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Abstract

Data hiding such as steganography and invisible wa-
termarking has important applications in copyright protec-
tion, privacy-preserved communication and content prove-
nance. Existing works often fall short in either preserving
image quality, or robustness against perturbations or are
too complex to train. We propose RoSteALS, a practical
steganography technique leveraging frozen pretrained au-
toencoders to free the payload embedding from learning
the distribution of cover images. RoSteALS has a light-
weight secret encoder of just 300k parameters, is easy to
train, has perfect secret recovery performance and com-
parable image quality on three benchmarks. Additionally,
RoSteALS can be adapted for novel cover-less steganogra-
phy applications in which the cover image can be sampled
from noise or conditioned on text prompts via a denoising
diffusion process. Our model and code are available at
https://github.com/TuBui/RoSteALS.

1. Introduction
Deep fakes and misinformation are major societal chal-

lenges exacerbated by recent advances in generative mod-
els [31–33]. It has never been more important to understand
the origins (or ‘provenance’) of digital images, to enable in-
formed trust decisions to be made on content encountered
online. Emerging standards such as the ‘Coalition on Con-
tent Provenance and Authenticity’ (C2PA) [7] embed signed
provenance information within image metadata, yet this is
easily stripped by attackers or as the image gets shared
over the internet (e.g. by social media platforms). Percep-
tual hashing has been explored for near-duplicate search of
trusted databases in order to recover stripped provenance in-
formation [2,3,26,52]. However, such matches are by defi-
nition inexact, and require human-in-the-loop review when
matching at scale. Image watermarking [1, 8, 44] provides
a potential solution, enabling an identifier to be robustly in-
serted into an image, which may be used for exact search of
a provenance database. Watermarking may also be used to
robustly embed other indicators, such as whether an image
has been produced by a generative model.

Watermarking techniques are typically steganographic –

fusing an embedded payload (or ‘secret’) within the image
(‘cover’) pixels in such a way that the change in the wa-
termarked (stego) image is perceptually invisible but at the
same time recoverable via a learned secret decoder. This re-
quirement is important for creative work where image qual-
ity should be preserved. The challenge of such processes
is to learn both a representative image distribution and the
secret embedding process at the same time.

To this end, we propose RoSteALS, a simple yet effec-
tive steganography technique that leverages ‘free knowl-
edge’ from a locked (frozen) autoencoder. Our technical
contributions are three-fold:

1. Latent steganographic embedding. We propose a
novel method to inject the secret directly into the latent code
of a locked autoencoder, enabling robust watermarking with
limited training and no content specialization. Our secret
encoder is small in size, easy to train, generalize well be-
yond training data, and can be adapted to the most advanced
autoencoders to date.

2. Robust secret recovery. Our approach to secret
embedding is shown to withstand severe image perturba-
tions, critical to the use case of persisting identifiers ro-
bustly through online redistribution of content.

3. Cover-less steganography. We show that RoSteALS
can be easily adapted for cover-less use (i.e. where a cover is
synthesised on the fly for secret embedding) and for novel
text-based steganographic applications. With RoSteALS,
we extend the idea of cover-less steganography to an au-
toencoder’s latent space, where our aim is to generate a la-
tent offset that can uniquely represent a secret. Given an
autoencoder, the learned offset can be added to any random
latent code (generated using an image or text using a diffu-
sion model) of that autoencoder to produce the stego image.

2. Related work
The main goals of steganography techniques are three-

fold: maximize the length of the secret that can be embed-
ded, imperceptibility of the secret in the embedded image,
and robustness of the secret decoding against benign and ad-
versarial attacks. The secret can be embedded in the spatial
or frequency space of the image using either hand-crafted
and learning-based methods. Here we briefly describe the
related techniques and place our work in context of others.
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Hand-crafted methods Least significant bit (LSB) em-
bedding was one of the first hand-crafted technique where
the secret is embedded in the lowest order bits of each im-
age pixel [45], producing images which are perceptually in-
distinguishable from the original cover image. Ever since
there has many techniques designed to embed the secret im-
perceptibly in the spatial [13, 38] and frequency [17, 18, 22,
25, 27, 28, 41] domain of the image. Even though most of
these methods can embed large payloads in the image im-
perceptibly, they suffer with poor robustness to even minor
modifications to the secret image.

Deep learning methods provide better robustness to
noises while maintaining good quality of the generated im-
age [43]. HiDDeN [57] was the first end-to-end trained
watermarking network that used the encoder-decoder archi-
tecture along with a noise layer and adversarial discrimina-
tor for robustness and stego-image quality. Given a cover
image and a secret of fixed length as inputs, encoder gen-
erates a stego image. The decoder takes the noisy stego
image and outputs the embedded secret, while the adver-
sarial discriminator compares the stego image and cover
image for quality. Using the similar encoder-decoder ap-
proach,a variety of architectures were proposed for the im-
provement of stego image quality and robustness in several
later works [6, 9, 19, 24, 37, 39, 46, 49]. These works mostly
encode secrets and covers jointly, often with an UNet-like
model and skip connections to preserve small details in the
cover images [9, 39, 49]. Different from these techniques,
we use a fixed pretrained auto-encoder and train a simple
very small network to map the secret to the auto-encoder
latent space independent of the cover image. Leveraging
pretrained models for steganography has been explored re-
cently – SSL [12] uses a ResNet50 model pretrained with
DINO [5] self-supervised learning to watermark an im-
age using back-propagation. Here, we demonstrate that
the latent space of an autoencoder also provides excellent
steganographic capability. Furthermore, SSL requires on-
the-fly optimization and cannot operate in a blind setting as
it needs a secret key to decode the secret, while our method
requires just a single pass forward during inference.

Cover-less steganography aims to generate a cover im-
age that can uniquely represent a secret, instead of changing
a given cover image to embed the secret [29]. It was first in-
troduced in [53] where the authors indexed a set of cover
images to unique hash values that can be transformed to se-
crets. These hash values can be generated using image prop-
erties like pixel value [53], visual bag-of-words [54, 56], or
histogram of oriented gradients [55]. In [10,42], the authors
learned to convert the secret message to GAN latent noise to
generate appropriate container images. [23] achieves simi-
lar goals via a disentangled structure-texture autoencoder
model trained on narrow domains. Other GAN-related
works, [47, 48], inject the secret in form of a fingerprint to
either training data [47] or model parameters [48] so that the
trained models always generate images containing that fin-
gerprint. In contrast to this, given an autoencoder, we learn

Figure 1. Correlation between changes in latent code and pixels of
the reconstructed images. Here, the offset ε is selected as ε = kUσ
, where U is a random uniform function, σ is the std.dev. of

the VQGAN latent space and noise strength k = 0.2.

a unique offset for every secret that can be independently
applied to any latent code of that autoencoder.

3. Methodology
3.1. Leveraging pretrained AutoEncoders

To explore whether a pretrained autoencoder has capabil-
ity for steganography, we experiment with the latent space
of the state-of-art autoencoder, VQGAN [11]. Given an im-
age x of sizeH×W×C, the VQGAN encoder maps x into
a latent code z = E(x) ∈ RH′×W ′×C where H ′ and W ′

are typically 4× or 8× smaller than the original resolution.
We work on the continuous space of z therefore the quan-
tization step is performed at the generator side x̄ = G(z)
to reconstruct x. We inject different kinds of noise to z
and observe changes on the reconstructed image. We made
2 observations: (i) certain noises cause the same perceptual
change on the reconstructed images regardless of its content
(Figure 1); and (ii) this embedding space of VQGAN is in-
sensitive to small noise,G(z+ε) ≈ x when |ε| < ε0. This is
probably due to the subsequent quantization process, how-
ever other models such as Kullback–Leibler regulated au-
toencoders do not have quantization but also exhibit similar
behaviors. Regardless of the causes, (ii) inspires a possi-
bility to inject meaningful messages (secrets) directly to the
latent code without altering the image content in a notice-
able way, and (i) poses an interesting question of whether
the noise can be recovered given the output image.

3.2. Steganography with RoSteALS

Having prior knowledge of image distribution via the
frozen autoencoder {E, G}, we aim to learn a secret en-
coder F to map secret s ∈ {0, 1}L to the image’s latent
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Figure 2. Architecture diagram of RoSteALS. The image encoder (E) and decoder (G) are locked during training, only updating the
lightweight secret encoder (F) and decoder (D).

embedding, where L is the secret length;

δ = F (s) ∈ RH′×W ′×C (1)

F is a very small network consisting of a fully connected
layer followed by SiLU [30], then reshaped and upscaled
to match the dimension of z, and followed by a final 1 × 1
convolution layer. The output δ acts as a small offset to be
added to the cover embedding z (Figure 2). We initialize
the weight and bias of the 1x1 convolution layer to 0, fol-
lowing [50]. This is to ensure δ = 0 in the first training
iteration, so that the network has exactly the same initial
behaviour as the original autoencoder. In total, our secret
encoder F has just over 300K parameters for a 100-bit secret
length. Interestingly, we empirically verify that condition-
ing F on both the cover image and secret (e.g. δ = F (x, s))
is not necessary (c.f. Figure 1, see also Sup.Mat.). The stego
image is then constructed as x̃ = G(z + δ) and regulated
using a combination of pixel and perceptual losses;

LMSE = ||γ(x̃)− γ(x)||2 (2)
Lquality = LLPIPS(x̃,x) + αLMSE (3)

where γ(.) is a differentiable non-parametric mapping func-
tion from RGB to the more perceptually uniform YUV
space; LLPIPS refers to the LPIPS loss [51] commonly
used as evaluator for image quality and α is a loss weight
constant.

We use Resnet50 [14] as the secret decoder D, replac-
ing the last fully connected layer to output a L-bit secret s̃.
We use BCE to compute the bit recovery loss between the
predicted and groundtruth secret, Lrecovery = LBCE(s, s̃).

The total loss is computed as;

L = βLquality + Lrecovery (4)

where loss weight β controls the trade-off between stego
quality and secret recovery.

Training for robustness. Being robust to noises is a
desirable property of both steganography and watermark-
ing. We insert a noise model between the image decoder

G and the secret decoder D. We use 14 noise sources from
ImageNet-C [15], a rich and diverse library commonly used
for evaluating model robustness. These noises can be split
into 3 groups: differentiable including most additive and
linear noises (e.g. brightness, saturation, contrast, ...), ap-
proximatable with differentiable transforms (e.g. jpeg com-
pression [36]), non-differentiable (e.g. spatter). To ensure
gradient can be flown back to the preceding layers, we con-
vert any non-differentiable noise n(.) to additive noise via
n(x) = x + [n(x) − x] where [.] is treated as an additive
constant (gradient disconnected from computation graph).
Additionally, we apply multiple common noises (e.g. con-
trast, brightness, jpeg compression) concurrently at a cer-
tain rate (p = 0.5), along with random individual noises.
This enables the secret decoder to be trained under various
data augmentations and feedback signal can be backpropa-
gated to update the secret encoder.

4. Experiments
4.1. Datasets, training details and metrics

Datasets. We train RoSteALS using 100K images and
validate on 1K images from the MIRFlickR dataset [20].
We evaluate on 3 different benchmarks - CLIC [40], Met-
Face [21] and Stock1K - our own collection of 1K images
on Stock 1. CLIC [40] contains a mix of 530 high quality
mobile and professional photographs often used to evalu-
ate image compression and rate-distortion techniques. Met-
Face [21] is a narrow-domain collection of 1336 human
faces extracted from artwork. Stock1K has 1000 high qual-
ity multimedia images, including photographs, vectorarts,
sketchs and graphic designs. We choose these 3 datasets
for diversity in content, style and domain (Figure 14). To
make the benchmarks more challenging, we apply a random
ImageNet-C perturbation on every output stego.

Training details. Images are randomly cropped and re-
sized to 256 × 256 during training. At test time, the whole
images are resized to the specified resolution. We use the

1https://github.com/TuBui/RoSteALS
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Figure 3. Qualitative examples of watermarked images from different techniques. The secret is the binary form of word string “some
secrets”. In each case, except StegaStamp, the watermarked images look similar to the original images with no perceptual artifacts. Notice
in the case of StegaStamp, there are visible artifacts in the entire image (second row) and on the woman’s forehead in the third row.

pretrained 256 × 256 VQ-f4 model of VQGAN [11] for
most experiments, but also explore the 512 × 512 KL-f8
version (Section 4.5). Unless otherwise stated, the secret
size is fixed at L=100 bits and uniformly sampled at random
during training and testing. We use the AdamW optimizer
and learning rate 8e-5 using the Pytorch library. Training
is terminated when the moving average of validation loss
stops improving. We set α = 1.5 in Equation (3) and the
quality loss weight β in Equation (4) is determined dynam-
ically. Specifically, we find that it is critical to prioritize
Lrecovery at the early training phase, since image quality is
guaranteed in the first iteration through the locked autoen-
coder {E,G} while the secret encoder/decoder {F, D} must
be learnt from scratch. We therefore start with a fixed image
batch, set a low value of β = 0.1 and train our network to
prioritize prediction of the random secret s. We unlock the
full training image set after bit accuracy reaches a certain
threshold t1, and linearly increase β till βmax and turn on
the noise model after a higher bit accuracy threshold t2 is
met. We choose t1 = 90%, t2 = 98% and βmax = 10 and
do not tune it extensively. More details are in Sup.Mat.

Metrics. To evaluate stego quality versus the origi-
nal cover image, we employ Peak Signal To Noise Ra-
tio (PSNR), Structural Similarity Index Measure (SSIM),
perceptual similarity score (LPIPS [51]) and Single Image
Frechet Inception Distance (SIFID [35]). For secret recov-

ery evaluation, we report standard bit accuracy (Bit acc.)
and Bit acc. (ECC) (bit accuracy with cyclic error correc-
tion code using BCH [4], following the settings in [42]).
We also compute accuracy at word level, Word acc., where
a match is considered successful if the predicted secret dif-
fers from the corresponding groundtruth in less than 20%
bits. Additionally, we report bit accuracy on clean stego for
reference. Note that apart from Bit acc. (clean), three other
metrics work on noised data.

4.2. Baseline comparison

We compare RoSteALS with the following baselines:

• dwtDctSvd [25]: a state-of-art handcrafted frequency-
based method that performs secret embedding in the U
frame of the YUV space after a sequence of discrete
wavelet transform, discrete cosine transform and sin-
gular value decomposition. We do not report results
for other popular handcrafted methods such as LSB,
Jsteg [41] and OutGuess [28] because these are not de-
signed to handle noises other than JPEG compression.

• StegaStamp [39]: a CNN-based method with state-of-
art robustness performance.

• RivaGAN [49]: a GAN-based method leveraging at-
tention mechanism and adversarial training.
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Figure 4. Change in image quality as secret length increases. Residual images are scaled to [0,255] range for visualization purpose.

Figure 5. Text-based and cover less steganography.

• SSL [12]: an on-the-fly optimization method leverag-
ing pretrained representation learning models.

For StegaStamp, we use the officially released model pre-
trained on MIRFlickR for L=100 bits as we were not able
to reproduce the reported results. Models for other methods
are trained with the same settings as RoSteALS using their
public code.

Table 1 shows image quality and secret recovery perfor-
mance of all methods. We also include quality evaluation
for RoSteALS’s autoencoder, VQGAN [11], for reference.
There is not a clear winner in stego image quality metric.
SSL [12] achieves the best PSNR and SSIM scores on all
benchmarks while dwtDctSvd is most effective on LPIPS
metric. On SIFID, SSL outperforms the rest on CLIC and
Stock1K, but RoSteALS is the winner for MetFACE. This
implies that the pretrained feature extraction model in SSL

Figure 6. Studies into how the same secret and its inverted form are
hidden in two different cover images. Residual images are scaled
to range [0,255] for visualization purpose. Note the similarity in
GradCAM heatmap between rows 1&3, and rows 2&4.

does not generalize as good as the autoencoder in RoS-
teALS. StegaStamp performs the worst in general, although
still slightly outperforms RoSteALS on SSIM (see Section 5
for explanation). We note that RoSteALS performance is
capped by its autoencoder backbone, trading just 1-2 points
in each metric for secret embedding capacity and could be
improved further with better backbone in future. Figure 14
shows example of stego images in each benchmark.

In term of secret recovery, all methods achieves near per-
fection score on clean data. RoSteALS outperforms the rest
in all metrics and StegaStamp is the followup winner, while
the handcrafted method and SSL have the lowest perfor-
mance. The diversity in Bit acc. (ECC) shows a side ef-
fect of error correction - greatly improving performance for
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Image quality Secret recovery
Method PSNR ⇑ SSIM ⇑ LPIPS ⇓ SIFID ⇓ Bit acc. (clean) ⇑ Bit acc. ⇑ Bit acc. (ECC) ⇑ Word acc. ⇑

CLIC
RoSteALS 32.68 ± 1.75 0.88 ± 0.06 0.04 ± 0.02 0.04 ± 0.02 1.00 0.94 ± 0.07 1.00 0.93
VQGAN 33.90 ± 14.47 0.90 ± 0.06 0.03 ± 0.02 0.02 ± 0.02 N/A N/A N/A N/A
StegaStamp [39] 31.26 ± 0.85 0.91 ± 0.03 0.09 ± 0.03 0.23 ± 0.13 1.00 0.88 ± 0.13 0.48 ± 0.50 0.74
SSL [12] 41.84 ± 0.10 0.98 ± 0.01 0.02 ± 0.01 0.01 ± 0.02 0.99 ± 0.03 0.62 ± 0.14 0.03 ± 0.17 0.13
RivaGAN [49] 40.32 ± 0.15 0.98 ± 0.01 0.02 ± 0.02 0.07 ± 0.06 0.98 ± 0.03 0.77 ± 0.16 0.22 ± 0.41 0.45
dwtDctSvd [25] 38.96 ± 1.41 0.97 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 1.00 0.61 ± 0.20 0.16 ± 0.34 0.21

MetFACE
RoSteALS 34.46 ± 1.91 0.89 ± 0.07 0.04 ± 0.02 0.01 ± 0.02 1.00 0.94 ± 0.08 1.00 0.91
VQGAN 35.98 ± 2.45 0.90 ± 0.07 0.02 ± 0.02 0.01 ± 0.02 N/A N/A N/A N/A
StegaStamp [39] 32.01 ± 0.77 0.92 ± 0.02 0.13 ± 0.03 0.22 ± 0.15 1.00 0.86 ± 0.14 0.47 ± 0.50 0.68
SSL [12] 41.77 ± 0.12 0.98 ± 0.01 0.04 ± 0.02 0.04 ± 0.05 1.00 0.63 ± 0.16 0.08 ± 0.27 0.19
RivaGAN [49] 40.27 ± 0.09 0.97 ± 0.01 0.06 ± 0.03 0.16 ± 0.12 0.99 ± 0.01 0.78 ± 0.17 0.28 ± 0.44 0.47
dwtDctSvd [25] 40.86 ± 2.48 0.98 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 1.00 0.63 ± 0.23 0.22 ± 0.38 0.26

Stock1K
RoSteALS 33.27 ± 2.32 0.89 ± 0.08 0.03 ± 0.02 0.05 ± 0.06 1.00 0.92 ± 0.10 1.00 0.864
VQGAN 34.44 ± 2.71 0.91 ± 0.07 0.02 ± 0.02 0.03 ± 0.06 N/A N/A N/A N/A
StegaStamp [39] 31.42 ± 0.95 0.92 ± 0.03 0.08 ± 0.04 0.20 ± 0.14 1.00 0.87 ± 0.13 0.48 ± 0.50 0.72
SSL [12] 42.07 ± 0.50 0.99 ± 0.01 0.02 ± 0.02 0.01 ± 0.02 0.95 ± 0.09 0.59 ± 0.12 0.02 ± 0.13 0.09
RivaGAN [49] 40.49 ± 0.45 0.98 ± 0.01 0.02 ± 0.02 0.05 ± 0.06 0.93 ± 0.09 0.72 ± 0.16 0.13 ± 0.33 0.31
dwtDctSvd [25] 39.76 ± 2.41 0.98 ± 0.02 0.01 ± 0.01 0.02 ± 0.02 0.95 ± 0.13 0.60 ± 0.19 0.17 ± 0.33 0.18

Table 1. Comparison of RoSteALS and baseline methods for image quality and secret recovery performance. Values for each metric are
reported as mean and standard deviation. VQGAN is the autoencoder backbone of RoSteALS. Best results are in bold.

Secret length (bits) 50 100 150 200

PSNR 32.81 32.69 32.85 32.89
SSIM 0.89 0.88 0.88 0.88
Bit acc. 0.97 0.94 0.87 0.84
Train time (epochs) 17 18 21 30

Table 2. Image quality, secret recovery performance and training
speed versus secret length on the CLIC dataset. All stego images
are subjected to random noises.

slightly corrupted data (as in case of RoSteALS) but also
corrupting more if the data has damage beyond a certain
threshold (other baselines). We attribute the performance of
RoSteALS to its capability of separating the secret embed-
ding and robustness learning tasks from image distribution
learning task, resulting in perfect performance in both clean
and noise data (with ECC).

4.3. Robustness

Figure 6 depicts the changes on stego image when two
different secrets (inversion of each other) are embedded, as
well as the effects of embedding the same secret on two dif-
ferent images. The residual the GradCAM heatmaps [34]
indicates that the secret is embedded across the entire im-
age. Additionally, it can be seen that the secret embedding
is not dependent on image content (c.f. Figure 1). This
properties coupled with the generalized VQGAN autoen-
coder benefit RoSteALS‘s generalization on new domains
unseen during training.

We analyze the secret recovery performance of RoS-
teALS and its closest competitor against individual noise
sources in Figure 7. RoSteALS is more robust and sta-

Train volume (×103) 10 40 80 100

PSNR 35.07 34.51 34.36 34.46
SSIM 0.89 0.90 0.90 0.89
Bit acc. 0.91 0.91 0.93 0.94

Table 3. Image quality and secret recovery performance versus
amount of training data on the MetFace dataset. All stego images
are subjected to random noises.

ble than StegaStamp against all perturbations, especially on
blurring (Gaussian, defocus) and heavy image enhancement
effects (frost, fog). Highest performance is acquired on sim-
ple linear noises such as brightness, contrast and saturation
as well as pixelate, for both methods. On the other hand,
heavy jpeg compression and those that completely wipe val-
ues of certain pixels (shot, impulse and speckle noises) are
the most challenging.

4.4. Dependencies and the quality/recovery tradeoff

We study the effect of secret length on RoSteALS per-
formance and training speed. Table 2 demonstrates RoS-
teALS abilities to retain the same image quality as secret
length increases, at the cost of decreasing secret recovery
performance. Increasing secret length from 50 to 200 bits
causes 13% loss in bit accuracy. Figure 4 shows an example
of stego images produced by RoSteALS models trained on
different secret length. Similarly, Table 3 shows that image
quality is not affected by the training volume either, thanks
to the frozen autoencoder. Secret recovery performance is
affected due to overfitting at the secret decoder (bit accuracy
increases by 3% at 10x increase in the training volume).
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Figure 7. Effects of different perturbation sources to bit accuracy performance of RoSteALS and StegaStamp. Random chance is 50%.

Figure 8. Stego quality and secret recovery trade-off, tested on
the Stock1K benchmark. Performance of the VQGAN backbone
serves as an upper limit for SSIM.

The training time also increases with longer secret length
(Table 2). However, even at L=200 it only takes 30 epochs
for the training to converge, as RoSteALS sole goal is to
learn the secret encoding and decoding modules. For ref-
erence, training on SSL requires 100 passes through every
images and RivaGAN requires 300 epochs to converge.

There is a trade-off between stego quality and secret re-
covery. Figure 8 shows that it is possible to control this
trade-off in RoSteALS using the loss weight βmax, which

Method Bit acc. (clean) Bit acc. Word acc.

Cover-less 0.997 0.924 0.875
Text-based 0.992 0.904 0.844

Table 4. Secret recovery performance for unconditional (cover-
less) and text-based conditional LDM-RoSteALS.

dictates the maximum value of β in Equation (4) (see Sec-
tion 4.1). Increasing βmax by 10 times boosts the SSIM
score by 7points while reducing the Bit acc. score by 5%.
It is worth noting that the trade-off can not go further be-
yond βmax = 10 as the image quality is constrained by the
autoencoder performance.

4.5. Text-based and Cover-less stega

RoSteALS’s design of injecting the secret signal directly
to the already well-defined latent space enables novel ap-
plications in cover-less and text-based steganography. In
theory, we can remove the image encoder E and inject the
secret embedding to a random point in z space to create a
stego image without a cover. However, the distribution of
latent code in VQGAN is rather complex – picking a ran-
dom z often lead to low quality output. Instead we can learn
a mapping from a simpler distribution (e.g. Gaussian for
cover-less stega) or from distribution of a different modal-
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Figure 9. Random stego images are generated using our un-
conditional LDM-RoSteALS (top) and text conditioned LDM-
RoSteALS (bottom), covering random secrets. All has bit acc.
> 99%. The LDM model in top row is trained on FFHQ and the
LDM in bottom row is the pretrained Stable Diffusion v1.5 model.

ity (e.g. text). We propose to learn such mapping via the
denoising process of latent diffusion (LDM) [32], as shown
in Figure 5. Training the LDM is separate from RoSteALS,
as long as they share the same autoencoder {E,G}. Figure 9
shows examples of cover-less and text-based stego genera-
tion. For the cover-less case, the LDM model is trained on
FFHQ and we simply reuse our RoSteALS model above.
For text-based stega, we use a pretrained Stable Diffusion
model and train a new RoSteALS variant with the KL-f8
autoencoder backbone employed in Stable Diffusion. We
use the same MIRFlickR training dataset, resize all input
images to 512×512 for compatibility with the KL-f8 model
and set the secret length L=64bit for simplicity.

To evaluate secret recovery performance, we sample
1000 stego images for each LDM-RoSteALS models using
randomly generated secrets. For text-based model, we also
leverage 1000 random captions from the Flick8K dataset
[16] as the conditioning signals. To enhance the image gen-
eration quality of Stable Diffusion, we append a random

Figure 10. Failure cases are caused by VQGAN failing to recon-
struct exact details of (top) clutter objects or (bottom) small text.
In the top row, the change is hard to perceive but caught by quality
metrics (insets are residual scaled to [0,255] for visualization pur-
pose). In the bottom row, artifacts are only local hence still yields
high quality scores, but perceptually visible.

catching words (e.g. “highly detailed”, “cinematic light-
ing”, “artstation”, “sharp focus”) at the end of each caption.
Table 4 shows that RoSteALS performs well in both cases,
despite never ‘seeing’ a latent code generated by the LDM
model during training.

5. Conclusion
We demonstrate that the latent space of a pretrained au-

toencoder can be leveraged to hide data, opening up a new
direction for steganography and digital wartermarking ap-
plications. We propose a novel secret hiding technique
that offers several advantages: small model size, modu-
lar design, producing state-of-art secret recovery capability
and comparable image quality versus the autoencoder. Our
method, RoSteALS, can be easily adapted for novel appli-
cations such as cover-less and text-based steganography.

Limitations - RoSteALS relies on a pretrained autoen-
coder for image encoding and generation, thus inherits the
same drawbacks of this model in preserving small details
during image generation. We identify two failure cases
of RoSteALS in Figure 10 involving cluttered objects that
cause lots of tiny spatial shifts during image reconstruc-
tion (perceptual invisible but affecting quality measurement
metrics, especially SSIM), or the challenge of reconstruct-
ing small text or face (not affecting quality metrics but could
be perceptually visible). Future work could leverage more
powerful autoencoders, or novel ways to carefully finetune
the autoencoder that benefit steganography.
Acknowledgment This work was supported
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A. Training details

RoSteALS is easy to train as long as it priorities the se-
cret recovery loss at the early training phase. In Section 4.1
we propose a training method to overcome the complex-
ity of the cover image domain (e.g. MIRFlickR is harder
to train than FFHQ), the gradient flow between pretrained
and learning-from-scratch modules, the challenges of large
secret size, and the difficulties for the secret decoder to
‘learn’ perceptually invisible secret signals present in al-
ready high-quality images but corrupted with various per-
turbations. We adopt curriculum learning in our training
schedule, starting from a fixed minibatch of cover images
without noise corruptions, before unleashing the full train-
ing database and eventually enabling perturbations and lin-
ear loss weight ramping.

A successful training pipeline should be similar to Fig-
ure 11. We only experiment with few (t1, t2, βmax) tuples
and settle with (t1 = 0.90, t2 = 0.98, βmax = 10.0), there-
fore believe that performance could potentially be improved
further with more careful parameter tuning.

B. Architecture details

RoSteALS has a very light-weight secret encoder and
can be constructed using just 1 line of code using the Py-
torch library. For example, for a 100-bit secret encoder:

secret_encoder = nn.Sequential(
nn.Linear(100,32*32*3), nn.SiLU(),
Lambda(lambda x: x.view(-1,3,32,32)),
nn.Upsample((2,2)),
nn.Conv2d(3,3,3,padding=1)

)

We experimented with more advanced architectures and
found no clear benefits over this simple module.

C. Joint cover-secret conditioning

Existing works often model secrets and covers jointly,
arguing the secret embedding should depend on the cover
image for optimal stego quality. We observe that is not the
case for RoSteALS, as shown in Figures 1 and 6 and dis-
cussed in Section 4.3. Here, we implemented a RoSteALS
alternative with the secret encoder E taking both the secret
and cover as inputs. Specifically, the cover image is first
blurred and downsampled to H ′ ×W ′ × C, retaining only
low frequency components. We then concatenate it with the
upsampled secret embedding and passing to a sequence of
convolution layers with SiLU activation. The weights of the
last convolution layer is initialized with 0, in the same way
as the proposed RoSteALS.

Table 5 shows the performance of this joint condition-
ing configuration, which is equal or slightly worse than the
proposed approach in all metrics.

PSNR LPIPS Bit acc. Word acc.

CLIC
Proposed 32.68 ± 1.75 0.04 ± 0.02 0.94 ± 0.07 0.93

Joint cond. 32.45+-1.67 0.05+-0.02 0.94+-0.09 0.92

MetFace
Proposed 34.46 ± 1.91 0.04 ± 0.02 0.94 ± 0.08 0.91

Joint cond. 33.99+-1.81 0.04+-0.02 0.93+-0.09 0.90

Stock1K
Proposed 33.27 ± 2.32 0.03 ± 0.02 0.92 ± 0.10 0.86

Joint cond. 33.00+-2.18 0.04+-0.02 0.92+-0.11 0.86

Table 5. Joint cover-secret conditioning provides no benefit in
RoSteALS design.

D. Perturbations
Figure 12 shows examples of 14 ImageNet-C perturba-

tions used in our work. Note that there are 19 perturbations
in ImageNet-C in total, we exclude 5 of them which are too
slow to be included in training. Each perturbation has 5 lev-
els of severity and its performance breakdown per level is
shown in Figure 13. RoSteALS is most sensitive to degra-
dation due to Gaussian, shot, impulse and speckle noises
as well as jpeg compression; while being most resilient to
brightness, pixelate and saturation effects.

E. More qualitative results
Figure 14 shows more qualitative examples of stego im-

ages created by RoSteALS and other baselines. The arti-
facts on StegaStamp generated images are perceptually vis-
ible, as if the image is covered with a transparent layer
of fog. RoSteALS performance is comparable with other
methods.

Figure 15 depicts several examples of our novel text-
based steganography application. We note the glimpse of
semantic objects visible in the residual image, however
these artifacts are inevitable around the strongest edges dur-
ing image generation and do not represent the secret arti-
facts to be picked up by the secret decoder (c.f. Figure 6 in
the main paper).
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Figure 11. (Left) Quality loss and secret recovery curves for the first 18 epochs when training the 200bit-secret RoSteALS model on
MIRFlickR with mini-batch size set to 4. (Right) Evolution of the stego image at different training stages.

Figure 12. ImageNet-C perturbations on an example image, noise strength is set to 3 (out of 5).
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Figure 13. RoSteALS secret recovery performance breakdown for noise types and severity levels .
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Figure 14. Stego images generated from several covers and a fixed secret. RoSteALS has better image quality than StegaStamp and
perceptually comparable with other methods.
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Figure 15. Text-based steganography with LDM-RoSteALS. (Left)- 512x512 images sampled from Stable Diffusion using the given
prompts. (Middle) - Stegos with secret word “RoSteALS” injected. (Right) - Residual image scaled to [0,255] range.
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