Such interactions are often observed in complex optimisa-
tion problems employing GAs [17]. We conclude that the diversity introduced
by our mutation operator is sufficient to warrant the lower population limit.

As regards rendering, we might choose to texture strokes to produce more
realistic brush patterns — however, we have concentrated on stroke placement
rather than media emulation, and leave such implementation issues open. We
believe the most productive avenues for future research will explore both new
fitness functions and alternative uses for salience measures in image-based NPR.
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