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ABSTRACT

We describe a novel algorithm for visually identifying the
font used in a scanned printed document. Our algorithm re-
quires no pre-recognition of characters in the string (i.e. op-
tical character recognition). Gradient orientation features are
collected local the character boundaries, and quantized into a
hierarchical Bag of Visual Words representation. Following
stop-word analysis, classification via logistic regression (LR)
of the codebooked features yields per-character probabilities
which are combined across the string to decide the posterior
for each font. We achieve 93.4% accuracy over a 1000 font
database of scanned printed text comprising Latin characters.

Index Terms— Optical Font Recognition (OFR), Type-
face Classification, Logistic Regression.

1. INTRODUCTION

This paper contributes a novel algorithm for recognizing the
font used to generate a passage of printed text. Font recogni-
tion is the specific task of detecting the style of glyphs; i.e.
the basic alphabet of characters used to synthesize text, as dis-
tinct from other typeface attributes such as weight, style (e. g.
italicized), or size. Although optical character recognition
(OCR) has received considerable attention in recent decades,
automated methods for recognizing typeface in printed text
have been sparsely researched. Nevertheless with so many
fonts now in open circulation on digital font exchanges, it is
desirable to be able to identify the particular font used within
an existing digital image or document.

Our proposed algorithm accepts a digital image as input,
and after pre-processing to segment characters from the pas-
sage of text on the page, extracts gradient orientation infor-
mation local to character boundaries. A supervised classifi-
cation strategy using logistic regression (LR) determines the
probabilities of each individual character being one of a set
of 1000 pre-trained fonts. These probabilities are combined
to yield a posterior probability for each font. During training
a discriminative codebook is learned from extracted bound-
ary features, which is used to quantize the feature-space used
for LR classification at test-time. We adopt a Bag of Visual
Words (BoVW) framework with stop-word analysis to form
this codebook — a technique commonly used for object and
activity recognition — here applying this approach for the
first time the problem of optical font recognition (OFR).

2. RELATED WORK

OFR techniques typically operate over bounding-boxes, po-
sitioned by a segmentation pre-process to encapsulate indi-
vidual characters on the page. Subsequent processing can be
broadly categorized as adopting either of two strategies: 1)
computing a global descriptor from texture within the box; 2)
analyzing local typographic features within box sub-regions.

The first category of method typically adopts spectral
or statistical texture descriptors as a representation. Multi-
dimensional Gabor filters were used by Zhu et al. [1], cou-
pled with a k-NN classification strategy using the L? norm
to classify Latin characters, and later by Ha and Tian [2] for
Chinese characters. Typically accuracies for these systems
were ~ 96% for a 10 font dataset. Ma and Doermann [3] later
explored a grating cell operator and neural network classifi-
cation scheme as alternative to Gabor as a spectral approach,
yielding improvements of a couple of percent for a 5 font
dataset evaluated over Latin, Greek and Cyrillic characters.
A global shape descriptor using a quad-tree decomposition
was shown by Sexton et al. [4] to perform with ~ 95% ac-
curacy over 50 fonts. One-dimensional transforms of signals
generated by projecting character profiles to the horizon-
tal/vertical axis were explored by Zramdini and Ingold [5]
and combined with naive Bayes classification for typeface
(i. e. font, size and style) recognition, and could discriminate
between 7 fonts with ~ 92% accuracy. Commercial websites
exist for OFR, however these are semi-automated requiring
user-supplied knowledge of each character’s ASCII classifi-
cation i.e. OCR. It appears that at some of these websites
use template cross-correlation to match against a database of
sample font images collected for each ASCII character inde-
pendently. This contrasts with approaches in the academic
literature that do not require an OCR pre-process.

Zramdini and Ingold [6] also explored local feature anal-
ysis, proposing a set of eight local typographical features of
discriminative value for OFR extracted from independent spa-
tial regions of the character. The approach required precise
alignment of characters to extract the features, and adopted
an empirically calibrated thresholding approach on their val-
ues to discriminative between a set of 10 fonts with ~ 97%
accuracy. These typographical features were later used in a
conditional random field (CRF) [7] to discriminate up to 11
fonts using a variety of classification approaches, however the
most promising (Eigenmodel/PCA) yielded only ~ 70% ac-



Fig. 1. Feature Extraction. HOG features (blue) are computed
local to points spaced equidistantly (I; = B x C) around
edges of the character, isolated within an area-normalized
bounding box. B and C indicate the block and cell size of
HOG windows in pixels.

curacy however unlike [6] other typeface attributes e. g. size
and style could also be identified.

Our algorithm is based upon local features and so also
falls within this second category of technique. However rather
than prescribing a set of typographical features and corre-
sponding spatial locations [6, 7], uniquely we learn a set of
discriminative features using a gradient domain operator and
codebooking approach. This enables us to generalize recogni-
tion to a dataset of 1000 fonts; an order of magnitude greater
than prior approaches, whilst retaining a competitive perfor-
mance of ~ 93% accuracy (see Sec.4).

3. OPTICAL FONT RECOGNITION

As with prior approaches, we assume a pre-processing step
that identifies a bounding box around each character within
the printed passage. This is achieved in our system via a se-
ries of morphological filtering and thresholding operations,
however any approach could be substituted (see [8] for a brief
review). Our algorithm accepts as input a set of characters
segmented in this form, processing each independently to de-
termine a font classifications which are then fused to produce
a definitive classification for the text passage.

We now describe the process by which the system is
trained (Sec. 3.2), followed by the classification process
(Sec. 3.3). Both operations depend upon a process for ex-
tracting visual features from a bounding box containing a
single character, which we now explain (Sec. 3.1).

3.1. Feature Extraction

Given a printed character, we begin by uniformly scaling the
bounded region to a constant area of ~ 25k pixels. Typically
this yields characters of approximately 150 x 200 pixels. A set
of chain codes are constructed from the edges of the character,
providing a means to iterate around its external (and any in-
ternal) boundaries. We extract a set of Histogram of Oriented
Gradient (HOG) descriptors [9] local to points at equi-spaced
intervals (I pixels) around the boundaries.

In our configuration, each HOG descriptor is computed
using a block and cell size [9] of 3 x 3, yielding a regular grid
of side lengthl; = 9 pixels, centered upon the point being
sampled (Fig. 1). Frequency histograms of gradient orienta-
tion are computed within each cell using a quantization level
of 8 bins. The frequency histograms are normalized and then
concatenated to form the 3 x 3 x 8 = 72 dimensional HOG
descriptor for that point. Typically a set of around 30-40 de-
scriptors are extracted in this manner per character.

3.2. Codebook generation

Given a training dataset comprising 5 examples of each letter
(A-Z) from 1000 fonts, we collect ~ 4 million HOG descrip-
tors via the above method. Hierarchical k-means clustering
is applied to a random sub-sample of these data comprising
10% of the descriptors, yielding k cluster centers quantizing
the HOG descriptor space — suitable values for &k are explored
in Sec. 4.3. A hard-assignment Bag of Visual Words (BoVW)
strategy is followed, assigning all training descriptors to the
nearest cluster center via k-NN so mapping each descriptor to
one of k£ codewords (cluster center). A frequency histogram is
formed by counting the codewords for each training character.

Stop-words are identified by summing the frequency his-
tograms for all training characters and identifying the .S most
frequent codewords. Suitable values for S are explored in
Sec. 4.3. These typically correspond to straight sections of
glyphs that are by their commonalities are non-discriminative
within the training set. We therefore apply stop-word removal
by expunging the corresponding bins of the frequency his-
tograms computed for the training characters. The frequency
histograms are finally normalized and used as the visual de-
scriptor for the training character in subsequent training of the
classifier.

3.3. Font Classification

We divide the training visual descriptors into classes corre-
sponding to their respective fonts 7 = {F7, ..., Fipo0}, and
train a multi-class logistic regression (LR) classifier using a
one-vs-all combination strategy. Meta-parameter search is
performed to optimize the auxiliary cost parameter during
training via 5-fold cross-validation. As a global codebook
was generated over all letters and fonts, the elements of the
descriptors correspond to visual features that mutually distin-
guish different fonts and letters. In this & — S dimensional
representation, LR learns linear decision boundaries to sepa-
rate fonts irrespective of the letter used.

Given a query string of characters @ = {q1, ..., qQ|} we
can decide the classification of any given character ¢; by ex-
tracting its visual descriptor via the process of Secs. 3.2-3.2
and testing against each of the f € |F| component SVMs to
evaluate p(F|g;), so determining the font used Fy,:

F, = arg;naxp(Ff\qi). (1

Individual classification of ¢; will fail when the glyph is
non-discriminative, for example letters O’ A’ K’ etc. are
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Fig. 2. Analysis of dictionary parameters; codebook size (k)
and percentage of stop-words discarded (.5). Plotting relative
performance (MAP) vs. a baseline using £ = 100, S = 40.
Performance is shown to peak at £ = 800, S = 10.

frequently similar between typefaces. Thus a joint probability
over all @ is preferred:

Q|

Fgo = argmax Hp(Ff |g:). 2)
i=1

A threshold on p(F|@) < 0.5 may be used to determine
the null category i.e. no matching font found.

4. RESULTS AND DISCUSSION

We evaluate over a comprehensive dataset of 1000 TrueType
fonts selected to represent a wide gamut of styles including
examples of cursive, mono, gothic, serif, sans-serif and dec-
orative fonts; 865 sourced from the Internet and 135 from
fonts installed as default by the Microsoft Windows 7 oper-
ating system. Without loss of generality, only samples of the
capital letters A-Z were considered in the evaluation of our
work. The dataset comprised 10 strings each of 100 char-
acters length for each font (i.e. 1m printed characters). The
resulting test document (~ 600 pages) was printed on a Ricoh
Aficio MP C4000 printer/copier, and scanned back in using a
sheet-feeder at resolutions of 200-600dpi (in 100 dpi incre-
ments) to create a multi-resolution dataset. The dataset was
scanned three times to triple-sample the printed content (each
scan resulted in slightly different digital output due to imag-
ing noise).

4.1. Predictive accuracy over text passages

We first predict the performance of our system over passages
of English language text.
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Fig. 3. Confusion matrix characterising performance (MAP
%) over 1000 fonts using a corpus of English text passages
of ~ 100 characters. Overall accuracy 93.4% MAP at k =
800,.5 = 10 for 600dpi scan.

where in this example the printed string Q=‘ABC...Z’ in a
particular font F,, to be tested, and p(.) is a prior probability
proportional to the frequency of occurrence of the character g;
in text. By marginalizing this weighted score over all charac-
ters we obtain an estimate for the probability of font F;, being
correctly detected given a typical piece of English text.

The mean average precision (MAP) over all fonts, i.e.
mean of P(F,|Q) over all 1000 fonts is 92.2%. This com-
pares favorably to existing techniques surveyed in Sec. 2 that
achieve accuracies within a few percent [5, 6, 4, 3, 7] but over
a font set containing tens rather than 1000 of fonts (i.e. two
orders of magnitude smaller than us). In this experiment the
codeword dictionary size was k = 800, and stop-word count
S =10.

4.2. Blind evaluation over text passages

Next, we evaluate the performance of our system over printed
strings @ = {Q1, Q2, .., Q25 } of ~ 100 characters, and com-
posed of English words. As in Sub-sec. 4.1, each string was
rendered in a font F},, and the likelihood of F;, evaluated for
n = [1,1000] as follows (note the lack of prior as here we do
not depend on knowledge of the letter corresponding to each
character):

Q1

F|Qg HpFl(Iz “4)

The MAP for each font was computed via:

1Q;]

ZIQ\ HpF a:)- 5)

the results of which are presented in the confusion matrix of
Fig. 3. Overall MAP performance was 93.4% which is com-

p(F,|Q) =
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Fig. 4. (a) Importance of tuning the LR meta-parameter (cost) which boosts performance by ~ 5% (achieved by independent
5-fold cross-validation) versus an untuned baseline. (b) Effect of scan resolution on accuracy (MAP of ~ 73% at 300dpi vs.
~ 93% at 600dpi. Triple-scanning the dataset to multiply up training data yields up to 10% performance boost enabling the
system to generalise better from noisy scan data. (c) Analysis of performance vs. length of passage tested (|Q|). Performance
increases significantly as more characters are available to the classifier. (d) Analysing the scalability of the proposed approach
with font dataset size (performance drops only 6% over two orders of magnitude increase (single training set).

parable to the prediction of Sub-sec. 4.1 for general English
text. System parameters k£ and S were as before.

A further experiment reported in Fig. 4(c) illustrates that
the length of passage tested is positively correlated with ac-
curacy, justifying our joint approach to combining characters
for classification (eq. 2). In practice combining just a few
characters raises MAP performance to over 90% from 62%
for individual characters.

4.3. Parameter selection

In Fig. 2 we explore the parameter space for k (codeword
dictionary size) and stopword count S. Several values of k
across two orders of magnitude were evaluated, and a peak
at k = 800 observed revealing an optimal level of quanti-
zation for the HOG descriptor space. Similarly, increasingly
aggressive culling of stopwords is explored for £ = 800, re-
vealing an increase of around 2% for removal of the S = 10
most common codewords prior to performance reduction due
to discarded information. The experimental setup used to tune
these parameters was as per Sub-sec.4.1.

The importance of cross-validating data (5-fold) for meta-
parameter tuning in LR is emphasised in Fig. 4(a) where gains
of ~ 10% are demonstrated by doing so. Training data has a
significant impact on performance. Simply scanning train-
ing samples of fonts three times at the chosen resolution, and

combining the imagery for training, can yield a further 10%
MAP improvement (Fig. 4b). The resolution at which text is
scanned for training and test is proportional to the final system
accuracy (Fig.4b). A key benefit of our approach is scalability
(Fig.4d) we drop only 8% accuracy moving from a dataset of
10 to 1000 fonts. At 10 fonts our performance of 96% (even
without tricks such as duplicating training data to boost per-
formance) exceeds of matches the state of the art. However
only our approach can do so whilst scaling to a font dataset
two orders of magnitude larger.

5. CONCLUSION

We have presented a novel OFR algorithm for font classifica-
tion from a printed passage comprising one or more charac-
ters. We reported 93.4% accuracy in classifying 1000 fonts
using HOG features sampled from the glyph perimeter and
a hard-assignment BoVW framework with logistic regression
(LR) classifier. Our accuracy matches or exceeds that quoted
in the state of the art approaches, but over on a diverse font
set two orders of magnitude larger than previously attempted
(1000 vs. 10s of fonts).

Future work will explore the impact of further scaling font
set size and potentially further use of hierarchical methods to
both represent and classify this data.
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