
COMPOSITIONAL SKETCH SEARCH

Alexander Black? Tu Bui ? Long Mai† Hailin Jin† John Collomosse?†

? CVSSP, University of Surrey † Adobe Research

ABSTRACT

We present an algorithm for searching image collections us-
ing free-hand sketches that describe the appearance and rel-
ative positions of multiple objects. Sketch based image re-
trieval (SBIR) methods predominantly match queries contain-
ing a single, dominant object invariant to its position within an
image. Our work exploits drawings as a concise and intuitive
representation for specifying entire scene compositions. We
train a convolutional neural network (CNN) to encode masked
visual features from sketched objects, pooling these into a
spatial descriptor encoding the spatial relationships and ap-
pearances of objects in the composition. Training the CNN
backbone as a Siamese network under triplet loss yields a
metric search embedding for measuring compositional sim-
ilarity which may be efficiently leveraged for visual search by
applying product quantization.

Index Terms— Sketch, Visual Search, Composition.

1. INTRODUCTION

Sketches are a concise and intuitive way to visually describe
the composition of a scene i.e. the appearance and the relative
spatial arrangement of objects present. Significant progress
has been made in harnessing hand-drawn sketched queries to
drive large-scale visual search of image [1, 2] and video [3, 4]
collections. Yet existing sketch based image retrieval (SBIR)
algorithms typically ignore composition, matching only a sin-
gle sketched object irrespective of its position on the query
canvas. Moreover, training often assumes sketched objects to
match a single dominant object occupying the majority of the
image – complicating partial image matching and retrieval of
smaller objects present.

This paper contributes a technique for compositional
sketch search; to search images by matching a query sketch
containing multiple objects taking into account both their ap-
pearance and their relative position on the sketch canvas. Our
core technical contribution is a method for encoding visual
features from a sketch encoder into a spatial map, forming
a latent space (‘search embedding’) for measuring content
similarity. We train our encoder in a contrastive architecture
to encourage learning of a metric search embedding, using
object compositions sampled from OpenImages [5].

2. RELATED WORK

Early dictionary learning SBIR methods leveraged wavelet
[6], edge-let [1], key-shape [7] and sparse gradient features
[8, 9] to match sketches to edge structures in images. Deep

Fig. 1. Sketched compositions (queries) comprising multiple
objects and the corresponding results from OpenImages [5]
depicting those objects in similar spatial arrangements.

learning approaches extensively apply convnets for cross-
modal representation learning; exploring joint search embed-
dings for matching structure between sketches and images.
Early approaches learned mappings between edge maps and
sketches using contrastive [10], siamese [11] and triplet net-
works [12]. Fine-grained SBIR was explored by Yu et al. [13]
and Sangkloy et al. [14] who used a three-branch CNN with
triplet loss [15]. Bui et al. learned a cross-domain embed-
ding through triplet loss and partial weight sharing between
sketch-image encoders [16] to yield state of the art results.
Stroke sequence models have also been explored to learn
search embeddings [17, 18]. With the exception of very re-
cent work [19] all the above approaches require single object
sketches rather than scenes with multiple objects. Liu et
al. [19] encode a scene graph, requiring explicit pre-detection
of objects. By contrast our approach requires no explicit
detection step to index images, instead building upon spatial
visual search for photos [20] to match sketched object layout.

3. SPATIAL SKETCH-BASED IMAGE RETRIEVAL
We propose a method for spatial-aware sketch based image
retrieval (SSBIR) that accepts a raster query (Q) contain-
ing a free-hand sketched composition that describes the ap-
pearance and relative positions of potentially many objects
O = {O1, ..., On}. We learn a joint search embedding E into
which sketches EQ(Q) 7→ E and images I = [I1, ..., Im] in-
dexed by the search EI(I) 7→ E may be mapped via learned
encoders EQ(.) and EI(.) for the sketch and image domain
respectively. The L2 distance |EQ(Q) − EI(I)|2 ranks im-
ages in the search corpus I by similarity to sketch Q.

3.1. Network Architecture

Our method extends the state of the art single-object multi-
stage SBIR method of Bui et al. [16] (hereafter mSBIR),



Fig. 2. Proposed architecture. (a) Our approach builds upon [16] that maps a single-object sketch (blue, fs(.)) and image
(green, fi(.)) to a common embedding (black arrows show shared weights). (b) We encode multiple objects Oi into a query
tensor that approximates object layout with a similar spatial layout of appearance vectors. A spatial encoder ft(.) is learned to
map the query tensor into our search embedding E . During training, the query tensor is formed using images (EQ′(I)) and at
query time using sketches (EQ(Q)). Branch (EI(I)) indexes the search corpus via an encoder backbone (e.g. GoogLeNet).

which leverages a triplet architecture with GoogLeNet back-
bone and partially-shared weights (in late layers) to encode
both sketches and images to a common feature embedding
(Fig.2a). We refer to these encoding functions as fs(.) and
fi(.) respectively. mSBIR learns fs(.) and fi(.) via a triplet
network comprising an anchor (a) branch accepting a sketch
query and positive/negative (p/n) branches that accept an im-
age as input. The common feature embedding is read out
from a C = 256 channel fully connected (fc) layer shared
across all network branches. mSBIR forms triplets using
single-object sketches from the TU-Berlin dataset [21], ac-
companied by a pair of images containing an object of the
same (p) and different (n) class.

We build upon mSBIR to tackle sketched compositions by
independently encoding each object Oi, and aggregating the
resulting features into a query tensor TQ(Q). Given a raster
Q of resolution W × H pixels, let R[Q,Oi] be a cropping
operator yielding sub-image of Q delimited by the bounding
box of Oi. Let 1(Oi) be a W ×H field of scalar weight 1/κ,
where κ ∈ [1, n] counts the number of objects overlapping
each pixel. Let [1]×C duplicate that field across C channels.
The mask is The 1× C ×W ×H query tensor is formed by
aggregating the feature embeddings of all n objects in Q.

TQ(Q) = MPN×N

[
n∑
i=1

fs(R[Q,Oi])� [1]×C(Oi)

]
(1)

where � indicates in-place multiplication, and MPN×N [.] is
a maxpooling operator that downsamples the tensor resolu-
tion to C × N × N , we use N = 31 for our experiments.
The resulting tensor comprises a zero vector for each pixel
position unoccupied by an object, otherwise the vector aver-
age pools features of objects that overlap that pixel position
(overlapping objects are permitted).

TQ(Q) encodes sketch Q, however a similar process be
applied to compute a tensor TQ′(I) from an image I contain-
ing potentially many objects, by leveraging feature encoder
fi(.). This is used during training only (subsec. 3.3).

TQ′(I) = MPN×N

[
n∑
i=1

fi(R[I,Oi])� [1]×C(Oi)

]
(2)

We next define ft(.), a spatial feature encoder that ac-
cepts input tensor T returned by either the encoding function
for query sketches (TQ(Q)) or training images (TQ′(I)). We
model the function ft(.) via a convnet with three convolution
layers with 3× 3 kernel size, interleaved by two max-pooling
layers of stride 2 each followed by batch normalisation and
ReLU activation (Fig.2b). The purpose of ft(.) is to map the
tensor representation into E thus enabling both sketches and
training images passed down the query branch of our network
to be encoded to the search embedding, via functions EQ(Q)
and EQ′(I) respectively.

EQ(Q) = f∗t (TQ(Q)) (3)
EQ′(I) = f∗t (TQ′(I))

The output of ft(.) a tensor. Therefore to map I or Q to E via
the query branch, the output is flattened (indicated as f∗t (.)).

3.2. Image Indexing Branch

To index images I ⊂ I with the search corpus, we incorpo-
rate an ’indexing’ branch in our network – adapting convnet
backbones such as GoogLeNet or ResNet. Each image I is
passed through the early convolution stages of the network,
to yield a 7× 7×D tensor TI(I) (so matching of the dimen-
sion of query-derived tensor TQ(.), eq. 3). For example, if
using GoogLeNet to learn TI(I), we use the first five convo-
lutional stages (to pool5/5) of the network, where D = 832.
Images are encoded by flattening the resulting tensor:

EI(I) = T ∗I (I) (4)

3.3. Learning the Query Encoders

The image-derived query tensor encoder TQ′(I) is used to
learn the spatial feature encoder ft(.), whilst simultaneously
fine-tuning the indexing branch of the network TI(I). The
single-object common embedding, via fs(.), fi(.), is trained
offline beforehand. We initialize TI(I) weights from a pre-
trained ImageNet classifier [22].

The OpenImages [5] dataset provides images and associ-
ated bounding box annotations for scene objects. Rather than



Fig. 3. Representative top-5 results querying 1-, 2- and 3-
object compositional sketches on Stock4.5M.

training with paired sketch-image data, which is unavailable
in volume for compositions, we exploit the common single-
object sketch embedding via fs(.) and fi(.). Random pairs of
photographic images (I, Ineg) are sampled from the OI train-
ing set (c.f. subsec. 4.1). We build upon the spatial visual
search approach of Mai et al. [20] to learn ft(.) and EQ′(I)
via three loss terms. First, a similarity loss encouragesEQ′(.)
and EI(.) to map to a common embedding:

Lsim = 1− cos(EI(I), EQ′(I)) (5)

Second, a discriminative loss is added via a 4096-D fc
layer g(TI(.)) to the indexing branch for training purposes,
and minimizing Cross-Entropy (CE) loss:

Lce = CE(g(TI(I), c(I))) (6)

where c(I) is a class likelihood vector i.e. non-zero for the
classes present in the image. Third, a contrastive loss com-
puted between the encoding of a random ’irrelevant’ image
TI(Ineg) and encodings of image I passed down the query
(TQ(I)) and the indexing (TI(I)) branches.

Lcon(I, Ineg) = [m+ cos(EQ′(I)− EI(I))−
cos(EQ′(I)− EI(Ineg))]+ (7)

where m = 0.3 is a margin promoting convergence, and [x]+
is the non-negative part of x. The total loss is a weighted sum
(80%, 15%, 5%) of these three terms respectively.

3.4. Compact Representation of E
The high dimensionality of E makes it infeasible for SSBIR
to scale search to large collections e.g. > 1M . To address
this we project and binarize E via 2-step Product Quantization
(PQ) [23]:

B = q1(E) + q2(E − q1(E)) (8)
where q1 is a coarse quantizer using KMeans and q2 is the
fine-level PQ applying on the residual data after q1. We em-
pirically set 1600 as number of KMeans clusters for q1 and

Method mAP NDCG
SSBIR (Proposed) 0.260 0.534
SemIR [20] 0.188 0.412
mSBIR [16] 0.164 0.384
SSBIR-GoogleNet [25] 0.260 0.486
SSBIR-VGG11 [26] 0.198 0.450
SSBIR-ResNet50 [27] 0.058 0.340
SSBIR-MobileNet-V2 [28] 0.187 0.414
SSBIR-EfficientNet-B0 [29] 0.183 0.434

Table 1. Performance of the proposed method versus base-
lines [20, 16] (upper), and versus variants of the proposed
method with different backbones (lower).

16 bytes for the PQ hash code output of q2 (see sup-mat. for
analysis on hash code length). We linearly project E to a lower
dimensional space as a pre-process step prior to PQ, as sug-
gested in OPQ [24].

4. EXPERIMENTS AND DISCUSSION
We evaluate the performance of our compositional SBIR
method, contrasting performance against single [16] and
multiple object [20] baselines. We trained and tested all mod-
els on a 12GB GTX Titan-X GPU using the ADAM optimizer
with learning rate 0.0001 and weight decay 5e− 4.

4.1. Datasets

OI-TrainVal is the largest public dataset with object-level
annotations [5]; we use version 6 with ∼2M images of 801
classes and 16M bounding box annotations. We use the pub-
lic training/validation partitions to train our model. We re-
move images that do not have class overlap with TU-Berlin,
as well as object classes that are too broad (e.g. mammal,
furniture,...). The final set (hereafter, OI-TrainVal) has 1.3M
training and 26K validation images of 141 classes.

OI-Test-LQ consists of 125k test images, obtained from
the public OpenImages (OI) v6 test set via the class filter-
ing applied for OI-TrainVal. In addition, we synthesise 11K
sketched compositions that serve as the query set for evalu-
ation. To construct the sketch set, we randomly sample 11K
images (and their associated bounding boxes) from the OI test
set. Single object sketches from the TU Berlin dataset [21]
that match the bounding box classes are positioned on a single
canvas, to create the composition. We also sample a smaller
set of 900 queries from the 11K set (hereafter, OI-Test-SQ)
for our peripheral studies.

Stock4.5M is a 4.5 million unwatermarked image dataset
collected from https://stock.adobe.com. A query set of 100
sketches is constructed in a similar way to the OI-Test-SQ
query set, balancing the count of objects present (i.e. the num-
ber of sketches containing 1, 2 and 3 objects are 33, 33, and 34
respectively). Stock4.5M is for evaluation only, to test scala-
bility and domain generalization beyond OI-TrainVal.

4.2. Evaluation metrics

We evaluate ability to retrieve images that match the sketched
object queries in terms of both semantic categories and spatial
layout of objects. Our relevance score between query sketch



Fig. 4. Amazon Mechanical Turk (MTurk) user study on the Stock4.5M dataset, for 1 (left), 2 (middle) and 3 (right) object
queries. Each histogram shows the score distribution (1=poor, 5=good) for each method and a control (random) response.

Method P@20 mAP NDCG
SSBIR (proposed) 0.432 0.323 0.737
SemIR [20] 0.345 0.237 0.687
mSBIR [16] 0.344 0.245 0.677
Random* 0.038 0.009 0.467

Table 2. MTurk user study on top-20 retrieved results for the
Stock4.5M image dataset, using 100 queries. * indicates a
control set created by returning images at random.

Q and database image I is defined as:

R(Q, I) = 1

|BQ|
∑
bi∈BQ

max
bj∈BI

1[c(bi)=c(bj)]
bi ∩ bj
bi ∪ bj

(9)

where BQ and BI are sets of object bounding boxes in Q
and I , and where 1[c(bi)=c(bj)] ∈ {1, 0} evaluates to 1 if the
classes of the objects inside bounding boxes bi and bj match.
R(Q, I) is continuous in range [0, 1] and can be binarized via
threshold τ -Rτ (Q, I) = 1 ifR(Q, I) > τ otherwise 0.

Given this relevance score, we evaluate: (i) Mean Aver-
age Precision (mAP); (ii) Normalized Discounted Cumulative
Gain (NDCG) which down-weights lower-ranked images.
mAP requires binary relevance, so we define Rτ (Q, I) = 1
if R(Q, I) > τ otherwise 0, with τ a threshold value (see
sup-mat for analysis). NDCG works on continuous scores,
Rτ (Q, I) = R(Q, I) if R(Q, I) > τ otherwise 0. We
compute mAP and NDCG for the top 200 results.

4.3. Evaluating baselines and architectures

We compare the proposed methods with two other baselines:
mSBIR – the state-of-art single object multi-stage SBIR [16],
and SemIR – the spatial semantic image retrieval method
[20]. Since SemIR only accepts keyword queries, we con-
vert the sketched objects into category names whilst retaining
its bounding box positions. Unless otherwise specified, τ is
set to 0.5 for mAP and NDCG (see sup-mat. for study of τ ).

Table 1 (top) reports the mAP and NDCG performance
of our proposed method and the baselines on OI-Test-LQ.
SSBIR outperforms the closest competitor by a large mar-
gin (by 7% on mAP and 12% on NDCG). This is significant
because SSBIR embedding also encodes sketch appearance
rather than just the word2vec embedding of class names as in
SemIR [20]. mSBIR [16] performs worst as it cannot encode
spatial layout nor images with multiple objects.

We studied the effect of different CNN backbones for the
image indexing branch EI(.) using OI-Test-SQ (Table 1, bot-
tom). The GoogleNet backbone [25] outperforms others e.g.
ResNet [27] and EfficientNet [29]. This may be due to a
match with the [16] use of GoogleNet within the single-object
common embedding. All comparisons are statistically ‘very
significant’ (t-test; ρ � 0.01) except for GoogleNet versus
VGG11 (ρ = 0.148). We therefore adopt GoogleNet.

4.4. Evaluating large-scale retrieval

We conduct an user study on the Stock4.5M dataset using
Amazon Mechanical Turk (MTurk). We retrieve the 20 top-
ranked images for each of 3 methods: our SSBIR, and base-
lines SemIR [20] and mSBIR [16]. For a given query, we
group the returned images of the same rank across these meth-
ods along with a random image to form an annotation task.
We then ask 3 annotators to score each of the images in terms
of its semantic and spatial relevance to the sketched query
(scale: 1 means ‘completely irrelevant’ and 5 means ‘correct
objects in the exactly same pose and location’).

All methods are significantly better than random (t-test;
ρ << 0.05). Fig. 4 shows for 1-object queries, the perfor-
mance of SSBIR is on par with SemIR [20] (ρ = 0.175 indi-
cates no significance in the rating distributions of these two
methods) and slightly lower than mSBIR. For multi-object
queries SSBIR receives significantly more 3-5 ratings than
both baselines. Tab. 2 averages the user ratings of each query-
image pair yielding a relevance score R equivalent to eq. 9.
We threshold the relevance score at 2 to compute mAP and
NDCG metrics. We also report Precision at rank k = 20,
for all 20 images annotated. SSBIR outperforms baselines on
all 3 metrics by a large margin. Several retrieval examples
are given in Fig. 3. mSBIR often works best on single-object
sketches, whilst SemIR takes only semantic information into
account and disregards appearance.

5. CONCLUSION

We proposed a SBIR method for searching image collections
using compositional sketches containing multiple objects.
Visual features from scene objects are encoded into a spa-
tial feature map that is compressed via product quantization
(PQ). Our approach requires no object detection step. We
show that explicitly training for multiple object SBIR yields
statistically significant performance gains over single-object
SBIR, and improved appearance recall using sketches versus
labelled bounding boxes.
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