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Abstract

We present VIXEN – a technique that succinctly summarizes
in text the visual differences between a pair of images in order
to highlight any content manipulation present. Our proposed
network linearly maps image features in a pairwise manner,
constructing a soft prompt for a pretrained large language
model. We address the challenge of low volume of training
data and lack of manipulation variety in existing image dif-
ference captioning (IDC) datasets by training on synthetically
manipulated images from the recent InstructPix2Pix dataset
generated via prompt-to-prompt editing framework. We aug-
ment this dataset with change summaries produced via GPT-
3. We show that VIXEN produces state-of-the-art, compre-
hensible difference captions for diverse image contents and
edit types, offering a potential mitigation against misinforma-
tion disseminated via manipulated image content. Code and
data are available at http://github.com/alexblck/vixen

Introduction
Image manipulation often forms the basis for fake news and
misinformation. This threat may be countered by tools that
encourage users to reflect upon the provenance and con-
tent of images. Given the reactionary nature of sharing, such
tools should be intuitively comprehensible to enable users to
make fast, informed trust decisions (Gregory 2019).

This paper contributes VIXEN – a method for intuitively
summarizing the visual change between a pair of images us-
ing a short passage of text. Emerging open standards (e.g.
C2PA (Coalition for Content Provenance and Authenticity
2023)) describe provenance frameworks that match images
circulating in the wild to a federated database of originals us-
ing perceptual hashing methods (Black et al. 2021b; Nguyen
et al. 2021; Black et al. 2021a; Pizzi et al. 2022). VIXEN
presents a comprehensible way to review any image manip-
ulation evidenced by such a matching (Fig. 1).

Image difference captioning (IDC) is typically addressed
by representations that seek to model the spatial-semantic
distribution of concepts present in a scene – for example,
the relative positions of objects in CCTV footage (Jham-
tani and Berg-Kirkpatrick 2018), or of primitive geometric
shapes (Johnson et al. 2017). More complex kinds of ma-
nipulations require expertise to construct and thus can not
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be easily scaled up in volume (Tan et al. 2019). To this end,
we make three technical contributions:

1. Cross-modal image differencing. We present a novel
image differencing concept comprising a 2-branch GPT-
J architecture to embed and compare facts derived from
the image pair using CLIP-based image encoding. The
model generates text conditioned on that comparison to
explain salient changes between the image pair. We show
our textual explanations to be succinct and comprehensi-
ble to non-expert users and to be quantitatively closer to
ground-truth edit captions than state-of-the-art caption-
ing methods.

2. Synthetic Edit Training. We propose a synthetic pair-
wise training framework for our VIXEN leveraging re-
cent prompt2prompt (P2P) and language-based image
editing (LBIE) approaches to supervise fine-tuning on
generative image content, showing good generalization
to unseen content.

3. Augmented IP2P Dataset. We release an augmentation
of the recent InstructPix2Pix (IP2P) dataset with syn-
thetic change captions generated via GPT-3 as a basis for
training and evaluating VIXEN.

We demonstrate that VIXEN achieves higher perfor-
mance than prior image difference captioning methods and
is able to generalize to multiple datasets.

Related Work
Image difference captioning (IDC) is closely related to im-
age captioning and visual question answering, both requir-
ing a visual understanding system to model images and a
language understanding system capable of generating syn-
tactically correct captions. The revolution of IDC in recent
years depends heavily on the advent of visual and text mod-
eling approaches, together with cross-domain learning tech-
niques that bridge the representation gap between them.

Early visual content modeling approaches employ global
CNN features such as VGG (Donahue et al. 2015) and
ResNet (Rennie et al. 2017) as input signals to the text gen-
eration models, leveraging the semantically rich and com-
pact representations deliverable from these models. To bet-
ter capture multi-object representations and their relation,
regional modeling methods are developed (Lu et al. 2017;
Gu et al. 2018; Anderson et al. 2018; Huang et al. 2019). In



Figure 1: Visual change summarization produced by VIXEN for original-manipulated image pairs. VIXEN is able to observe
both background (left) and main subject (mid) changes as well as generalize to other datasets (right).

some, images are gridded into non-overlapping patches upon
which CNN features are extracted, others instead use outputs
from an early layer of a pretrained ResNet model to effec-
tively capture spatial features in a grid fashion. In contrast,
(Cornia et al. 2020; Anderson et al. 2018; Huang et al. 2019)
employ Region Proposal Network (RPN) to extract features
from potential candidate objects, offering better alignment
with semantic objects mentioned in the paired captions. Al-
ternative approaches include graph-based (Yang et al. 2019)
and tree-based networks (Yao et al. 2019) to capture the re-
lations of objects at multiple levels of granularity.

For a long time RNN/LSTM (Graves and Graves 2012)
have been used to model text due to its inherent sequen-
tial properties. Single-layer RNN (Vinyals et al. 2015; Mao
et al. 2015) or double-layer LSTM (Donahue et al. 2015;
Anderson et al. 2018; Yao et al. 2019) are employed along
with various techniques to integrate image features deeper
into the recurrent process, including additive attention (Ste-
fanini et al. 2022). During inference, captions are gener-
ated in an autoregressive fashion – the prediction of a word
is conditioned on all previous words. While this improves
linguistic coherence, RNN/LSTM-based approaches strug-
gle in modeling long captions. This problem is levitated
in recent transformer-based approaches thanks to its full-
attention mechanism (Luo et al. 2021; Wang et al. 2021;
Cornia et al. 2020). More advanced transformer-based ap-
proaches such as BERT (Devlin et al. 2018), GPT (Brown
et al. 2020) and LLaMA (Touvron et al. 2023) have been
successfully applied in various visual-language tasks (Hu
et al. 2022; Mokady, Hertz, and Bermano 2021; Gao et al.
2023; Zhang et al. 2021; Li et al. 2020).

Visual language modeling aims to bridge the gap between
image/video and text representations for specific tasks such
as joint embedding (e.g. CLIP (Radford et al. 2021) and
LIMoE (Mustafa et al. 2022) for cross-domain retrieval),
text-to-image (e.g. Stable Diffusion (Rombach et al. 2022)
for text-based image generation, InstructPix2Pix (Brooks,
Holynski, and Efros 2022) for image editing) and image-
to-text (e.g. visual question answering (Alayrac et al. 2022;
Wang et al. 2021), visual instructions (Gao et al. 2023;
Driess et al. 2023)). In the context of image captioning,
image-text mapping strategies can be categorized into two
research strands. The first strand involves the early fusion of
image and text features for better alignment between image
objects and words (Tsimpoukelli et al. 2021; Mokady, Hertz,

and Bermano 2021; Wang et al. 2021; Li et al. 2020). These
methods adopt BERT-like training strategies to input a pair
of image and masked caption to the masked words. At in-
ference, the input caption is simply replaced by a start token
or a prefixed phrase e.g. ‘A picture of’. The second research
strand focuses on learning a direct transformation from im-
age to text embedding. Early CNN-based approaches feed
image features as the hidden states of the LSTM text mod-
ules (Donahue et al. 2015; Vinyals et al. 2015; Yao et al.
2019; Karpathy and Fei-Fei 2015; Rennie et al. 2017) while
later transformer-based methods favor cross-attention (Luo
et al. 2021; Cornia et al. 2020). Recently in both research
strands, there has been a trend of leveraging powerful pre-
trained large language and vision models to learn a simple
mapping between two domains (Merullo et al. 2022; Eichen-
berg et al. 2021; Li et al. 2023; Tsimpoukelli et al. 2021;
Mokady, Hertz, and Bermano 2021).

Image difference captioning is a form of image caption-
ing in which the caption would ideally ignore common ob-
jects between images and rather highlight subtle changes
between them. As the first work addressing IDC, Spot-the-
Diff (Jhamtani and Berg-Kirkpatrick 2018) identifies po-
tential change clusters and models them using an LSTM-
based network. Their work relies on the difference between
two input images at the pixel level, therefore sensitive to
noises and geometric transformations. DUDA (Park, Dar-
rell, and Rohrbach 2019) instead computes image difference
at CNN semantic level, improving the robustness against
slight global changes. In M-VAM (Shi et al. 2020) and
VACC (Kim et al. 2021), a view-point encoder is proposed
to mitigate potential view-point difference and VARD (Tu
et al. 2023a) proposes a viewpoint invariant representation
network to explicitly capture the change. Meanwhile, (Sun
et al. 2022) uses bidirectional encoding to improve change
localization and NCT (Tu et al. 2023b) aggregates neigh-
boring features with a transformer. These methods mostly
focus on image modality and take advantage of benchmark-
specific properties, such as near-identical views in Spot-
the-Diff (Jhamtani and Berg-Kirkpatrick 2018) or synthetic
scenes with limited objects and change types (color, texture,
add, drop, remove) in CLEVR (Park, Darrell, and Rohrbach
2019). More recently, IDC-PCL (Yao, Wang, and Jin 2022)
and CLIP4IDC (Guo, Wang, and Laaksonen 2022) adopt
BERT-like training strategies to model difference captioning
language, achieving state-of-art performance.



Figure 2: Model architecture and data captioning augmentation pipeline diagram. We use a pre-trained image encoder network
E to produce a representation of two images. Both of these are projected into the input space of a large language model (LM)
by a trained linear projection layer P . Frozen layers are marked in blue, trainable in red.

Methodology
Our proposed method relies on synthetically generated im-
age pairs and associated difference captions. We describe
the creation process of visual and textual components of the
dataset, details of the architecture of our proposed approach
and training details necessary to reproduce the results.

Data Generation
To train our proposed approach, we require a large dataset of
image pairs, each annotated with a summary of the changes
between them. We propose using images generated by stable
diffusion (Rombach et al. 2022) and edited with prompt-to-
prompt (Hertz et al. 2022) using the pipeline presented in
InstructPix2Pix (Brooks, Holynski, and Efros 2022) (IP2P).
One of our contributions is the introduction of difference
summary captions to IP2P images, generated using GPT-3
(Brown et al. 2020) in a few-shot learning fashion.

The InstructPix2Pix dataset is generated using the
prompt-to-prompt editing framework, which provides text-
based editing capabilities for synthesized images by inject-
ing the attention maps associated with a specific word in
the prompt to control the attention maps of the edited im-
age. Therefore, all that is required to generate an image pair
is two textual prompts with slight differences. IP2P uses a
fine-tuned GPT-3 language model to generate plausible ed-
its based on real input captions from LAION (Schuhmann
et al. 2022). In addition to the image pairs and captions the
dataset also contains an instruction that describes what edits
have to be applied in order to generate the output image.

While these instructions are sufficient for the original In-
structPix2Pix task of text-based image editing, they often

omit the information regarding the input content. For exam-
ple, for the prompt pair ”a photo of a cat”/”a photo of a dog”,
the edit instruction might be ”as a dog” or ”turn it into a
dog”. We aim to summarize the changes by referencing both
the original and edited image contents, therefore the desir-
able edit summarization caption would be ”the cat has been
replaced by a dog”. To achieve this, we use GPT-3 language
model in a few-shot learning fashion by including several
examples of input-output-instruction-summary quadruplets
where summary captions are constructed manually. While
IP2P uses a fine-tuned GPT-3 to generate the instruction and
second image captions, we have found the fine-tuning un-
necessary in our case. Since our task does not require cre-
ativity from the model, but rather summarization of the in-
put information, the pre-trained ’davinci’ version of GPT-3
is enough to produce the captions needed.

Architecture
Our image captioning approach is inspired by (Merullo et al.
2022), which uses a trainable linear mapping between the
image encoder and a large language model. However, in-
stead of passing the projected embeddings of a single image
to the language model, we project the embeddings of two
images and concatenate them before feeding them into the
language model. This architecture is illustrated in Figure 2.
Given a source image I and its edited version I ′ we use an
image encoder E to extract image feature maps

f = E(I); f ′ = E(I ′) ∈ Rk×h, (1)

where h is the size of feature maps and k is the prompt se-
quence length. We use a fully-connected layer P to linearly



Figure 3: Image-caption pairs with an average correspondence score of 3 (left): may contain global changes when only local
ones are expected (top) or fail to produce desired edits due to vague captioning (bot); 4 (mid): partially satisfy the caption, oc-
casionally only some properties are realized correctly (top) or an existing object is replaced rather than added to the background
(bot); 5 (right): mostly faithful to the depicted edits.

project the image features into dimensionality of a language
model input e, creating a soft prompt sv:

sv = [P(f),P(f ′)] ∈ R2k×e, (2)

where [, ] denotes concatenation. Finally, we append a prefix
st made of embedding of tokens for ”The differences be-
tween the images are as follows: ”/”Edit instructions:” to
the visual prompt sv to obtain the final prompt s = [sv, st]
used for generating the summarization text.

We explore two options for E . Firstly, following (Merullo
et al. 2022; Eichenberg et al. 2021), we use CLIP RN50x16
as E . The feature map before the pooling layer has dimen-
sions 12×12×3072, flattened to k×h = 144×3072. Sec-
ondly, we use ViT-g, followed by a Q-Former from BLIP-2
(Li et al. 2023). In this case sequence length k = 257. We
refer to CLIP and Q-Former versions of VIXEN as VIXEN-
C and VIXEN-Q, respectively. For the language model, we
use GPT-J(Wang and Komatsuzaki 2021), which has input
space dimensionality l = 4096. Consequently, for both con-
figurations of E , our linear projection layer P has input and
output dimensions h = 3072 and l = 4096, respectively.
The loss for the captioning task objective is defined as

L = −
m∑
i=1

l(sv, st1, . . . , s
t
i), (3)

where m is a variable token length and l is next-token log-
probability conditioned on the previous sequence elements

l(sv, st1, . . . , s
t
i) = log p(ti|x, t1, . . . , ti−1). (4)

Training
During training, we may provide distractor image pairs with
no changes present by providing the same image as both in-
puts I = I ′. The frequency of the presence of distractor

images is determined by probability pd. In such cases, the
target difference summary text is chosen at random from a
list of pre-defined sentences, all synonymous with ”there is
no difference”. For all our models we first train with pd = 0
for two epochs, followed by two more epochs with pd = 0.5.
Total training time is approximately 100 hours on a sin-
gle A100 GPU. We use gradient accumulation to train with
an effective batch size of 2048 and optimize the loss using
AdamW optimizer with β1 = 0.9, β2 = 0.98 and weight de-
cay 0.05. For baseline approaches CLIP4IDC and IDC, we
implemented dataloaders for our dataset, precomputed all
necessary supporting data (e.g., ResNet-101 features, neg-
ative samples, and a vocabulary dictionary for IDC) and fol-
lowed their standard two-step training pipeline with default
hyperparameters specified in the GitHub repos.

Experiments
Data
We perform our main evaluation on a subset of the Instruct-
Pix2Pix (Brooks, Holynski, and Efros 2022) dataset, unseen
by models during training. To ensure a high quality of the
synthetically generated image-caption pairs, we score their
correspondence via a user study. Additionally, we crowd-
source annotations for a subset of images from the PSBattles
(Heller, Rossetto, and Schuldt 2018) dataset and fine-tune
and evaluate on Image Editing Request (Tan et al. 2019).

InstructPix2Pix dataset presents challenges due to its syn-
thetically generated nature, as some of the edit summariza-
tion captions fail to accurately describe the changes made
to the image pairs. This is mainly due to prompt-to-prompt
occasionally generating images that do not depict the de-
sired change accurately enough. This is further discussed
in the limitations section below and illustrated in Figure
5 (mid). To ensure a reliable evaluation, we conducted a



Method MPNet B@4 C M R
Instruct Pix2Pix

@3 @4 @5 @3 @4 @5 @3 @4 @5 @3 @4 @5 @3 @4 @5
VIXEN-Q (ours) 56.9 59.1 62.3 16.5 18.5 20.8 80.3 93.9 134.9 17.1 18.4 20.6 38.0 40.1 42.2
VIXEN-C (ours) 59.3 61.4 61.5 16.8 18.2 19.2 96.6 107.0 126.1 17.6 18.6 19.6 39.2 40.8 39.3
CLIP4IDC 56.8 58.3 60.7 15.8 17.3 17.7 58.8 71.0 114.7 20.9 22.5 23.3 33.3 35.1 34.0
IDC 38.3 38.6 37.4 8.2 8.8 7.7 4.4 5.0 5.6 16.0 16.8 16.5 29.1 30.0 27.7

PSBattles
VIXEN-Q (ours) 45.1 5.8 7.5 11.0 22.2
VIXEN-C (ours) 40.3 4.5 7.7 9.5 20.5
CLIP4IDC 32.7 3.2 5.0 10.1 21.7
IDC 27.0 1.0 0.7 9.2 19.5

Image Editing Request
VIXEN-Q (ours, FT) 50.1 7.9 35.4 14.4 33.5
VIXEN-C (ours, FT) 52.5 8.6 38.1 15.4 42.5
VARD - 10.0 35.7 14.8 39.0
CLIP4IDC - 8.2 32.2 14.6 40.4
NCT - 8.1 34.2 15.0 38.8
BiDiff - 6.9 27.7 14.6 38.5
DUDA - 6.5 27.8 12.4 37.3
rel-att - 6.7 26.4 12.8 37.4

Table 1: Image difference captioning performance on IP2P, PSBattles and Image Editing Request datasets. Evaluated on se-
mantic similarity (MPNet), BLEU-4 (B@4), CIDEr (C), METEOR (M) and ROUGE-L (R). For IP2P, performance is reported
for subsets at image-caption correspondence thresholds of 3, 4, 5.

Method MPNet B@4 C M R
Instruct Pix2Pix

VIXEN-C (ours) 59.3 16.8 96.6 17.6 39.2
VIXEN-C p=0 54.4 15.4 88.5 16.1 35.9

PSBattles
VIXEN-C (ours) 40.3 4.5 7.7 9.5 20.5
VIXEN-C p=0 37.8 4.2 7.2 8.9 19.2

Table 2: Impact of distractor images on performance of the
model evaluated on semantic similarity (MPNet), BLEU-4
(B@4), CIDEr (C), METEOR (M) and ROUGE-L (R).

user study using Amazon Mechanical Turk (MTurk) on
a sample of 5,000 images from the dataset. This results
in a 837,466/93,052/5,000 train/validation/test splits. The
study involved three participants per image-caption pair (95
unique participants) and aimed to rate the degree of corre-
spondence between the image pair and its associated cap-
tion, using a scoring system from 1 (low) to 5 (high). The
distribution of scores is 1: 5%, 2: 13%, 3: 26%, 4: 33%, 5:
24% . Figure 3 shows random samples of the image-caption
pairs for different score threshold values.

PSBattles is a dataset of images edited in Adobe
PhotoshopTM, collected from the ‘Photoshopbattles’ subred-
dit. The dataset contains 10k original images, paired with
several manipulated variants. There are 102k variants in total
contributed by 31k artists. We randomly sample 100 image
pairs for crowd-sourced annotation on MTurk and collect
captions from 3 participants per image pair.

Image Editing Request is a dataset of realistic pho-
tographs, paintings and illustrations paired with instructions
written by humans. It contains 4k images-annotations pairs

and incorporates a wide variety of edits, including affine ed-
its and crops that are not present in the other datasets.

Metrics
We evaluate the performance of difference captioning meth-
ods using both traditional N-gram-based metrics (BLEU-4
(Papineni et al. 2002), CIDEr (Vedantam, Lawrence Zitnick,
and Parikh 2015), METEOR (Banerjee and Lavie 2005) and
ROUGE-L (Lin 2004)), as well as semantic similarity metric
based on a language transformer model. We have found that
due to a larger diversity of images and edits, the generated
captions need to encompass a significantly larger vocabulary
to accurately describe the changes. As a result, there are in-
stances where the captions may not align word for word with
the actual image differences, but they still convey a simi-
lar meaning. To account for this, we use a semantic textual
similarity metric. We define semantic textual similarity Ssim

between the target c and generated c′ summarizations
Ssim = cos(E(c), E(c′)), (5)

where cos(, ) = A·B
∥A∥∥B∥ denotes cosine similarity and E is

a sentence transformer. We use MPNet (Song et al. 2020) as
the best-performing sentence transformer to map sentences
to 768-dimensional normalized embeddings.

We also assess the quality of captions via a crowd-sourced
study on Amazon Mechanical Turk (MTurk). Participants
are presented with both the original and edited images. For
each image pair, participants are tasked to choose one of the
4 captions, arranged in a random order. In case all four cap-
tions do not summarize the differences well enough, par-
ticipants may choose the ’none of the above’ option. Each
task is performed by 3 unique participants. The preference
is considered to be given to a particular method if two or
more participants have voted for it.



(a) InstructPix2Pix

(b) PSBattles

Figure 4: Examples of edit summarizations for global changes, object replacement and material changes produced by VIXEN
and CLIP4IDC on InstructPix2Pix (a) and PSBattles (b) datasets. Failure case marked with a dashed red box.

Results
For the proposed datasets, we compare the performance of
VIXEN against two baselines, IDC (Yao, Wang, and Jin
2022) and CLIP4IDC (Guo, Wang, and Laaksonen 2022).
We train both of them on our augmented IP2P dataset, fol-
lowing the author’s guidelines. For the IER dataset, we fine-
tune on IER training set and compare against reported num-
bers of multiple baselines.

We report the evaluation results of evaluating both the
proposed method as well as baselines in Table 1, with exam-
ples shown in Figure 4. Our methods achieve a higher score
in all metrics, except METEOR (IP2P), where CLIP4IDC
scores higher than both proposed architectures. This indi-
cates that VIXEN is more tuned towards precision, rather
than recall of n-grams as METEOR heavily favors recall. For
IP2P, results are reported at three different correspondence
thresholds. For lower threshold values, the best results are
obtained by VIXEN-C. VIXEN-Q seems to benefit the most
from threshold increase and outperforms other methods on
pairs with a correspondence score of 5.

While all methods suffer significant performance drops
when evaluated on a dataset from a different domain,
VIXEN-Q shows a better ability to generalize to new data
by scoring the highest on the PSBattles dataset. After fine-
tuning the model on Image Editing Request, VIXEN-C out-
performs previous methods on most metrics, except B@4 of
VARD(Tu et al. 2023a).

The results of the crowd-sourced user preference study,
shown in Figure 6, demonstrate that the users prefer differ-
ence captions generated by VIXEN more often than others.
For the IP2P dataset, captions generated by VIXEN-Q and
VIXEN-C obtained a majority vote in 32% and 26% of the
cases, respectively, followed by CLIP4IDC and IDC with
24% and 15%. For the PSBattles dataset, the highest prefer-
ence score is achieved by VIXEN-C with 15% of the votes.
Participants chose the ’None of the above’ option in 75% of
the cases for PSBattles, as opposed to just 2% in IP2P. This
indicates that generalization to new data domains remains a
challenging task.

During inference we assume an input where one image is



Figure 5: Limitations of the proposed method. Left: image captioning instead of difference captioning in case of unidentified
edit. Middle: mismatch between target text-image pair and LM runoff. Right: edit described in reverse order.

Figure 6: User preference study results. Study participants
are shown an image pair and captions generated by four
methods on IP2P and PSBattles datasets.

Fusion method B@4 C M R
Instruct Pix2Pix

Concatenation 16.8 96.6 17.6 39.2
Subtraction 16.4 93.7 16.9 36.8
Addition 16.2 90.8 17.3 37.5
Multiplication 14.4 82.7 15.3 35.9
Mean 10.7 63.9 12.4 33.6

Table 3: Image feature fusion ablation of VIXEN-C

an edited version of the other, but we demonstrate the ben-
efits of having distractor same image pairs during training.
The possibility of no edits case makes it harder for the model
to guess the right answer by memorizing the most frequent
edits within the dataset. Table 2 shows that setting the prob-
ability p = 0 of the same image pairs during training of
VIXEN-C yields worse results on both IP2P and PSBattles
datasets.

Table 3 shows performance results for different feature

fusion strategies that redefine sv in Eq 2. We have observed
that concatenation leads to slightly better performance than
subtraction, addition or multiplication and taking the mean
of two features causes a significant performance drop. This
shows that retaining the information of both image features
without degradation is important for the task.

Limitations
In Figure 5 we show examples of VIXEN’s failure cases. We
identify and discuss three main challenges. Left shows an
example of a very minor difference between the two images.
In such cases, VIXEN occasionally resorts to captioning the
image content instead of summarizing the differences. Mid
shows a mismatch between the summary and generated im-
ages: an image pair with a slightly changed book cover, but
the target caption assumes that the style of the whole image
has been changed to that of a comic book. As with other
LLMs, VIXEN exhibits LM runoff: having identified a con-
cept (”cartoon character”), it might continue generating a
text with a strong linguistic prior (”big eyes and exagger-
ated features”), absent in the images. Right shows that oc-
casionally VIXEN may describe the differences between the
images in a reversed order.

Conclusion
We presented VIXEN – an image difference captioning ap-
proach that provides textual descriptions of the manipula-
tions applied to an image. We have augmented the Instruct-
Pix2Pix dataset of generated images with difference sum-
marization captions generated by GPT-3 in order to train
and evaluate VIXEN. We have shown that VIXEN achieves
higher performance than other image difference captioning
methods. We have also demonstrated that, while VIXEN
shows better generalizability to other datasets, there is still
a performance gap when switching from synthetic to real
data. Future works might alleviate this by including a varied
spread of manipulations types into the training set, including
insertion, deletion and text edits, which the current genera-
tive pipelines struggle with.
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