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Abstract

We present ARCHANGEL; a novel distributed ledger
based system for assuring the long-term integrity of digital
video archives. First, we describe a novel deep network ar-
chitecture for computing compact temporal content hashes
(TCHs) from audio-visual streams with durations of min-
utes or hours. Our TCHs are sensitive to accidental or mali-
cious content modification (tampering) but invariant to the
codec used to encode the video. This is necessary due to
the curatorial requirement for archives to format shift video
over time to ensure future accessibility. Second, we describe
how the TCHs (and the models used to derive them) are se-
cured via a proof-of-authority blockchain distributed across
multiple independent archives. We report on the efficacy of
ARCHANGEL within the context of a trial deployment in
which the national government archives of the United King-
dom, Estonia and Norway participated.

1. Introduction
Archives are the lens through which future generations

will perceive the events of today. Increasingly those events
are captured in video form. Digital video is ephemeral, and
produced in great volume, presenting new challenges to
the trust and immutability of archives [14]. Its intangibil-
ity leaves it open to modification (tampering) - either due
to direct attack, or due to accidental corruption. Video for-
mats rapidly become obsolete, motivating format shifting
(transcoding) as part of the curatorial duty to keep content
viewable over time. This can result in accidental video trun-
cation or frame corruption due to bulk transcoding errors.

This paper proposes ARCHANGEL; a novel de-
centralised system to guard against tampering of digital
video within archives, using a permissioned blockchain
maintained collaboratively by several independent archive
institutions. We propose a novel deep neural network (DNN)
architecture trained to distil an audio-visual signature (con-
tent hash) from video, that is sensitive to tampering, but in-
variant to the format i.e. the video codec used to compress

the video. Video signatures are computed and stored im-
mutably within the ARCHANGEL blockchain at the time
of the video’s ingestion to the archive. The video can be
verified against its original signature at any time during cu-
ration, including at the point of public release, to ensure the
integrity of content. We are motivated by the need for na-
tional government archives to retain video records for years,
or even decades. For example, the National Archives of the
United Kingdom receive supreme court proceedings in digi-
tal video form, which are held for five years prior to release
into the legal precedent. Despite the length of such videos
it is critical that even small modifications are not introduced
to the audio or visual streams. We therefore propose two
technical contributions:

1) Temporal Content Hashing. Cryptographic hashes (e.g.
SHA-256 [8]) operate at the bit level, and whilst effective
at detecting video tampering are not invariant to transcod-
ing. This motivates content-aware hashing of the audio-
visual stream within the video. We propose a novel DNN
based temporal content hash (TCH) that is trained to ignore
transcoding artifacts, but is capable of detecting tampers of a
few seconds duration within typical video clip lengths in the
order of minutes or hours. The hash is computed over both
the audio and the visual components of the video stream,
using a hybrid CNN-LSTM network (c.f. subsec. 3.1.1) that
is trained to predict the frame sequence and thus learns a
spatio-temporal representation of clip content.

2) Cross-archive Blockchain for Video Integrity We pro-
pose the storage of TCHs within a permissioned proof-of-
authority blockchain maintained across multiple indepen-
dent archives participating in ARCHANGEL, enabling mu-
tual assurance of video integrity within their archives. Fine-
grain temporal sensitivity of the TCH is challenging given
the requirement of hash compactness for scalable storage on
the blockchain. We therefore take a hybrid approach. The
codec-invariant TCHs computed by the model are stored
compactly on-chain, using product quantization [13]. The
model itself is stored off-chain alongside the source video
(i.e. within the archive), and hashed on-chain via SHA-256
to mitigate attack on the TCH computation.



The use of Blockchain in ARCHANGEL is motivated
by changing basis of public trust in society. Historically,
an archives’ word was authoritative, but we are now in
an age where people are increasingly questioning institu-
tions and their legitimacy. Whilst one could create cen-
tralised database of video signatures, our work enables a
shift from an institutional underscoring of trust, to a tech-
nological underscoring of trust. The cryptographic assur-
ances of Blockchain evidence trusted process, whereas a
centralised authority model reduces to institutional trust.

We demonstrate the value of ARCHANGEL through
a trial international deployment across the national gov-
ernment archives of the United Kingdom, Norway and Es-
tonia. Collaboration between the majority of partnering
archives (‘50% attack’ [23]) would be needed to rewrite
the blockchain and so undermine its integrity, which is un-
likely between archives of independent sovereign nations.
This justifies our use of Blockchain, which to the best of our
knowledge, has not been previously combined with temporal
content-hashing to ensure video archive integrity.

2. Related work
Distributed Ledger Technology (DLT) has existed for

over a decade - notably as blockchain, the technology that
underpins Bitcoin [22]. The unique capability of DLT is to
guarantee the integrity and provenance of data when dis-
tributed across many parties, without requiring those parties
to trust one another nor a central authority [23]; e.g. Bitcoin
securely tracks currency ownership without relying upon a
bank. Yet, the guarantees offered by DLT for distributed,
tamper-proof data have potential beyond the financial do-
main [32, 12]. We build upon recent work suggesting the
potential of DLT for digital record-keeping [6, 17], notably
an earlier incarnation of ARCHANGEL described in Collo-
mosse et al. archangel which utilised a proof-of-work (PoW)
blockchain to store SHA-256 hashes of binary zip files con-
taining academic research data. Also related, is the prior
work of Gipp et al. [9] where SHA-256 hashes specifically
of video are stored in a PoW (Bitcoin) blockchain for evi-
dencing car collision incidents. Our framework differs, due
to the insufficiency of such binary hashes [8] to verify the im-
mutability of video content in the presence of format shifting,
which in turn demands novel content-aware video hashing,
and a hybrid on- and off-chain storage strategy for safeguard-
ing those hashes (and DNN models generating them).

Video content hashing is a long-studied problem, e.g.
tackling the related problem of near-duplicate detection for
copyright violation [26]. Classical approaches to visual hash-
ing explored heuristics to extract video feature representa-
tions including spectral descriptors [15], and robust temporal
matching of visual structure [3, 37, 29] or sparse gradient-
domain features [28, 5] to learn stable representations. The
advent of deep learning delivered highly discriminative hash-
ing algorithms e.g. derived from deep auto-encoders [30, 38],
convolutional neural networks (CNN) [36, 19, 16] or re-
current neural networks [10, 35]. These technique train a
global model for content hashing over a representative video
corpus, and focus on hashing short clips with lengths of a

Figure 1. ARCHANGEL Architecture. Multiple archives main-
tain a PoA blockchain (yellow) storing hash data that can ver-
ify the integrity of video records (video files and their metadata;
sub-sec. 3.2) held off-chain, within the archives (blue). Unique
identifiers (UID) link on- and off-chain data. Two kinds of hash
data are held on-chain: 1) A temporal content hash (TCH) protect-
ing the audio-visual content from tampering, computed by passing
sub-sequences of the video through a deep neural network (DNN)
model to yield a sequences of short binary (PQ [13]) codes (green);
2) A binary hash (SHA-256) of the DNNs and PQ encoders that
guards against tampering with the TCH computation (red).

few minutes at most using visual cues only. Audio-visual
video fingerprinting via multi-modal analysis is sparsely re-
searched with prior work focusing upon augmenting visual
matching with an independent audio fingerprinting step [26],
predominantly via wavelet analysis [2, 25]. Our archival con-
text requires hashing of diverse video content; training a sin-
gle representative DNN to hash such video is unlikely practi-
cal nor future-proof. Rather our work takes an unsupervised
approach, fitting a triplet CNN-LSTM network model to a
single clip to minimise frame reconstruction and prediction
error. This has the advantage of being able to detect short
duration tampering within long duration video sequences
(but at the overhead of storing a model per hashed video).
Since videos in our archival context may contain limited vi-
sual variation (e.g. a committee or court hearing) we hash
both video and audio modalities. Uniquely, we expose the
model to variations in video compression during training to
avoid detecting transcoding artifacts as false positives.

The emergence of high-realism video manipulation us-
ing deep learning (’deep fakes’ [20]) has renewed inter-
est in determining the provenance of digital video. Most
existing approaches focus on the task of detecting visual
manipulation[18], rather than immutable storage of video
hashes over longitudinal time periods, as here. Our work
does not tackle the task of detecting video manipulation ab
initio (we trust video at the point of ingestion). Rather, our
hybrid AI/DLT approach can detect subsequent tampering
with a video, offering a promising tool to combat this emerg-
ing threat via proof of content provenance.

3. Methodology
We propose a proof-of-authority (PoA, permissioned)

blockchain as a mechanism for assuring provenance of



Figure 2. Our triplet auto-encoder for video tamper detection. This schematic is for visual cues, using InceptionResNetV2 backbone to
encode video frames (audio network uses MFCC features). Once extracted, features are passed through the RNN encoder-decoder network
which learns invariance to codec but to discriminate between differences in content. Bottleneck zt serves as the content hash and is
compressed via PQ post-process (not shown). Video clips are fragments into 30 second sequences each yielding a content hash (PQ Code).
The temporal content hash (TCH) stored on-chain is the sequence concatenation of the PQ code strings for both audio/video modalities.

digital video stored off-chain, within the public National
Archives of several nation states. The blockchain is imple-
mented via Ethereum [34] maintained by those indepen-
dently participating archives, each of which runs a sealer
node in order to provide consensus by majority on data
stored on-chain. Fig. 1 illustrates the architecture of the sys-
tem. We describe the detailed operation of the blockchain
in subsec. 3.2. The integrity of video records within the
archives is assured by content-aware hashing of each video
file using a deep neural network (DNN). The DNN is trained
to ignore modification of the video due to change in video
codec (format) but to be sensitive to tampering. The DNN ar-
chitecture and training are described in subsecs. 3.1.1-3.1.2
and the hashing and detection process in subsec. 3.1.3-3.1.4.

3.1. Video Tamper Detection
We cast video tamper detection as an unsupervised rep-

resentation learning problem. A recurrent neural network
(RNN) auto-encoder is used to learn a predictive spatio-
temporal model of content from a single video. A feed-
forward pass of a video sequence generates a sequence of
compact binary hash codes. We refer to this sequence as a
temporal content hash (TCH). The RNN model is trained
such that even minor spatial (frame) corruption or temporal
discontinuities (splices, truncations) in content will gener-
ate different TCH when fed forward through the model, yet
transcoding content will generate near-identical TCH.

The advantage of learning (over-fitting) a video-specific
model to content (rather than adopting a single RNN model
for encoding all video) is that a performant model can be
learned for very long videos without introducing biases or
assumptions on what constitutes representative content for
an archive; such assumptions are unlikely to hold true for
general content. The disadvantage is that a model must be
stored with the archive, as meta-data alongside the video.
This is necessary to ensure the integrity of the model so

preventing attacks on the TCH verification process.

3.1.1 Network Architecture

We adopt a novel triplet encoder-decoder network structure
resembling an RNN autoencoder (AE). Fig. 2 illustrates the
architecture for encoding visual content.

Given a continuous video clip X of arbitrary length we
sample keyframes at 10 frames per second (fps). Keyframes
are aggregated into B = |X |

N blocks where N = 300
frames (∼ 30 seconds, padded with empty frames if nec-
essary in the final block), yielding a series of sub-sequences
X = {X1, X2, ..., XB} ∈ RN×H×W×C where H, W and
C are the height, width and number of channels for each
image frame. The encoder branch is a hybrid CNN-LSTM
(Long-Short Term Memory) encoder function in which an
InceptionResNetV2 CNN backbone encodes each block Xt

to a sequence of semantic features that summarize spatial
content. fC : RH×W×C → RP , which encodes X into
E = {Et ∈ RN×S | t = 0, 1, ..., B}; for InceptionRes-
NetV2 [31] S = 1536 from the final fc layer.

The LSTM learns a deep representation encoding the tem-
poral relationship between frame features by encoding E
with a RNN, fR : RN×S → RD, resulting in an embed-
ding Z = {zt ∈ RD | t = 0, 1, ..., B}. The learning of
Z is constrained by a set of objective functions described
in subsec. 3.1.2 ensuring the representatives, continuity and
transcoding invariance of the learned features.

Audio features are similarly encoded via triplet LSTM
but omitting the CNN encoder function fC and substituting
MFCC co-efficients from the audio track of each block Xt

as features directly. We later demonstrate that encoding au-
dio is critical in the cases where video contains mostly static
scenes e.g. a video account of a meeting or court proceed-
ings. The AE bottleneck for audio features is 128-D; we
denote this embedding z′t.



3.1.2 Training Methodology

Given video clip X we train fR(fC(.)) independently yield-
ing a pair of models (M,M ′) for the video and audio modal-
ities, minimizing a training loss comprising three equally-
weighted terms e.g. for all blocks Xt ∈ X :

M(X ) = argmin
θ
LR(Xt; θ) + LF (Xt; θ) + LT (Xt; θ). (1)

Reconstruction loss, LR, aims to reconstruct input se-
quence Êt from zt that approximates Et. This loss is mea-
sured using Mean Square Error (MSE), effectively makes
the network an auto-encoder as in [38].

LR =
1

2
|Et − Êt|22. (2)

Prediction loss,LF , aims to predict the next sequence Êt+1

from zt that approximates Et+1 via MSE. While the recon-
struction loss ensures the integrity within sequences, the pre-
diction loss provides inter-sequence links which is impor-
tant for encoding very long videos. For the final sequence
t = B, this loss term is simply turned off. This work is sim-
ilar to [16] however they used 3D CNN for spatio-temporal
encoding instead of LSTM in our work.

LF =
1

2
|Et+1 − Êt+1|22. (3)

Triplet loss, LT , brings together similar sequences (za, zp)
while pushing dissimilar sequences (za, zn) such that their
difference is below a certain margin:

LT =
1

|T |
∑

(za,zp,zn)∈T

{d(za, zn)− d(za, zp) +m}+ (4)

where d(.) is the cosine similarity metric and {.}+ is the
hinge loss function. Here we desire the embedding Z in-
variant to changes in video formats (e.g. codec, container,
compression quality) hence the positive sample, Xp

t , is set
to be the same video sequence as the original sequence Xt

but transcoded differently zp = fR(fC(X
p
t )). To generate

Xp
t we augment X using various transcoding combinations

(details are described in subsec. 4.1), resulting in a much
larger training set XP that also helps to reduce overfitting.
To make the learning harder, the negative sample is selected
among other sequences having the same encoding format
as the anchor zn = fR(fC(X

n
t∗)), X

n
t∗ ∈ X\Xt. The mar-

gin m is fixed m = 0.2 in our experiments. The network is
trained end-to-end via the Stochastic Gradient Descent opti-
mizer (SGD with momentum, decay learning rate and early
stopping following [33]) with InceptionResNetV2 initially
pre-trained over the ImageNet corpus [31].

3.1.3 Clip detection and clustering

Archival videos are typically formed from multiple visually
distinct parts (e.g. titles, attributions, shots captured from dif-
ferent stationary cameras). It is undesirable to train an RNN

to model continuity within a single video where potentially
several such scene changes are present. Without loss of gen-
erality we therefore propose to split the video into multiple
clips based on changes in frame continuity using MPEG-4
standard; a Sum of Absolute Difference (SAD) [24] operator.
Any other scene cut detector could be substituted.

This results in the input video being split into several,
sometimes hundreds, of different clips. Such clips are inde-
pendently processed as X , per the above. Since training a
model for each clip is undesirable, we wish to group similar
clips together and train a model for each group. To do so we
sample ∼ 100 key frames from each scene extract semantic
features from these frames (using fC(.)) and cluster them
into K groups. Clip X belongs to cluster k if the majority of
its frames are assigned to k. We use Meanshift for clustering
[7]; K is decided automatically (typically 2-3) per video.

3.1.4 Video hashing and tampering detection

Given a video X , the representation zt of sub-sequence Xt

where t = [0, B] can be obtained by passing Xt through its
respective spatio-temporal model fR(fC(.)). Additionally,
for each scene we define a threshold value set to tolerate
variation due to video transcoding:

εt = max
zpt ∈Z

p
t

||zt − zpt ||2 (5)

where Zpt is the collection of bottleneck representations of
the positive clips (i.e. transcoded) Xp

t used to form the train-
ing triplets. εt should tolerate any video transcoding in fu-
ture with assumption that future codecs are likely to encoder
with higher fidelity than existing methods.

The collective representations of all clips that forms X ,
along with other meta info such as threshold εt and clip IDs
are stored in blockchain as the content hash of video X . As
X can have an arbitrary length, its content hash could ex-
ceed the current blockchain transaction limit. To address
this problem, we further compress Z into 256-bit binary us-
ing Product Quantisation (PQ) [13]. PQ requires the training
of a further model (referred to here as ‘PQ Encoder’) capa-
ble of compressing Z ∈ R256 to ζ ∈ B256 and estimating
the L2 norm between pairs of such feature representations.

At verification time, we determine the integrity of a query
video by feeding forward each constituent clip X∗ through
the model pair (M,M ′) trained forX , to obtain its video and
audio TCHs. These hashes of X ∗ are compared against the
corresponding hashes ofX stored within the blockchain. X ∗
is considered tampered if there exists a pair of hashes whose
distance greater than the corresponding threshold (εt). This
method is advantageous as it provides a localised indication
of which clip within the video experienced tampering.

3.2. Ensuring Hash Integrity
Hashing each clip within a video process yields its TCH;

a sequence of binary hashes derived from the visual content:
{X1, X2, ..., XB} 7→ ζ = {ζ1, ζ2, ..., ζB} and similarly
a sequence of audio hashes ζ ′ = {ζ ′1, ζ ′2, ..., ζ ′B}. These
hashes are stored immutably on the blockchain alongside



Figure 3. Schematic of TCH Computation. Videos are split into
clips which are each independently hashed to a TCH. The TCH is
the concatenation of PQ codes that are derived from RNN bottle-
neck features (zt). Each code hashes a block of N frames. Encod-
ing pipeline shown for visual cues only; audio is similarly encoded.

a universally unique identifier (UID) for the clip. To safe-
guard the integrity of the verification process, it is necessary
to also store a hash of the model pair (M,M ′) and thresh-
old value εt also on the blockchain (Fig. 3). Without loss
of generality, we compute the model hashes via SHA-256.
Use of such a bit-wise hash is valid for the model (but not
the video) since the model (which is a set of filter weights)
remains constant but the video may be transcoded, during its
lifetime within the archive. The proposed system requires
that the model pair be stored off-chain due to storage size
limitations (32Kb per transaction in our Ethereum implemen-
tation), and the potential for reversibility attack on the model
itself which might otherwise apply generative methods [4]
to enable partial disclosure of timed-release or non-public
archival records. Such reversals are not feasible for the 256
bit PQ hashes stored on the chain, particularly given the off-
chain storage of the PQ and DNN models.

Practically, our system is implemented on a compute in-
frastructure run locally at each participating archive. The
system has been designed with archival practices in mind,
utilising data packages conforming to the Open Archival In-
formation System (OAIS) [1], and as such the archivist user
must provide metadata for an archive data package (Sub-
mission Information Package (SIP)) that the video files are
part of. A web-app run locally inspects each SIP as it is
submitted where it is verified to be a suitable file type, and
stored within the locally held archive (database) for process-
ing by a background daemon. The daemon trains model pair
(M,M ′) and the PQ encoder on a secure high performance
compute cluster (HPC) with nodes comprising four NVidia
1080ti GPU cards. The time taken to train the model is typi-
cally several hours, although subsequent TCH computation
takes less than one minute. These timescales are acceptable
given the one-off nature of the hashing process for a video
record likely to remain in the archive for years or decades.

This data is then submitted as a record to the blockchain
by way of a smart contract transaction which manages the
storage and access of data. In order to submit data the user
must be given access via the smart contract, which the ap-

Figure 4. Representative thumbnails of the long-duration video
datasets used in our evaluation. Top: ASSAVID, uneditted ‘rushes’
footage from the BBC archives of the 1992 Olympics; Mid-
dle: OLYMPICS, editted footage from Youtube of the 2012-2016
Olympics; Bottom: TNA, Court hearings — mostly static visuals.

plication interfaces (APIs) then use to manage access to
the submission functionality. Once the transaction is pro-
cessed, the UIDs for the SIP and the video files can be used
to access data stored on the chain for subsequent verification.
For reasons of sustainability and scalability of the system,
we opted on a proof-of-authority (PoA) consensus model.
Under such a model, there is no need for computationally
expensive proof of work mining. Rather, blocks are sealed
at regular intervals by majority consensus of the clique of
nodes pre-authorised to. In our trial deployment over a small
number of archives, access keys were pre-granted and dis-
tributed by us. In a larger deployment (or to scale this trial
deployment) the PoA model could be used to grant access
via majority vote to new archives or memory institutions
wishing to join the infrastructure.

4. Experiments and Discussion
We evaluate the performance of our system deployed

for trial across the National Archives of three nations: the
United Kingdom, Norway and Estonia. We first evaluate the
accuracy of video tamper detection algorithm and then re-
port on the performance characteristics of that deployment.

4.1. Datasets and Experimental Setup
Most video datasets in the literature are of short clips i.e.

few seconds to several minutes of relatively narrow domain.
However in archiving practice, a video record of an event can
be of arbitrary length; typically tens of minutes or even hours.
We evaluate with 3 diverse datasets more representative of
an archival context:
ASSAVID [21] contains 21 television broadcast videos
taken from Barcelona Olympics of 1992. This dataset covers
various sports with commentary and music in the audio track.
Video length ranges from 12 seconds to 40 minutes, encoded
using the older MPEG-2 video and MP2 audio codecs.
OLYMPICS contains 5 fast-moving Youtube videos taken
from Olympics 2012-2016 covering final rounds of compe-
titions in 5 different sports including running, swimming,



skating and springboard. The dataset has modern MPEG-4
encoding. The average length of videos is 10 minutes.

TNA contains 7 court hearing videos released by the United
Kingdom National Archives. The video length ranges from
4 minutes to 2 hours, averagely 55 minutes per video. This
is a challenging dataset as the videos contains highly static
scenes of courtroom but salient audio track. Examples of
these datasets are shown in Fig. 4.

For each video within the three datasets above, we create
three test sets: a ‘control’ set, a ‘temporal tamper’ set and a
‘spatial tamper’ set. The ‘control’ testset contains 10 dupli-
cates of each video, each being a transcoded version of the
original one. Specifically, we use the modern video codec
H.265 with random frame rate (26/48/60 fps), 12 levels of
compression (controlled by the parameter crf under ffmpeg)
and container (.mp4, .mkv) to transcode the videos. Audio
is also transcoded to a new codec (libmp3lame, aac) with
random sampling rate and compression quality. In the worst
scenario the transcoded video could be 5 times smaller in
file size than the original video. The ‘temporal tamper’ test
set contains 100 videos generated from each original video
by randomly removing a chunk of 1-10 seconds while keep-
ing the same encoding formats. Similarly, the ‘spatial tam-
per’ test set contains 100 videos where frames/audio within
random sections of the video (1-10 seconds in length) are
replaced by white noise.

Experimental settings We experimented with 3 CNN ar-
chitectures for fC – VGG [27], ResNet [11] and Inception-
ResnetV2 [31] using the embedding provided by the final
fully connected/pooling layer as the output to E. To min-
imise model size we freeze fC and only train fR. The RNN
encoder is a LSTM network with 1024 cells while the re-
construction and prediction decoders have 2048 cells each.
The dimension of embedding vector z is empirically set
256-D for video and 128-D for audio prior to PQ. Input
frames are scaled down to fit the corresponding CNN input
size i.e. 299x299 for InceptionResNetV2 and 224x224 for
VGG/ResNet. Input audio is converted (if necessary) to a
mono stream for our experiments. Once the model has been
trained we save the encoder part of the network off-chain;
the off-chain storage required to verify a clip is approxi-
mately 100Mb total for audio and video models.

Data augmentation in the form of video transcoding, is
used to form the triplets used to train our network in order
to develop codec invariance. For each video we created 50
different transcoded versions using current or older codecs
(e.g. H.264, H.263p, VP8) at a variety of frame rates from
10fps to 25fps and with a variety of compression/quality
parameters spanning typical high and low values for each
codec. The transcoder used was the open-source ffmpeg li-
brary with ‘compression factor’ an integer number reflecting
presets for the codecs provided with that library. Note that
these codec sets differ from those natively used in the test
set. These transcoded examples form the positive exemplars
for the triplet network (subsec. 3.1.2).

Figure 5. Plotting accuracy of tamper detection vs. video length for
the temporal (top) and spatial (bottom) tampering cases for each
of the three sets. Ablations of the system using audio and visual
modalities only are indicated via suffix (-A, -V).

Architecture Temporal Spatial Control
VGG-16 [27] 0.876 0.753 0.909
ResNet50 [11] 0.856 0.747 0.913

InceptionResNetV2 [31] 0.898 0.809 0.955
Table 1. Evaluating visual tamper detection performance for vari-
ous backbones in our CNN-LSTM architecture. Values expressed
are accuracy rates for spatial and temporal tamper detection, and
true negative rates for control averaged across all three test sets.

4.2. CNN architecture and loss ablation study
We experimented with different CNN architectures for

the encoder backbone, and with ablations of our proposed
loss function on a subset of 12 videos sampled from all
datasets above. Table. 1 shows the tamper detection accu-
racy on the temporal and spatial tamper sets, as well as the
true negative rate for the control sets. When varying the
CNN backbone all other parts of the network are kept the
same. While there is no clear margin between VGG and
ResNet, the InceptionResNetV2 architecture shows superior
performance on all test sets.

We perform ablations on the three terms comprising to-
tal loss (eq. 4) while keeping the network, data and train-
ing parameters unchanged. The contribution of each loss to
tamper-detection capability is reflected in Table. 2. The re-
construction loss alone (i.e. AE model similar to [38]) has
best score on the control set since its sole objective is to
reconstruct the input sequences. The lack of learning coher-



Method LR LF LT Temporal Spatial Control
[38] • 0.884 0.749 0.968
[16] • • 0.896 0.776 0.945
Ours • • • 0.898 0.809 0.955

Table 2. Ablation experiment exploring term influence on total
loss (eq. 4): LR (reconstruction), LF (prediction) and LT (triplet).
Solid dot indicates incorporation of loss term. Values expressed are
accuracy rates for spatial and temporal tamper detection, and true
negative rates for control averaged across all three test sets.

ence between adjacent sequences causes it to under-perform
detection on both of the tamper sets. In contrast, the pre-
diction loss (similar to [16]) helps to learn an embedding
more sensitive to tampering and the triplet loss balances the
performance on all three test sets.

4.3. Evaluation of tampering detection
We evaluated the performance of tamper detection for all

three test sets for a variety of tamper lengths. Fig. 5 shows
the trend of tamper length to detection accuracy for the pro-
pose system and also on an ablated version of the system
reliant solely on audio and solely on video modalities. on
the performance of the audio and video models. Both tem-
poral and spatial tamper sets have a similar trend: models
are consistently effective at detecting tampered segments of
around 3 seconds or more. Also this is excellent sensitiv-
ity given input videos lasting tens of minutes or hours (see
subsec.4.1) the system struggles to detect tampering of less
than 2 seconds. This may be due to the transcoding of videos
during the training data augmentation causing frame loss for
certain combinations of codec, frame rate and container, or
the inherent challenge of achieving further sensitivity given
such video lengths. Fig. 5 illustrates the importance of en-
coding both video and audio together for all test sets. Audio
contributes significantly to the tampering detection perfor-
mance on the TNA dataset (where visual content of the court-
room hearing is highly static but audio is clear and salient)
and ASSAVID (where low visual quality and older codec
make the reading of frames difficult). On the other hand,
the OLYMPICS dataset has excellent visual quality and dy-
namic motion which benefit the video models. In contrast,
all audio streams from the OLYMPICS dataset have either
music (sub-optimal for MFCC) or loud background noise
that downplays its audio models. As with audio-visual com-
bination the tampering detection accuracy is significantly
boosted on all datasets.

Fig. 6 aggregates performance statistics across all
datasets grouping videos by length, which is shown not to
affect the detection performance. Approximately 10% of the
videos have length greater than 1 hour, yet over 95% of the
tampers present in their test sets are detected correctly. Ad-
ditionally, Fig. 6 also shows that spatial tamper is harder
to detect than temporal. This may be due to the spatial fea-
tures being embedded by a pre-trained model (InceptionRes-
NetV2) providing some resilience to noise.

We also investigated the effect of the compression fac-
tor in the control set in Fig. 7; i.e. the ability of the system
to reflect true negatives (avoid false detections). Data aug-
mentation during training (subsec. 3.1.2 and 4.1) encour-

Figure 6. Overall accuracy vs. video length averages across all three
test sets. Values expressed are accuracy rates for spatial and tempo-
ral tamper detection, and true negative rates for control averaged
across all test sets partitioned by length.

Figure 7. Plotting true negative rate over the control set (containing
transcoded, untampered videos). Videos have been downgraded in
their visual encoding (-V) and audio encoding (-A). For visuali-
sation purpose we scale the video and audio compression factors
input to ffmpeg to the same range. There is no observable trend
between compression quality and false tamper detection rate.

ages our learned models to be robust against downgrade
in audio-visual quality. Accuracy is consistently high for
both video and audio downgrades, with no observable trend
that severely compressed videos are incorrectly flagged as
tampered. The tampering detection accuracy on the audio
stream remains high except for the TNA dataset which starts
dropping at q = 8. The fluctuation indicates that the visual
stream compression factor is not correlated to accuracy.

Finally, Table. 3 summarises the overall performance of
our tamper detection system in term of Precision (positive
predictive value), Recall (sensitivity) and F1 score. Similar
to our observation in Fig. 5 the ASSAVID dataset with dated
MPEG-2 codec and low video quality results in large tamper-
ing threshold εt (eqn. 5) thus less sensitive to tampering. The
more modern MPEG-4 encoded OLYMPICS dataset has a
better balance between precision and recall with excellent
performance also for the TNA dataset.

4.4. Blockchain Characteristics
The smart contracts implementing APIs for the fetch (i.e.

search for and read a record) and write (commit new record)
are deployed on an Ethereum PoA network with geth used



Datasets Precision Recall F1
ASSAVID [21] 0.981 0.756 0.854

OLYMPICS 0.944 0.823 0.879
TNA 0.919 0.925 0.922

Table 3. Overall tamper detection performance of the 3 datasets in
term of Precision, Recall and F1 score. Here, a true positive denotes
a tampered video being correctly detected as tampered.

for client API access and for block sealing at each of the
three participating archives. A further four block sealing
nodes were present on the network during this trial deploy-
ment for debug and control purposes. For purposes of evalu-
ation the network was run privately between the nodes and
genesis block configured with a 15 second default block seal-
ing rate. The sealing rate limits the write (not fetch) speed of
the network, so that worst-case transaction processing could
be up to 15 seconds. The smart contract implemented fetch
functionality via the view functions provided by the Solidity
programming language, which only read and do not mutate
the state, hence not requiring a transaction to be processed.

To test the smart contract we devised a test of writing a
number of records to the store, measuring the time taken to
create and submit a transaction, and then reading a record
a number of times to measure the time taken to read from
the store. When writing the records we submitted them in
batches of 1000 to ensure that the transactions would be ac-
cepted by the network. The transaction creation/submission
performance is presented in Fig. 8 (top) and do not include
the (up to) 15 second block sealing overhead since this is a
constant dependent on the time at which the commit transac-
tion is posted. The transactions were submitted in powers of
10, and then the read performance was measured. The read
performance is presented in Fig. 8 (bottom).

5. Conclusion
We have presented ARCHANGEL; a PoA blockchain-

based service for ensuring the integrity of digital video
across multiple archives. Our key novelty of our approach is
the fusion of computer vision and blockchain to immutably
store temporal content hashes (TCHs) of video, rather than
bit hashes such as SHA-256. The TCHs are invariant to for-
mat shifting (changes in the video codec used to compress
the content) but sensitive to tampering either due to frame
dropout and truncation (temporal tamper) or frame corrup-
tion (spatial tamper). This level of protection guards against
accidental corruption due to bulk transcoding errors as well
as direct attack. We evaluated an Ethereum deployment of
our system across the national government archives of three
sovereign nations. We show that our system can detect spa-
tial or temporal tampers of a few seconds within videos tens
of minutes or even hours in duration.

Currently ARCHANGEL is limited by Ethereum (rather
than via design) to block sizes of 32Kb. Our TCHs for a
given clip are variable length bit sequences requiring ap-
proximately 1024 bits per minute to encode audio and video
on-chain. This effectively limiting the size of digital videos
we can handle to 256 minutes (about 4 hours) maximum
duration. ARCHANGEL also has a relatively high overhead

Figure 8. Performance scalability of smart contract transactions
on our proof-of-authority Ethereum implementation. Performance
for fetching (top) and commiting (bottom) video integrity records
to the on-chain storage. Measured for db sizes from 101 − 105

reported as Ktps (×103 transactions per second).

in off-chain storage in that a model of 100-200Mb must
be stored per video clip; however this model size is fre-
quently dwarfed by the video itself which may be gigabytes
in length and presented minimal overhead in the context
of the petabyte capacities of archival data stores. One in-
teresting question is how to archive such models; currently
these are simply Tensorflow model snapshots but no open
standards exist for serializing DNN models for archival pur-
poses. As deep learning technologies mature, and becomes
further ingrained within autonomous decision making e.g.
by governments, it will become increasingly important for
the community to devise such open standards to archive
such models. Looking beyond ARCHANGEL’s context of
national archives, the fusion of content-aware hashing and
blockchain holds further applications, e.g. safeguarding jour-
nalistic integrity or to mitigate against fake videos (‘deep
fakes’) via similar demonstration of content provenance.
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