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Abstract

The contribution of this paper is a novel spatiotemporal description of real
video sequences. Our description comprises a set of surfaces that separate ob-
jects in the video, and an accompanying database which describes objects in
the video. We explain how to automatically process video into our descrip-
tion, and use it to solve a long-standing problem in Computer Graphics; that
of automatically producing non-photorealistic (NPR) animations from video
sequences. We show empirically that our description is highly compact rela-
tive to alternative coding schemes, and that our NPR animation technique out
performs the current state-of-the-art in automatic video painting by about an
order of magnitude, in terms of temporal coherence.

1 Introduction

In this paper we introduce a novel mid-level description for encoding content in real
video sequences. Although our principal contribution is this video description technique,
its development was motivated by an application in Computer Graphics — specifically,
the problem of synthesising non-photorealistic (NPR) animations from video sequences.
Processing video for use by the entertainment industry is just one aspect of contemporary
Computer Vision, and forms part of a more general convergence trend between Computer
Vision and Computer Graphics. Our video description not only solves a long standing
problem in Computer Graphics but also encompasses a range of artistic styles and enables
novel effects to be produced.

We consider video as a spatiotemporal volume, with time as the third dimension. The
interpretation of video as a volume, rather than as time-sequence frames, was proposed
as far back as the early eighties [15] and has been successfully applied to the fields of
both Computer Vision (for example, CBIR [21]) and Computer Graphics (for example,
interactive video manipulation [12, 18]). By treating video as a three-dimensional vol-
ume, frequency patterns in both the spatial and temporal dimensions can be analysed in
a conceptually simple way and the trajectories of objects may be treated as volumes. We
are particularly interested in segmenting and tracking objects within the volume, and wish
to aggregate object properties (such as colour) over time.



Instead of the traditional 3D view of a video volume [8, 9], we adopt a “two-spatial
dimension plus time” (2D+ t) view. We reason a 2D+ t approach is to be preferred over
a 3D approach, because (a) small, fast-moving objects may form disconnected volumes
and these are much easier to handle, and (b) we have access to a wide range of stan-
dard 2D segmentation algorithms. We segment each frame independently, and combine
the results across frames to generate a spatiotemporal description of the whole video.
Similar approaches to associating contours over time have been described in the medical
vision literature [10, 11, 17], we differ by using temporal association using region-based
properties rather than edges. Broadly, segmented regions in adjacent frames are matched
using criteria such as colour and shape to create objects. Surfaces are fitted into the spa-
tiotemporal volume that separate objects from one another. The connectivity of the object
is represented by a graph, and a database stores information that is useful to our NPR
application. The result is a compact description of the video; a detailed account of its
production is given in Section 2.

Our video description was designed to allow the automated production of coherent
non-photorealistic video. Video painting is currently based upon optical flow: paint
strokes (short, coloured line segments) are painted in frame one, and moved to frame
two by optical flow vectors, and so on. This has many problems, the foremost being a
distracting, visually uncomfortable flickering. Our video description solves this problem,
as explained in Section 3. In the same section we also show, empirically, that our de-
scription can be more compact than MPEG-4 for cartoon animations, and that it reduces
flicker by an order of magnitude compared to state-of-the-art automatic methods for video
painting. We conclude, in Section 5, that processing images into artwork benefits from
novel mid-level computer vision — and that computer vision may benefit by considering
applications beyond its usual domain.

2 A Description of Video

Our description treats video as a 2D+ t volume. It comprises a set of spatiotemporal sur-
faces that separate objects; such objects are spatiotemporal sub-volumes which describe
the trajectories of features over time. Each surface separates exactly two objects, so that
many such surfaces make up the boundary of an object. Surfaces each have two point-
ers associated with them — these pointers index a database that describes the objects on
either side of the surface, so comprising a winged edge structure [1].

There are five stages to the production of such a description. We begin by inde-
pendently segmenting frames into connected homogeneous regions. The second stage
associates segmented regions in each frame with regions in adjacent frames, to gener-
ate objects. The third stage removes spurious association, and temporally smooths the
objects. Fourth, we fit separating surface between objects, initiating the winged-edge
structure. Finally we produce a database of object attributes to be indexed by the pointers
of the separating surfaces.

2.1 Frame Segmentation

Our first aim is to independently segment each video frame into homogeneous regions. In
common with many segmentation techniques [2,9,22] we segment on the basis of homo-
geneous colour. This was chosen for initial simplicity only, and is not a fundamental limit



or objection to our approach. Even so, the choice of segmentation algorithm influences
the success of the later region-matching step, because segmentations of adjacent frames
must yield similar class maps to facilitate association.

Robustness —- defined loosely as the ability to produce near-identical results given
near identical images —- is an important property of the segmentation algorithm we use.
Although most published 2D segmentation algorithms are accompanied by an evaluation
of their performance versus a ground truth segmentation, to the best of our knowledge
a comparative study of algorithm robustness, as we have defined it, is not present in the
literature. Consequently, we empirically investigated the robustness of contemporary 2D
segmentation algorithms. Experimental details, including a more formal definition of
robustness, can be found elsewhere [5]. Here, we state the conclusion of that experiment:
that EDISON [4] proved the most robust algorithm under our definition.

2.2 Region matching

Frame segmentation partitions each frame into a set of regions. A single region in a
given frame may be associated with zero, one, or more regions in adjacent frames. This
is because a region may be “split” by a passing foreground object, or “merge” if the
foreground object moves away, for example. We therefore associate a single region in
a given frame with a set of regions in adjacent frames. Associations are constructed by
considering individual region pairs, Ri in frame i and R j in an adjacent frame j. The
quality of match between these regions is measured by

E(Ri,R j) =

{

0 if δ (Ri,R j;∆) > 1
e(Ri,R j) otherwise

(1)

e(Ri,R j) = w1σ(Ri,R j)+w2α(Ri,r j)−w3δ (Ri,R j;∆)−w4γ(Ri,r j) (2)

The function δ (.) is the spatial distance between the region centroids as a fraction of some
threshold distance ∆. The purpose of this threshold is to prevent regions that are far apart
from being considered as potentially matching; e(.) is not computed unless the regions
are sufficiently close. We have found ∆ = 30 pixels to be a useful threshold. Constants
w[1..4] are parameters that weight the influence of each of four heuristic functions; the

functions are all bounded in [0,1]. These parameters may be modified by the user to tune
the association process, though typically less than an order of magnitude of variation is
required. We have found w1 = 0.8,w2 = 0.6,w3 = 0.6,w4 = 0.4 to be typical values for the
videos we present in Section 3. The function γ(.) is the the Euclidean distance between
the mean colours of the two regions in CIELAB space (normalised by division by

√
3).

α(.) is a ratio of the two regions’ areas in pixels. σ(.) is a shape similarity measure,
computed between the two regions. Regions are first normalised to be of equal area, σ(.)
is then computed by taking Fourier descriptors of the angular description function [7] of
each region’s boundary. Shape similarity is inversely to proportional to Euclidean distance
between the magnitude vectors of the Fourier descriptors for both regions (disregarding
phase). The shape descriptors are therefore invariant to shape translation, rotation and
uniform scaling.

The set of regions that match Ri is constructed by the following greedy algorithm. The
matching set is initiated to empty, and the area (in pixels) of Ri is computed as an “area-
count”. A potential set of matching regions is identified, using the distance limit ∆, in the



adjacent frame, and a score for each in computed. The regions are sorted into a list in
descending order of their score. Next a cumulative sum of their area counts is computed,
working from the start of the list and storing the cumulative sum with each region. The
area-count of Ri is subtracted from each term. The matching set extends down this list
until either the score of area measure falls below a threshold.

For a given Ri we form matching sets with regions in adjacent frames both in the
future and in the past. These sub-volumes are broken into, possibly many, temporally
convex objects. A property of the temporally convex representation is that many separate
objects can merge to produce one object, and a single object division can split into many
objects. We therefore generate a graph structure, with objects as nodes, specifying how
objects split and merge over time.

2.3 Filtering and Smoothing

The description thus far comprises a graph in which spatiotemporal objects are nodes and
edges connect matched objects. This graph is noisy in the sense that some objects are
short lived, so we filter out objects that exist for less than 6 frames (about 1

4 second). The
“holes” left by cutting such objects are filled by extrapolating from immediate neighbours.
A serendipitous effect of this process is that poorly segmented areas of the video tend to
merge to form one large coherent object.

The boundary of any object is described by a spatiotemporal surface. Disregarding
“end caps” — surfaces for which time is constant — we fit a piecewise-smooth surface
to object boundaries using bi-cubic Catmull-Rom patches [3], which are interpolating
splines. Fitting is performed via a generalisation of active contours [16] to surfaces:

E =

∫ 1

0

∫ 1

0
(Eint [Q(s, t)]+Eext [Q(s, t)])dsdt (3)
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and the external energy is

Eext = η f (Q(s, t)) (5)

Function f (.) is the Euclidean distance of the point Q(s, t) to the closest voxel of the
object, hence constant η (which we preset as unity) controls the influence of the data in
the fit. We preset control over spatiotemporal gradients α = 0.5, β = 0.25, and spatial
curvature γ = 0.5. Constant ζ dictates the penalties associated with high curvatures in the
temporal dimension, which correlate strongly with temporal incoherence in the segmen-
tation. We have chosen to make the value of this temporal constraint available to the user,
so allowing variation in the degree of temporal smoothing in the sequence.

Surfaces are fitted within the volume using an adaptation of Williams’ algorithm to
locate surface points [23], which in the final iterations of the fit relaxes penalties due
to high magnitudes in the second derivative. We inhibit this relaxation in the temporal
dimension to improve temporal coherence.



Once the continuous, bounding surfaces have been smoothly fitted, the volume is re-
quantised to return to a voxel representation. These surfaces are then discarded, since
they were used only as a means to perform temporal smoothing. We continue by fitting
separating surfaces and generating a database of object properties.

2.4 Separating surfaces

Spatiotemporal objects are represented in terms of separating surfaces that mark the
boundary between exactly two neighbouring objects. Each connected component in the
boundary of an object pair has its own separating surface. Separating surfaces may contain
internal “holes”, if the boundary between neighbouring object has holes. Each separat-
ing surface has a winged edge structure [1], meaning it contains pointers referencing a
database, which holds information about the objects which it separates.

Separating surfaces are preferred over storing each object in terms of its own bound-
ing surface because boundary information is not duplicated and the description is more
compact and more manipulable. But there are disadvantages too: it is harder to vary the
topology of the scene, for example the adjacency of the objects, while maintaining the
containment of objects in this representation (this motivated the temporal smoothing step
in the previous subsection). Separating surfaces are not fitted to objects that are have no
spatial adjacency but are only temporally adjacent — this information is already encoded
in the association graph. Now, given adjacent objects A and B we first identify each
connected component in their boundary, and fit a separating surface to each component
independently, using a two stage algorithm. First a two-dimensional surface is fitted over
the boundary using an active-surface approach of the kind already described in subsec-
tion 2.3. Secondly any holes in the connected component are accounted for by fitting a
surface patch over each hole. The separating surface then comprises those points in the
bounding surface that are not in any of the “hole” surfaces.

The boundary between objects is defined in the following way. Consider two abutting
objects, A and B, say. The distance transform for all pixels in A with respect to object B
is computed, the distance transform for all pixels in B with respect to object A. Thus, a
scalar field is generated that spans all voxels in both A and B; the minimum of the scalar
fields is the boundary using in the fitting process.

2.5 The Database

We maintain a database that stores information about objects. The database is indexed
by the pointers held in the separating surfaces’ winged edge structure. Its purpose is to
store information that is useful to applications. For example, we store the object’s colour
averaged over the spatiotemporal object — other specifics are best left to Section 3. Some
data, though, is common to all applications; generic data comprises the following fields:

1. Born: The frame number in which the object starts.

2. Died: The frame number in which the object ends.

3. Parent object list: A list of objects which have either split or merged at time B
to form the current object. Objects can be assigned an empty list of parents: no
object in frame one, for example, has a parent; neither do objects that are suddenly
revealed by the removal of a previously occluding object.



4. Child object list: A list of objects which the current object will become. If this list
is empty, the object simply disappears (possibly due to occlusion, or because the
end of the video has been reached.

Clearly, these attribute encode the graph structure that links objects (see Section 2.2).
The separating surfaces and this database together comprise the video description we have
been working towards throughout this section. Of course, most applications will require
additional information, and this is certainly the case in our application to NPR animation,
as we demonstrate in Section 3.

2.6 User Correction

Processing the video description is strongly dominated by automation, but Segmentation
is imperfect, and user correction is needed for some sequences. Extensive correction of a
sequence is rarely required, and correction itself takes little time since a couple of mouse
clicks that either associates spatiotemporal objects over or causes objects to merge (we
bias segmentation toward over segmentation).

3 An Application to NPR Animation

Our video description technique was designed with a specific purpose in mind: tempo-
rally coherent (flicker-free) artistic animations from video. Processing two-dimensional
content into artwork is an area of significant interest in the field of non photorealistic
rendering (NPR). However, the problem of automatically processing video into NPR ani-
mations has been sparsely researched. The literature that does exist concentrates primarily
on the problem of producing coherent painterly animations [14, 19, 20].

The majority of NPR techniques process images into artwork by compositing multiple
virtual “brush strokes”; in their simplest form, blobs of colour. Attributes of strokes, such
as their colour or orientation, are derived from local image data. This can assist in the
retention of edge detail, in the artwork, but this paradigm for painting does not extend
well to video. The current state-of-the-art is to paint strokes in frame one, and transform
strokes to subsequent frames using optical flow [19, 20]. Unfortunately, this approach
gives rise to a distracting “flicker”, the frequency of which is very close to optimal for
attracting human attention [5]. The result is that flickering competes with video content
for visual attention, leading to headaches for audience, or else a significant degree of
manual intervention by animators.

Using optical flow to produce video artwork is analogous to producing strokes, in that
local signal information is used: images and video are currently processed into artwork us-
ing low-level computer vision methods. We argue that mid-level vision techniques should
be used to process images and video into artwork; high-level techniques are currently too
specific to be of general use, so mid-level offers a good balance between interesting vision
and practical application. This philosophy is expressed within this work via our mid-level
description of video.

Given our spatiotemporal video description, any frame is on a plane of constant time
that intersects the volume. The separating surfaces can therefore be rendered as lines,
and the interiors of objects as areas. This immediately gives us the opportunity to render
video in artwork styles that were not possible hitherto. For example, we can create line



renderings, or paint regions in a flat colour (as we alluded earlier, attributes such as colour
can be added to the database in an application-specific field). We can shrink volumes,
giving the appearance that the colour in an area does not quite reach up to the region
boundary. We can choose to render some regions by accessing voxels from the original
volume, and therefore create “mixed media” renderings in which some parts of the video
look painted while other parts look photorealistic. We can even key-in from an alternative
video source, so that the subject of a video sequence can be given a completely new
background, for example.

We can also move strokes coherently, removing the problem of flicker. To do this
we compute the inter-frame (planar projective) homographies for a specified object, as it
moves from frame to frame. The sequences of homographies are stored in the database,
and smoothed over time. In this way we attach a rigid reference frame to the object that
transforms smoothly over time, and use that frame as the basis on a canvas on which to
paint. These homographies are of use if we want to repaint an object, replacing one face
with another for example. Of course, the replacement object can be animated, and in
this way we support rotoscoping. It turns out that affine transforms are better suited for
carrying paint strokes from frame to frame, and we compute the closest affine transform
(in a least squares sense) to each homography. Thus we can produce flicker-free painterly
effects in video by considering painting and rotoscoping as essentially the same task.

Because temporal incoherence has been brought under control, the corollary is that
we can re-introduce incoherences in a controlled way, if we so choose. For example, the
separating surfaces can be “shattered” into small shards, each of which exhibits temporal
coherence over a short time. Each shard is subjected to a small, random affine transfor-
mation to produce a sketchy effect when intersected by the time plane during rendering.
Alternatively, we may introduce undulations in the surfaces, which causes the lines to
“wobble”.

4 Some Comparative Results

Figure 2 summarises details of a brief comparative investigation, contrasting the storage
requirements of our video description with those of common video compression tech-
nologies. Approximately 150KB were required to store 50 frames of a typical video
sequence. The compact nature of our description compares favourably with the other
video compression algorithms tested; although we note that the spatiotemporal nature of
our representation prohibits real-time encoding of video. It is therefore conceivable that
our video description could be transmitted — and after rendered into a number of artis-
tic styles. This creates a novel level of abstraction for video in which a service provider
might determines the video content, whilst the client may determine the style in which
that content is rendered. The level of abstraction is analogous to that of XML/XSLT
documents. Splitting the responsibilities of video content provision and content visual-
isation between the client and server is a promising direction for development of video
description techniques.

We also compared our animation system with the state-of-the-art based video paint-
ing algorithm based on optical flow [20]. This approach tends to produce animations ex-
hibiting poor temporal coherence; a manifestation of the motion estimation errors which
accumulate due to the per frame sequential nature of the algorithm. This is especially



Figure 1: A gallery of some NPR effects supported by our video description (these anima-
tions are included in electronic material accompanying this paper). Top row: mixed media
effects, showing sequential frames from different renderings of the same video sequence.
Middle row: demonstrates placing a rigid reference-frame, stoke coherence, rotoscoping
and matting using a simple example. Bottom row: frames from a single animation that
integrates video painting with motion emphasis cues.

noticeable in “flat” regions, since optical flow tends to show movement only at edges and
textures. In addition, the translations performed over time causes strokes to “bunch” to-
gether, leaving “holes” in the canvas which must be filled with new strokes. The addition
of strokes is driven by a stochastic process in [20], and so also contributes to temporal
incoherence. We measured the temporal coherence of painted video objectively in two
ways: stroke flicker, and motion coherence.

Considering flicker, the location and visual attributes of strokes should not vary rapidly;
so if si is a vector of stroke parameters (location, colour, etc) in frame i, then f =
||st −st−1|−|st+1−st || is a measure of flicker; the higher the score, the greater the flicker.
We averaged f over many frames and many strokes, and used it to compare our method
with two versions of state-of-the-art, one in which the “bunching/holes” problem was not
resolved (SoA-), and one in which it was (SoA). Numeric results are shown in Figure 2
(right) for three test videos (see accompanying material), in which we have normalised
scores so that state-of-art is unity. It is clear that we offer about an order of magnitude
improvement over state of the art.

Considering motion coherence; stroke movement should cohere with the motion of
objects to which they are attached. We rotated, scaled, and translated images with and
without texture, thus providing a ground-truth vector field over a variety of conditions.
We then computed an optical flow field using a standard method [13], and a vector field
using our method. In all cases our method reproduced the ground truth vector-field very
closely, but the optical flow method produced very different results. This was especially
clear in regions of flat texture; the local motion estimates of optical flow measured little
motion in these regions. By contrast, our motion estimate was computed over the entire
segmented object thus distributing error globally over all pixels. Further details are of all
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Figure 2: Left: Demonstrating the comparatively low storage requirements of the surface
representation for up to 50 frames of a typical gradient-shaded cartoon animation. Right:
Quantifying the lower rate of stroke flicker obtained via our method.

these experiments available in [5].

5 Conclusion

We have introduced a mid-level description of video, and used it to solve the long-standing
problem of temporal coherence in video painting; indeed we not only solve flickering but
provide a single framework for matting and rotoscoping, and allow many novel effects
that are unique to our NPR application. We have been able to successfully integrate our
animation technique with earlier motion emphasis work [6], enabling complete cartoon
style animations to be generated from video with a high degree of automation.

Perhaps the most significant criticism of the work is that the homography, used to
attach reference frames, assumes both planar motion and rigid objects. However many
artistic styles (such as cartoon shading, and sketchy rendering) do not use this aspect of
the system. Ideally the video description would be extended to increase generality of all
artistic styles: three-dimensional descriptions of objects, or curvilinear (rather than linear)
bases are two possible directions for development.

Despite these, and other limitations, the video description has proved very useful.
and shown the utility of mid-level vision to NPR; especially if that mid-level vision is
specifically designed for NPR. Equally, although our video description was motivated by
a specific application it may find use elsewhere: considering problems raised by an appli-
cation outside computer vision’s normal domain can lead to interesting vision problems.

A full description of our NPR animation system can be found in [5]. A selection of
rendered video clips accompanies this paper, and more may be found on-line at http:
//www.cs.bath.ac.uk/~vision/cartoon.
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