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ABSTRACT

The artificial intelligence (AI) world is running out of real data for training in-
creasingly large generative models, resulting in accelerating pressure to train on
synthetic data. Unfortunately, training new generative models with synthetic data
from current or past generation models creates an autophagous (self-consuming)
loop that degrades the quality and/or diversity of the synthetic data in what has been
termed model autophagy disorder (MAD) and model collapse. Current thinking
around model autophagy recommends that synthetic data is to be avoided for model
training lest the system deteriorate into MADness. In this paper, we take a different
tack that treats synthetic data differently from real data. Self-IMproving diffusion
models with Synthetic data (SIMS) is a new training concept for diffusion models
that uses self-synthesized data to provide negative guidance during the generation
process to steer a model’s generative process away from the non-ideal synthetic
data manifold and towards the real data distribution. We demonstrate that SIMS
is capable of self-improvement; it establishes new records based on the Fréchet
inception distance (FID) metric for CIFAR-10 and ImageNet-64 generation and
achieves competitive results on FFHQ-64 and ImageNet-512. Moreover, SIMS is,
to the best of our knowledge, the first prophylactic generative AI algorithm that can
be iteratively trained on self-generated synthetic data without going MAD. As a
bonus, SIMS can adjust a diffusion model’s synthetic data distribution to match any
desired in-domain target distribution to help mitigate biases and ensure fairness.
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Figure 1: Self-IMproving diffusion models with Synthetic data (SIMS) simultaneously improves diffusion
modeling and synthesis performance while acting as a prophylactic against Model Autophagy Disorder
(MAD). First row: Samples from a base diffusion model (EDM2-S (Kynkäänniemi et al., 2024)) trained on
1.28M real images from the ImageNet-512 dataset Karras et al. (2024a) (Fréchet inception distance, FID =
2.56). Second row: Samples from the base model after fine-tuning with 1.5M images synthesized from the base
model, which degrades synthesis performance and pushes the model towards MADness (aka model collapse)
(Alemohammad et al., 2023; 2024; Shumailov et al., 2024) (FID = 6.07). Third row: Samples from the base
model after applying SIMS using the same self-generated synthetic data as in the second row (FID = 1.73).
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1 INTRODUCTION

Thanks to the ongoing rapid advances in the field of generative artificial intelligence (AI), we are
witnessing a proliferation of synthetic data of various modalities that have been rapidly integrated
into popular online platforms. The voracious appetite of generative models for training data (Yahoo-
Finance, 2024; The Economist, 2023a;b; Villalobos et al., 2022) has caused practitioners to train
new models either partially or completely using synthetic data from previous generations of models.
Synthetic training data is actually hard to avoid, because many of today’s popular training datasets
have been inadvertently polluted with synthetic data (Alemohammad et al., 2023; 2024).

Unfortunately, there are hidden costs to synthetic data training. Training new generative models with
synthetic data from current or past generation models creates an autophagous (self-consuming) loop
(Alemohammad et al., 2023; 2024) that can have a detrimental effect on performance. In the limit
over many generations of training, the quality and/or diversity of the synthetic data will decrease, in
what has been termed Model Autophagy Disorder (MAD) (Alemohammad et al., 2023; 2024) and
Model Collapse (Shumailov et al., 2024). MAD generative models also have major fairness issues, as
they produce increasingly biased samples that lead to inaccurate representations across the attributes
present in real data (e.g., related to demographic factors such as gender and race) (Wyllie et al., 2024).

MADness arises because synthetic data, regardless of how accurately it is modeled and generated, is
still an approximation of samples from the real data distribution.1 An autophagous loop causes any
approximation errors to be compounded, ultimately resulting in performance deterioration and bias
amplification.

Safely advancing the performance of generative AI systems in the synthetic data era requires that we
make progress on both of the following open questions:

Q1. How can we best exploit synthetic data in generative model training to improve real data
modeling and synthesis?

Q2. How can we exploit synthetic data in generative model training in a way that does not lead to
MADness in the future?

In this paper, we develop Self-IMproving diffusion models with Synthetic data (SIMS), a new learning
framework for generative models that addresses both of the above issues simultaneously. Our key
insight is that, to most effectively exploit synthetic data in training a generative model, we need
to change how we employ synthetic data. Instead of naïvely training a model on synthetic data as
though it were real, SIMS guides the model towards better performance but away from the patterns
that arise from synthetic data training.

We focus here on SIMS for diffusion models in the context of image generation, because their robust
guidance capabilities enable us to efficiently guide them away from their own generated synthetic data.
In particular, we use a base model’s own synthetic data to obtain a synthetic score function associated
with the synthetic data manifold and use it to provide negative guidance during the generation process.
By doing so, we steer the model’s generative process away from the non-ideal synthetic data manifold
and towards the real data distribution.

Figure 2 depicts how SIMS models and synthesizes more closely to the ground truth, real data
distribution by reversing the trajectory towards MADness. The green circle signifies the region in the
function space of score functions that is inaccessible to a learning algorithm due to factors such as a
limited amount of real data or sampling noise. As a result, training a first-generation base diffusion
model on exclusively real data results in a score function sθr(xt, t) (parameterized by a learnable
neural network with parameters θr) in the vicinity of the ground truth. Now, consider naïvely training
a second-generation (auxilliary) model by fine-tuning the base model with synthetic data from the
first-generation model. This corresponds to the synthetic augmentation loop in (Alemohammad et al.,
2023; 2024). The resulting score function sθs(xt, t) will be further away from the ground truth and
on the path towards MADness. Rather than tolerate this degraded second-generation model, we
can use sθr(xt, t) and sθs(xt, t) to (linearly) extrapolate back into the inaccessible region. Data
generated using the resulting score function (denoted SIMS in the figure) promise to be closer to the

Corresponding author: sa86@rice.edu
1In this paper, by real data we mean direct samples from a target distribution. For example, in the context of

natural images, real data would be digital photographs taken by a camera in a physical space.
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Figure 2: SIMS simultaneously self-improves diffusion model modeling and synthesis performance while
acting as a prophylactic against MAD. SIMS improves the score function sθr(xt, t) for a base diffusion model
trained on real data by training an auxiliary model on the same real data plus synthetic data from the base model.
The score function sθs(xt, t) of the auxiliary model can be combined with that of the base model to extrapolate
a new score function (denoted SIMS) that is closer to the real data distribution.

real data distribution than those from the base model. Moreover, by explicitly reversing the MADness
trajectory, diffusion models learned using SIMS promise to be less prone to MADness when the
above process is repeated.

To summarize, given a training dataset, SIMS performs the following four steps to obtain a self-
improved diffusion model using self-generated synthetic data:

Algorithm 1 SIMS Procedure

Input: Training dataset D
Hyperparameters: Synthetic dataset size ns, guidance strength ω, training budget B

1: Train base diffusion model: Use dataset D to train the diffusion model using standard training,
resulting in the score function sθr(xt, t).

2: Generate auxiliary synthetic data: Create an internal synthetic dataset S by generating ns = |S|
samples from the base diffusion model.

3: Train auxiliary diffusion model: Fine-tune the base model using only S within the training
budget B to obtain sθs(xt, t). Discard S.

4: Extrapolate the score function: Use sθs(xt, t) to extrapolate backwards from sθr(xt, t) to the
SIMS score function

sθ(xt, t) = sθr(xt, t)− ω(sθs(xt, t)− sθr(xt, t)) = (1 + ω)sθr(xt, t)− ωsθs(xt, t).

Synthesize: Generate synthetic data from the model using the SIMS score function sθ(xt, t).

We tally our contributions as follows:

C1. Self-improvement: We demonstrate that SIMS makes significant progress on Q1 above by
using self-generated synthetic data to significantly enhance the generation quality of image diffusion
models. SIMS establishes new records based on the Fréchet inception distance (FID) metric (Heusel
et al., 2017) for CIFAR-10 and ImageNet-64 generation and achieves competitive results on FFHQ-64
and ImageNet-512 (see Table 1 and Figure 4). Moreover, given a diffusion model trained on a set of
real data and a set of data synthesized from that model, we show that combining the real and synthetic
data via SIMS results in higher performance than either the original model or a model trained on the
aggregate of the real and synthetic data (see Figures 1 and 6).

C2. MAD-prophylactic: We demonstrate that SIMS makes significant progress on Q2 above. It
is, to the best of our knowledge, the first generative AI model that can be iteratively trained on
self-generated, synthetic data without going MAD. We iterate the process in Algorithm 1 for 100
generations to show that there exist guidance parameter ω settings such that no MAD degradation
occurs (see Figure 5).

C3. Distribution controllability: We show that SIMS can adjust a diffusion model’s synthetic data
distribution to match any desired in-domain target distribution. This can help mitigate biases and
ensure model fairness, all while improving the quality of the generated outputs (see Figure 7).
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Our findings clearly demonstrate that synthetic data can actually be both useful and safe for learning
diffusion models and counters recent recommendations (Alemohammad et al., 2023; 2024; Shumailov
et al., 2024) that synthetic data is to be avoided in learning. The difference in conclusions is due to
SIMS’ unique approach: while training directly on (real data aggregated with) synthetic data causes a
model to drift away from the true data distribution, SIMS instead uses the synthetic data to explicitly
avoid the synthetic data manifold and extrapolate closer to the true data distribution.

This paper is organized as follows. Section 2 overviews diffusion generative models, self-consuming
loops, and past work attempting to slow or arrest MADness. Section 3 presents the details of the SIMS
procedure that we outlined in Algorithm 1. Section 4 exhibits the results of numerous computational
experiments that demonstrated convincingly that SIMS both improves model performance and either
mitigates or completely prevents MADness. We close with a discussion, recommendations, and
direcions for future research in Section 5.

2 BACKGROUND

Diffusion models. Let p denote the distribution we seek to model. Diffusion models gradually
diffuse the training data over time t ∈ [0, T ] and sample from p by inversely modeling the forward
diffusion process (Ho et al., 2020; Song and Ermon, 2019). Typically, this diffusion process involves
transforming instances drawn from p into noisy versions with scale schedule at and noise schedule
σt at time t. Hence, the conditional distribution of the noisy sample xt at time t can be formalized as

qt(xt|x0) = N (xt | µ = atx0,Σ = σtI), (1)

where x0 is the data instance drawn from p. The diffusion process can be formalized using a stochastic
differential equation (SDE) (Song and Ermon, 2019)

dx = f(x, t)dt+ g(t)dw, (2)

where w is the standard Wiener process. Different choices for f(x, t) and g(t) result in different
scaling at and noise σt schedules in (1). We refer the reader to (Karras et al., 2024a) for more details
on different SDE formulations for diffusion models.

The solution to the SDE in (2) is another SDE described by (Anderson, 1982)

dx =
[
f(x, t)− g2(t)∇xt log qt(xt)

]
dt+ g(t)dw̄, (3)

where dw̄ is the standard Wiener process when time flows in the reverse direction, and qt is the
unconditional distribution in (1) obtained by the forward SDE through (2). The solution of the SDE in
(3) starting from the samples of xT ∼ qT results in samples x ∼ q0(x0) that enable data generation
from p.

Since the score function ∇xt
log qt(xt) is unknown, the objective is to train a neural network with

parameters θ to approximate the score function sθ(xt, t) ≈ ∇xt
log qt(xt) through

min
θ

1

|D|
∑
x0∈D

Et∈[0,T ],xt∼qt(xt|x0)

[
λ(t)∥sθ(xt, t)−∇xt log qt(xt)∥2

]
, (4)

where D is the training set containing samples from p, and λ(t) is a temporal weighting function.
The SDE in (3) can be solved by replacing ∇xt log qt(xt) with sθ(xt, t) and performing numerical
integration. For conditional generation, one can also impose a condition on the score function during
training to obtain the conditional score.

Self-consuming generative models. Let A(·) represent an algorithm that, given a training dataset D
as input, constructs a generative model with distribution G, i.e., G = A(D). Consider a sequence of
generative models Gt = A(Dt) for t ∈ N, where each model approximates some reference (typically
real data) probability distribution pr.
Definition 1. Self-consuming (autophagous) loop (Alemohammad et al., 2023; 2024): An au-
tophagous loop is a sequence of distributions (Gt)t∈N where each generative model Gt is trained on
data that includes samples from previous generation models (Gτ )t−1

τ=1.
Definition 2. Model Authophagy Disorder (MAD) (Alemohammad et al., 2023; 2024): Let dist(·, ·)
denote a distance metric on distributions. A MAD generative process is a sequence of distributions
(Gt)t∈N such that E[dist(Gt, pr)] increases with t.
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One can form a variety of self-consuming loops based on how Dt, the training data at generation
t, is constructed from real data Dt

r drawn from pr and synthetic data Dt
s generated by the model

Gt. Let the first generation model be trained solely on real data, i.e, G1 = A(Dr). For subsequent
generation models Gt = A(Dt), t ≥ 2, the three main loop types proposed in (Alemohammad et al.,
2023; 2024) are based on how Dt is constructed:

• Fully synthetic loop: Each model Gt for t ≥ 2 trains exclusively on synthetic data sampled from
models from the previous generation model, i.e., Dt = Dt−1

s .
• Synthetic augmentation loop: Each model Gt for t ≥ 2 trains on the dataset Dt = Dr ∪ Dt−1

s
comprising a fixed set of real data Dr from pr plus synthetic data Dt−1

s from the previous
generation model.

• Fresh data loop: Each model Gt for t ≥ 2 trains on the dataset Dt = Dt
r ∪ Dt−1

s comprising
a fresh (new) set of real data Dt

r drawn from pr plus synthetic data Dt−1
s from the previous

generation model.

This paper focuses on the first two loop types above, which in general deteriorate into MADness of
some kind. In particular, for the fully synthetic loop, it has been shown theoretically and experimen-
tally that E[dist(G∞, pr)] → ∞ (Alemohammad et al., 2023; 2024). In this scenario, often referred
to as “model collapse” (Shumailov et al., 2024) in the literature, the sequence of models drifts away
from the real data distribution until it no longer resembles it.

Mitigating MADness. Several groups have developed methods to mitigate MADness, which we
define as ensuring that E[dist(G∞, pr)] ≤ C for some bounded C. In words, the performance of
a mitigated-MAD family of models does not diverge into full MADness (C → ∞) but plateaus at
a level that does not exceed the performance of the first-generation model, i.e., E[dist(G∞, pr)] >
E[dist(G1, pr)].

(Bertrand et al., 2023; Feng et al., 2024a) show that MADness can be mitigated in the synthetic
augmentation loop. The continuous inclusion of real data in the training set prevents the model from
drifting too far from the initial model. (Dohmatob et al., 2024a; Gerstgrasser et al., 2024) show that it
is possible to mitigate MADness without incorporating real data in every generation, as long as the
synthetic dataset size increases linearly across generations by accumulating synthetic data from all
previous generations.

Preventing MADness. To more completely address the problem of performance degradation in self-
consuming loops, one should aim to not just mitigate but prevent MADness, where the sequence of
model generations at least maintains and ideally improves on the performance of the first-generation
base model, i.e., E[dist(G∞, pr)] ≤ E[dist(G1, pr)].

The above results involve a closed loop, where the only external information about the target
distribution pr is a fixed initial real dataset. Incorporating new external information in self-consuming
loops — such as a verifier to oversee synthetic data selection Feng et al. (2024b); Setlur et al.
(2024), external guidance during the generation process Gillman et al. (2024), or fresh real data
(Alemohammad et al., 2023; 2024) — has been shown to prevent MADness.

Research on self-consuming loops has not yet identified an approach where the inclusion of synthetic
data in a closed loop with no external knowledge not only mitigates MADness across generations
but completely prevents it. In the next section, we introduce SIMS, and in Section 4.2, we show
that using SIMS as the training algorithm A(·) in the synthetic augmentation loop can fully prevent
MADness.

3 SIMS: SELF IMPROVEMENT WITH SYNTHETIC DATA

In this section, we develop the Self-IMproving diffusion models with Synthetic data (SIMS) framework
(recall Algorithm 1) for improving the performance of a diffusion model using its own synthetic data;
we term this self-improvement. Note that while we explain SIMS in the context of unconditional
diffusion models, our method extends to conditional diffusion models as well.

SIMS: Extrapolating to Self-Improvement. Let us unpack the SIMS steps outlined in Algorithm 1
in the introduction. Consider a base diffusion model characterized by the score function sθr(xt, t)
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Figure 3: Distance of a diffusion model G from ground
truth distributions pr with score function sθ(xt, t),
where θ = (1 + ωa + ωs)θr − ωaθa − ωsθs.

that was trained on real data samples drawn from a target real data distribution pr. At noise level
t, the score function sθr(xt, t) outputs a vector zr that points in the direction of increasing log
probability density log pr. By numerically solving the reverse SDE in (3) using the score function
sθr(xt, t), we obtain samples that follow the synthetic data distribution ps. The goal is to have
ps ≈ pr. However, due to various factors — including, but not limited to, the limited size of the
training dataset, inaccuracies in solving the reverse SDE, and implicit algorithmic biases — the
synthetic data distribution ps does not exactly match the target distribution pr. This discrepancy
results in a model-induced distribution shift.

To address this shift, we train a separate, auxiliary diffusion model using the same training hyperpa-
rameters used for the base model (i.e., for obtaining sθr(xt, t)) using a temporary, internal synthetic
dataset S containing samples drawn from ps. This results in the score function sθs(xt, t). Since
sθr(xt, t) and sθs(xt, t) are approximations of pr and ps, respectively, their difference serves as a
useful surrogate for the model-induced distribution shift. By leveraging this difference, we can guide
the model away from ps during the generation process, thereby mollifying the impact of the shift.
This guidance can be applied either to the model’s parameters or directly in the functional space of
the score functions.

In the function space, we guide the model away using sθs(xt, t)− sθr(xt, t) during the generation
process, which the motivates the SIMS score function that we introduced in Algorithm 1 and reprise
here:

sθ(xt, t) = sθr(xt, t)− ω(sθs(xt, t)− sθr(xt, t)) = (1 + ω)sθr(xt, t)− ωsθs(xt, t), (5)

where ω is the guidance strength. Alternatively, the SIMS score function sθ(xt, t) can also be derived
by directly modifying the model’s parameters, as follows:

sθ(xt, t); θ = θr − ω(θs − θr) = (1 + ω)θr − ωθs. (6)

When parameters are close to each other, ensemble methods in the parameter space are approximately
equivalent to those in the functional space. Specifically, if θ =

∑n
i=1 ωiθi, where

∑n
i=1 ωi = 1,

(Biggs et al., 2024) showed that we can approximate the score function as:

sθ(xt, t) ≈
n∑

i=1

ωisθi(xt, t) (7)

provided that all parameters θi are within close proximity i.e, ∥θi − θj∥ are small. The proof for
this result is detailed in (Biggs et al., 2024), and we also include it in the Appendix ?? for the
completeness of this paper.

Figure 3 illustrates how SIMS operates by exploring the parameter space to learn a two-dimensional
Gaussian distribution pr = N (µ,Σ), with µ = [0, 0]⊤ and covariance Σ = [2, 1; 1, 2]. A DDPM
diffusion model (Ho et al., 2020; Álvaro Jiménez, 2023) is first trained on |Dr| = 103 samples to
create a base model sθr(xt, t) with parameters θr.

Using this base model, |S| = 105 synthetic samples are generated and used for fine-tuning, producing
an auxiliary score function sθs(xt, t). Separately, an additional |Dr| = 105 real samples are used to
independently fine-tune the base model, resulting in an advanced score function sθa(xt, t), which
better approximates pr due to the larger real dataset.
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A final score function is constructed as θ = (1 + ωa + ωs)θr − ωaθa − ωsθs. Figure 3 shows
the Wasserstein distance to pr, with dashed lines for ωa = 0 (self-improvement path) and ωs = 0
(base-to-advanced model path). Improvements in both directions reflect the benefits of synthetic data
and larger real datasets, with the best model leveraging parameters from both advanced and auxiliary
models.

Notably, both SIMS and the advanced model converge to the same local minimum, progressing
toward improved models within this region. The guidance direction from θs along the SIMS path,
originally derived from the base model, continues to hold for advanced models and intermediates.
This indicates that the SIMS correction direction is robust across different model performance levels,
offering a consistent and universal path for improvement.

For parameter space guidance to be effective (Equation 5), θs must remain close to θr within the same
local minimum. This requires fine-tuning the base model with a large synthetic dataset (ns = |S|)
and a small learning rate. Larger learning rates or smaller ns risk moving the model out of the local
minimum near θr, making guidance ineffective. In contrast, function space guidance is more robust
to these hyperparameters, as parameter permutations can align models in different local minima
without altering the score function Entezari et al. (2022). Ablation studies on learning rates and
synthetic dataset sizes for SIMS are provided in Appendix ??, and we adopt function space guidance
in Algorithm 1 for its robustness. Our experiments suggest that matching the synthetic dataset size
to the real dataset and using the same learning rate as the base model is effective for obtaining the
auxiliary model for function space guidance.

The training budget B of the auxiliary model has a more profound effect on SIMS’ performance.
The goal is to obtain a score function sθs(xt, t) that is neither too different from nor too similar to
sθr(xt, t). Therefore, we initialize sθr(xt, t) with parameters θr and then fine-tune with a training
budget B on the synthetic dataset S. In this paper, we quantify the training budget by how many
images are seen by the model. When B = 0 at the start of training, we have sθs(xt, t) = sθr(xt, t),
and SIMS is equivalent to only using sθr(xt, t) for data synthesis regardless of the value of ω. As we
increase B, we can expect the SIMS score function in (5) to approach the ground truth distribution
and then depart as the auxiliary model becomes influenced less by the training data D and more by
the synthetic data S . Consequently, we stop the auxiliary model fine-tuning process at the optimizing
B.

Inference Computational Cost. While guidance in parameter space results in a single score function,
SIMS using function space guidance requires twice the number of function evaluations as the base
model at inference time because of the auxiliary model score function (recall (5)). However, the
number of function evaluations can be reduced with minimal impact on performance by applying
guidance from the auxiliary model within a limited interval, as proposed in (Kynkäänniemi et al.,
2024), or by fine-tuning only a portion of the base model to obtain the auxiliary model. Appendix A
provides ablation studies regarding reducing the number of function evaluations and the effect of the
synthetic dataset size on fine-tuning.

Related Work. Augmenting the score function of a diffusion model with guidance from external
models has been an active research direction in diffusion-based generative modeling. Dhariwal
and Nichol (2021) introduced the notion of classifier guidance, which involves training a separate
conditional classifier using denoised images from a base model and using the gradients of the classifier
to steer the denoising trajectory at every step. Wallace et al. (2023) introduced a method to perform
plug-and-play guidance with pre-trained classifiers. Ho and Salimans (2022) introduced classifier-free
guidance, where a diffusion model is trained to learn both a conditional and unconditional score
function. During denoising, the unconditional score function is used as negative guidance, which
leads to impressive gains in generation fidelity. Kim et al. (2023) proposed discriminator guidance,
where gradients of a discriminator are used to perform guidance. The discriminator is trained to
classify between real images from the training dataset and synthetic samples generated by the target
diffusion model. Discriminator guidance can be considered a proto self-improvement method since it
employs synthetic data from the base model to increase the realism of the generated samples. Ahn
et al. (2024) proposed a method to self-improve conditional or unconditional diffusion models without
any training — by performing negative guidance using a clone of the base model with the attention
weights replaced by an identity matrix, effectively resulting in a worse version of the base model. A
similar strategy was applied in the concurrent work of Karras et al. (2024b), who suggest using a “bad”
version of the base model for negative guidance. The authors suggest training a reduced-parameter
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Figure 4: SIMS consistently self-improves diffusion models. Top row: FID between the SIMS model from
Algorithm 1 and the real data distribution as a function of the guidance parameter ω at three different checkpoints
of the training budget B as measured by the number of million-images-seen (Mi) during fine tuning of the
auxiliary model. Bottom row: FID of the SIMS model as a function of training budget for three different values
of the guidance parameter ω.

model for fewer training epochs to obtain a bad version of the base model. To draw an analogy,
SIMS can be interpreted as a method to create a bad version of the base model by training on its own
synthetic data.

4 EXPERIMENTAL RESULTS

In this section, we present the results of an array of computational experiments with SIMS. In
Section 4.1 we demonstrate that SIMS makes significant progress on open question Q1 from the
Introduction by self-improving the modeling performance of large-scale diffusion models using
self-synthesized data. In Section 4.2 we demonstrate that SIMS makes significant progress on open
question Q2 from the Introduction by acting as a prophylactic against MADness. In Section 4.3
we show how SIMS can adjust a diffusion model’s synthetic data distribution to match any desired
in-domain target distribution to mitigate biases and ensure model fairness.

4.1 SELF-IMPROVING DIFFUSION MODELS

Experimental Setup. We use four diverse real image datasets Dr for performance evaluation: 32×32
resolution CIFAR-10 (50k images) (Krizhevsky and Hinton, 2009), 64 × 64 resolution FFHQ-64
(70k images) (Karras et al., 2019), 64× 64 resolution ImageNet-64 (1.2M images), and 512× 512
resolution ImageNet-512 (1.2M images) (Deng et al., 2009).

For CIFAR-10 and FFHQ-64, we use the unconditional Variance Preserving (VP) variant of the
EDM diffusion model from (Karras et al., 2022) as the base model for SIMS. For ImageNet-64
and ImageNet-512, we use the conditional EDM2-S model from (Karras et al., 2024a). While we
use RGB-space diffusion models for CIFAR-10, FFHQ-64, and ImageNet-64, the ImageNet-512
model operates as a latent diffusion model with a latent space dimensionality of 64× 64× 4. For
all experiments with ImageNet-512, we keep the encoder-decoder VAE fixed and use StabilityVAE
(Rombach et al., 2022) as in (Karras et al., 2024a). For all models, we use Heun’s second-order solver
(Süli and Mayers, 2003) for the de-noising process as proposed in (Karras et al., 2022).

For each base model, we use the publicly available code and pre-trained model weights from (Karras
et al., 2024a; 2022). To train each auxiliary model (recall Algorithm 1), we first generate ns = |S|
synthetic data samples from the base model and then fine-tune the base model using S and the
same training configuration as the base model. We then discard S. We generate internal synthetic
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Table 1: SIMS attains state-of-the-art image generation performance. Image generation performance
comparison between SIMS and image generation baselines on the CIFAR-10, FFHQ-64, ImageNet-64, and
ImageNet-512 datasets. SIMS consistently improves upon the base models EDM-VP and EDM-S. Indeed, SIMS
establishes the new state-of-the-art FID for CIFAR-10 and ImageNet-64 (bold). We also compare the number of
function evaluations (NFE) required for inference and the number of parameters (Million parameters, Mparams)
for each model.

CIFAR-10 32× 32 (Unconditional)
Model FID ↓ NFE ↓ Mparams
DDPM (Ho et al., 2020) 3.17 1000 -
StyleGAN2-ADA (Karras et al., 2020) 2.92 1 -
LSGM (Vahdat et al., 2021) 2.10 138 -
NCSN++ (Song et al., 2021) 2.20 2000 -
GDD Distill. (Zheng and Yang, 2024) 1.66 1 -
GDD-I Distill. (Zheng and Yang, 2024) 1.54 1 -
EDM-VP (Karras et al., 2022) 1.97 35 280
EDM-G++ (Kim et al., 2023) 1.77 35 -
LSGM-G++ (Kim et al., 2023) 1.94 138 -
EDM-VP + SIMS (Ours) 1.41 70 560
EDM-VP + SIMS + ST (Ours) 1.33 70 560

FFHQ 64× 64

Model FID ↓ NFE ↓ Mparams

EDM-VE (Karras et al., 2022) 2.53 79 280
EDM-VP (Karras et al., 2022) 2.39 79 280
EDM-G++ (Kim et al., 2023) 1.98 71 -
GDD Distill. (Zheng and Yang, 2024) 1.08 1 -
GDD-I Distill. (Zheng and Yang, 2024) 0.85 1 -

EDM-VP + SIMS (Ours) 1.04 158 560
EDM-VP + SIMS + ST (Ours) 1.03 158 560

ImageNet 64× 64

Model FID ↓ NFE ↓ Mparams

ADM (Dhariwal and Nichol, 2021) 2.07 250 -
StyleGAN-XL (Sauer et al., 2022) 1.51 1 -
RIN (Jabri et al., 2023) 1.23 1000 280
EDM2-S (Karras et al., 2024a) 1.58 63 280
EDM2-M 1.43 63 498
EDM2-L 1.33 63 777
EDM2-XL 1.33 63 1119
AutoGuidance-S (Karras et al., 2024b) 1.01 126 560
GDD-I Distill. (Zheng and Yang, 2024) 1.21 1 -

EDM2-S + SIMS (Ours) 0.92 126 560

ImageNet 512× 512
Model FID ↓ NFE ↓ Mparams
ADM-G (Dhariwal and Nichol, 2021) 7.72 250 -
StyleGAN-XL (Sauer et al., 2022) 2.41 1 -
RIN (Jabri et al., 2023) 3.95 1000 320
EDM2-S (Karras et al., 2024a) 2.56 63 280
EDM2-M 2.25 63 498
EDM2-L 2.06 63 777
EDM2-XL 1.96 63 1119
EDM2-XXL 1.91 63 1523
AutoGuidance-S (Karras et al., 2024b) 1.34 126 560
AutoGuidance-XL (Karras et al., 2024b) 1.25 126 2236
EDM2-S + SIMS (Ours) 1.73 126 560

datasets of a scale similar to the real training data used for the pre-trained base models: ns = 100k
synthetic samples for CIFAR-10 and FFHQ-64 and ns = 1.5M synthetic samples for both ImageNet
resolutions.

To estimate the distance dist(G, pr) between the synthetic data distribution G and the real data
distribution pr, we use the Fréchet Inception Distance (FID) (Heusel et al., 2017). For all generative
models and datasets, we generate 50k samples for evaluation, unless stated otherwise. Unless
specified, we quote the paper-reported metrics for the baseline methods in our comparisons.

Quantitative Results. To demonstrate that SIMS achieves self-improvement, we need to show that
the SIMS diffusion model produced by Algorithm 1 outperforms the base model. In Figure 4, we
plot the FID between the SIMS model and the real data distribution as a function of the guidance
strength parameter ω and the training budget B as measured by the number of million-images-seen
(Mi) during fine tuning of the auxiliary model. In the top row, ω = 0 corresponds to no guidance,
which establishes the FID attained by the base model. The key takeaway from Figure 4 is that, across
all four datasets, even a small negative guidance ω and a small amount of fine-tuning (small Mi)
results in a SIMS model that outperforms the base model. Moreover, for properly tuned guidance and
training budget, the self-improvement can be substantial: for CIFAR-10, FFHQ-64, ImageNet-64, and
ImageNet-512, SIMS yields a relative FID self-improvement of 32.5%, 56.9%, 41.8%, and 32.4%,
respectively.

Qualitative Results. Figure 1 presents example images generated by the pre-trained EDM2-S base
model (top row), the base model after fine-tuning for 102Mi with 1.5M images synthesized from the
base model (middle-row), and SIMS using the same 1.5M synthetic samples from the base model
with a guidance strength of ω = 0.7. For all three models, we start with the same initial latent vectors.
We see that SIMS qualitatively improves the generated samples in each case. Appendices B–E present
additional qualitative comparisons for the CIFAR10, FFHQ-64, ImageNet-64, and ImageNet-512
datasets.

Baseline Comparison. Table 1 compares the results obtained by SIMS with several standard diffusion
based image generation baselines, including ADM (Dhariwal and Nichol, 2021) optionally used with
classifier guidance (ADM-G), RIN (Jabri et al., 2023), EDM2-{S,M,L,XL} (Karras et al., 2024a),
DDPM (Ho et al., 2020), EDM-VP (Karras et al., 2022), NCSN++ with improved sampling (Song
et al., 2021), latent score based model (Vahdat et al., 2021). We also compare with generative
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adversarial networks (GANs) such as StyleGAN-XL (Sauer et al., 2022) and StyleGAN-2-ADA
(Karras et al., 2020). Additionally, we compare with methods that similar to SIMS, improve the
performance of a base model, such as the distilled single step diffusion models GDD and GDD-I
(Zheng and Yang, 2024), discriminator guided models EDM-G++ and LSGM-G++ (Kim et al., 2023),
and the EDM2-{S,XL} models guided by Autoguidance (Karras et al., 2024b). Note that, for all
the aforementioned methods, we present their paper-reported metrics in the table. For ImageNet-64
SIMS with EDM2-S and for CIFAR-10 SIMS with EDM-VP outperforms all of the baseline methods
and reaches the new state-of-the-art FIDs of 0.92 and 1.33, respectively, representing a relative
improvement of 8.9% and 13.6% over the closest baseline methods, Autoguidance-S and GDD-I.

Here are two highlights from Table 1. First, EDM2-S equipped with SIMS surpasses the performance
of EDM2-XL by a significant margin for both ImageNet-64 and ImageNet-512, demonstrating that
scaling the number of parameters cannot match the performance obtained by training an auxiliary
model with synthetic data. Second, SIMS outperforms discriminator guidance (EDM-G++ and
LSGM-G++) by a significant margin for both CIFAR-10 and FFHQ-64, demonstrating that reducing
the probability under the synthetic data distribution at each denoising step outperforms increasing
the realism score via a discriminator. For ImageNet-512, while EDM2-S with SIMS outperforms
EDM2-S, SIMS is outperformed by Autoguidance.

4.2 MAD PREVENTION USING SIMS

A fundamental assumption in training a generative model is that the training dataset D consists
exclusively of data that aligns with the ground-truth target distribution. When synthetic data generated
by previous models is naïvely included in D in a self-consuming loop, the the supposed “ground-truth”
distribution becomes increasingly distorted and ultimately goes MAD. In this section we study the
abilities of SIMS to mitigate and even prevent MADness.

4.2.1 TWO DIMENSIONAL GAUSSIAN DATA IN A SYNTHETIC AUGMENTATION LOOP

We now use a simple low-dimensional experiment to demonstrate the effectiveness of SIMS in
preventing the negative impacts of synthetic data training that can lead to MADness. Recall from
Section 2 that demonstrating that SIMS prevents MAD for a sequence of models (Gt)t∈N in a
self-consuming loop requires showing that E[dist(G∞, pr)] ≤ E[dist(G1, pr)].

Experimental Setup. We start with the task of learning a simple two-dimensional Gaussian distribu-
tion pr = N (µ,Σ) with mean µ = [0, 0]⊤ and covariance Σ = [2, 1; 1, 2] using a DDPM diffusion
model Ho et al. (2020); Álvaro Jiménez (2023). We sample a real dataset Dr of size |Dr| = 1000
from N (µ,Σ) and train the base model G1 = A(Dr). We then form a synthetic augmentation loop,
where for generation t of the loop, Gt = A(Dr ∪ Dt−1

s ), where Dt−1
s is synthetic data generated

from the previous generation model Gt−1. We quantify the performance of the models in terms of the
Wasserstein distance dist(·, ·) between the synthetic and real data distributions E[dist(Gt, pr)].

We compare two different training approaches:

• Standard training, where we train the generation-t model on the dataset Dt = Dr ∪ Dt−1
s in

which the real data is polluted with synthetic data from the previous generation.

• SIMS, where we train the generation-t base model on the polluted dataset Dt.

For both approaches, we trained the base model for 100 epochs on Dr. For SIMS, we obtained the
auxiliary model at generation t by fine-tuning the base model for 50 epochs using ns = |S| = 2000
data points synthesized from the base model. We calculated expectations over 1000 independent
runs, with each run starting with a new real dataset Dr drawn from pr and continuing the synthetic
augmentation loop for 100 generations. When there is no guidance (ω = 0), standard training and
SIMS coincide and produce identical models.

Results. First, we confirm SIMS’s self-improvement. Figure 5 top left plots the expected Wasserstein
distance E[dist(G1, pr)] for the first generation model G1 = A(Dr) for various values of ω in SIMS.
We see clearly that SIMS has exploited its self-synthesized data to self-improve over the base model.
trained on purely real data (there is no synthetic data pollution in generation 1).
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Figure 5: SIMS simultaneously self-improves and prevents MADness in the synthetic augmentation
self-consuming loop. We compare standard synthetic augmentation training (Alemohammad et al., 2023; 2024)
to SIMS training in a synthetic augmentation loop across 100 generations for two-dimensional Gaussian data.
Standard training corresponds to guidance ω = 0 in all cases. At top left, we confirm SIMS’s self-improvement
by noting that, for a wide range of ω, the expected Wasserstein distance E[dist(G1, pr)] between the first
generation model G1 = A(Dr) and the real data distribution drops. At the bottom, we confirm that SIMS can act
a prophylactic for MADness. We plot E[dist(Gt,pr)]

E[dist(G1,pr)]
, the ratio of the expected Wasserstein Distance at generation

t to that at generation 1 for |Dt
s| = 250 and 125. The green/orange/purple curves correspond to weak MADness

mitigation/strong MADness mitigation/MADness prevention. At top right, we plot the normalized expected
Wasserstein distance at convergence as a function of ω for four different synthetic data sizes |Dt

s|. A guidance
parameter of ω ≈ 3 results in either strong MADness mitigation or complete MADness prevention.

Next, we confirm that SIMS can act a prophylactic against MADness. In Figure 5 bottom, we plot
E[dist(Gt,pr)]
E[dist(G1,pr)]

, the ratio of the expected Wasserstein Distance at generation t to that at generation 1,
over 100 synthetic augmentation loop generations for two synthetic dataset sizes: |Ds| = 250 and
125. With standard training (ω = 0, green curves), we observe that the Wasserstein distance ratio
quickly increases to a value much larger than 1, confirming MADness. In words, the performance of
models that aggregate the real and synthetic data together and use standard training deteriorates with
each generation t in the synthetic augmentation loop until it converges to a stable point, consistent
with the findings regarding MADness mitigation in Bertrand et al. (2023); Gillman et al. (2024);
Dohmatob et al. (2024b). However, as ω increases (orange curves), the SIMS Wasserstein distance
ratio remains closer to 1, meaning that the negative impacts of synthetic training have been reduced.
Moreover, for an optimized ω (purple curves), the SIMS Wasserstein distance ratio does not deviate
from 1, meaning that MADness has been completely prevented.

To gain insight into the convergence limit for different ω, we calculated E[dist(G∞, pr)] by averaging
{E[dist(Gt, pr)]}100t=20 and plot its ratio to E[dist(G1, pr)] in Figure 5 top right. The minimum values
of E[dist(G∞,pr)]

E[dist(G1,pr)]
over different ω for |Dt

s| = 125, 250, 500, 1000 were 0.996, 1.013, 1.078, 1.204,
respectively. The corresponding ratios for standard data training were 1.71, 2.46, 3.99, 6.69.

These results suggest that SIMS features a prophylactic threshold on the amount of synthetic data
pollution, below which MADness prevention is possible but above which only MADness mitigation
is possible. In this particular experiment, that threshold is approximately |Ds| = 250. There are
interesting parallels between this property and the fresh data threshold of the fresh data self-consuming
loop in (Alemohammad et al., 2023; 2024). Exploring and characterizing this threshold are interesting
avenues for further research.
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Figure 6: SIMS acts as a prophylactic against MADness for realistic training datasets polluted with
synthetic data. For the CIFAR-10 (50k real images, left) and FFHQ-64 (70k real images, right) datasets, we
plot the FID of the four training scenarios from Section 4.2.2 as a function of the amount of polluting synthetic
data |Dp|. While the modeling performance of standard training is strongly affected by increasing amounts
of synthetic data pollution (compare G2

ST-P to G2
ST-I), the performance of SIMS training is relatively immune

(compare G2
SIMS-P to G2

SIMS-I).

To summarize, to the best of our knowledge, SIMS is the first synthetic-data learning algorithm that
can prevent MAD in a self-consuming loop without injecting external knowledge.

4.2.2 REALISTIC DATA IN A SYNTHETIC AUGMENTATION LOOP

We continue our exploration of self-improvement and MADness prevention using realistic image
data from the CIFAR-10 and FFHQ-64 datasets, large-scale diffusion models, and more pragmatic
contexts regarding how the synthetic data enters the synthetic augmentation loop.

We compare four different training scenarios. The real dataset Dr (either CIFAR-10 or FFHQ-64) is
the same in each scenario.

• First generation, standard training with purely real data, G1
ST-I: This scenario corresponds to

training a primordial model using standard training and exclusively real data Dr. As an archetype
of today’s lax data curation practices, data synthesized from G1

ST-I, which we denote by Dp,
pollutes the “real” training data of the last two second-generation models below.

• Second generation, ideal SIMS training with purely real data, G1
SIMS-I: This wishful, idealized

scenario corresponds to how synthetic data training should be performed: by applying SIMS to
self-improve the base model G1

ST-I that was trained on purely real data.
• Second generation, standard training with polluted real data, G2

ST-P: This practical scenario
corresponds to training a model using standard training with the polluted training data comprising
the purely real data Dr combined with synthetic data Dp generated by G1

ST-I. We know from
(Alemohammad et al., 2023; 2024) that this approach leads to MADness.

• Second generation, SIMS training with polluted real data, G2
SIMS-P: This practical scenario cor-

responds to training a model using SIMS training with the same polluted training data comprising
the purely real data Dr combined with synthetic data Dp generated by G1

ST-I.

Experimental setup. For G1
ST-I, we used the EDM-VP models pre-trained on CIFAR-10 and FFHQ-

64 from (Karras et al., 2022). For CIFAR-10, we trained both G2
ST-P and the base model in G2

SIMS-P
from scratch for 200Mi. For FFHQ-64, to reduce computational costs, we fine-tuned G1

ST-P and the
base model in G2

SIMS-P for 100Mi rather than training from scratch. For the training sets S of the
auxiliary models in SIMS, we generated |S| = 100k data from the corresponding base models. For
each |Dp|, we report the best FID for G2

SIMS-P over various values of guidance ω and training budget
B of the auxiliary model. The procedure for G1

SIMS-I is identical to the self-improved models for
CIFAR-10 and FFHQ-64 in Section 4.1, so we re-use those results here.

Results. Figure 6 plots the FIDs attained by the diffusion models learned by the four training
scenarios above for the CIFAR-10 and FFHQ-64 datasets as we vary the amount of synthetic data
|Dp| that is polluting the real training dataset. The same trends occur for both datasets. First, we
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Figure 7: SIMS can simultaneously shift the synthetic distribution to an arbitrary in-domain target
distribution while self-improving the quality of generation. (left) Percentage of female synthetic images for
different values of the guidance ω. (right) FID of synthetic male and female images with respect to the male and
female images in the FFHQ-64 dataset for different guidance levels ω.

see a substantial self-improvement in modeling performance from G1
ST-I to G1

SIMS-I. Indeed, the drop
in FID for CIFAR-10 from 1.41 (Section 4.1) to 1.33, sets a new state-of-the-art FID benchmark
for CIFAR-10 generation. Second, we see that increasing amounts of polluting synthetic data |Dp|
cause the performance of G1

ST-P to diverge from G1
ST-I. Third, in contrast to standard training, the

performance of SIMS training is relatively insensitive to the presence of polluting synthetic data
in the base model, which indicates a prophylactic function against MADness. More precisely, the
plots indicate that, for |Dp| < 30k with CIFAR-10 (60% of |Dr|) and |Dp| < 15k for FFHQ-64 (20%
of |Dr|), SIMS not only prevents MADness in the second generation models but also achieves a
self-improved FID by somehow exploiting the polluting synthetic data from the previous generation
in its training set. The reason for this behavior remains an interesting open research question.

Our findings have potential implications for the future of diffusion generative models. Previous
research has surfaced a “first mover” advantage for generative models, whereby large models trained
early on real internet data will have a performance edge over later models trained on a mix of real
and synthetic data from earlier generation models (Alemohammad et al., 2023; 2024; Shumailov
et al., 2024). This advantage for standard training is evident in Figure 6, where the FID scores of the
models degrade as the proportion of synthetic data increases. In contrast, and somewhat surprisingly,
with SIMS training, model performance can actually improve when a small amount of synthetic data
pollutes the training data.

4.3 DISTRIBUTION SHIFTS WITH SIMS

Often, the datasets used for training AI models follow a distribution p that differs from some desired
target distribution p̂. Consequently, the synthetic data distribution generated by a model will also
reflect this discrepancy. This technical issue underlies why generative models tend to synthesize
biased samples related to demographic factors such as gender and race, which leads to inaccurate
representations across these attributes and potentially decreased fairness (Friedrich et al., 2023).

In this section, we demonstrate that SIMS can align the distribution of its generated images with an
arbitrary in-domain target distribution p̂ that is distinct from the model’s training data distribution
p. Simultaneously, we aim to enhance the quality of individual samples. By doing so, SIMS has
the potential to not only self-improve but also mitigate extant biases in a base model by shifting the
model distribution towards a different distribution that promotes fairness.

We highlight SIMS’ abilities for simultaneous self-improvement and distribution shifting with
an example of altering group representation frequency using the FFHQ-64 dataset. This dataset
comprises 70k images of faces varying in gender, age, and race, with an almost equal split of male and
female subjects (51% female and 49% male). The pre-trained EDM-VP model trained on FFHQ-64 in
(Karras et al., 2022) generate synthetic samples that are 50.3% perceived female and 49.7% perceived
male (Karkkainen and Joo, 2021). This type of generation is arguably fair to both genders, but to
demonstrate SIMS’ ability to adapt to an arbitrary target distribution, our goal is to construct a model
that overrepresents females compared to males, changing the percentage to 70% female and 30%
male.
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EDM-VP baseline, ω = 0, 50.3% female SIMS, ω = 1.5, 68.5% female

Figure 8: Distribution shifting with SIMS. (left) Sample images synthesized from the pre-trained baseline
diffusion model EDM-VP from (Karras et al., 2022) trained on the FFHQ-64 dataset are approximately 50%
female. (right) Sample images synthesized using SIMS targeting a distribution shift to approximately 70%
female. We used the same seed and randomness for both models to highlight the distribution shift.

The synthetic samples we constructed in Section 3 were generated without any intervention in order
to match the distribution of the base model’s synthetic data. Now, we generate samples and use the
pre-trained classifier from (Karkkainen and Joo, 2021) to label the perceived genders of the generated
faces. Using this information, we construct a synthetic dataset of 140k images containing 70% male
and 30% female images. Since the score function of the auxiliary model sθs(xt, t) is used as a
negative guidance, the distribution generated by the auxiliary model should be the complement of the
target distribution p̂. Executing SIMS, we obtain the auxiliary model by fine-tuning the pre-trained
diffusion model on FFHQ-64 for 50Mi and then combining the score functions of the base and
auxiliary diffusion models with guidance strength ω.

Results. Figure 7 (left) presents the evidence on distribution shifting. It plots the percentage of
females with respect to the guidance ω. For ω = −1, we sample only from the auxiliary model,
which has been trained on a synthetic dataset of 70% males and 30% females, generating 32% female
images. For ω = 0, we sample from the base model and obtain 50% female images. As ω increases,
the percentage of females increases, reaching approximately 68% at ω = 1.5.

To asses the quality of image generation, we provide two FID measures: one between synthetic
male images and real male images in FFHQ-64, and one between synthetic female images and real
female images in FFHQ-64, using 35k synthetic images for each gender. To identify the gender of
the synthesized, we again use the pre-trained classifier from (Karkkainen and Joo, 2021).

Figure 7 (right) presents the evidence on simultaneous self-improvement. It plots the FID scores for
the synthesized male and female images. The FID follows a bowl-shaped pattern similar to the plots
in Section 4.1. The minimum FID for male images occurs at ω = 1.5, which coincides with the
parameter value that achieves approximately 70% female generation. However, the minimum FID for
female images is reached at a slightly lower value of ω = 1.25. This indicates that optimizing both
the target distribution shift and the quality of image generation may not necessarily align at the same
ω value.

Figure 8 plots sample synthetic images for the baseline model (left) and the final model that are both
distribution-shifted and self-improved (right).

5 DISCUSSION

In this paper, we have developed Self-IMproving diffusion models with Synthetic data (SIMS), a new
training algorithm for generative AI models designed to enhance the performance of diffusion models
by using their own synthetic data. The key idea is to avoid aggregating the real and synthetic data
together into one training dataset — which can lead to a divergence between the model’s distribution
and real-world data (MADness (Alemohammad et al., 2023; 2024; Shumailov et al., 2024)) that
diminishes model quality and reinforces biases — and instead use the synthetic data to provide
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negative guidance during the generation process to steer a model’s generative process away from the
non-ideal synthetic data manifold and towards the real data distribution. SIMS provides affirmative
responses to questions Q1 and Q2 posed in the Introduction. In particular, (Q1) SIMS establishes
new records for realistic synthetic data distribution on two important image datasets (CIFAR-10 and
ImageNet-64), while (Q2) to the best of our knowledge, SIMS is the first generative AI model that
can be iteratively trained on self-generated, synthetic data without going MAD. As an added bonus,
SIMS can adjust a diffusion model’s synthetic data distribution to match any desired in-domain target
distribution, helping mitigate biases and ensure model fairness.

Our experiments have revealed that there is a prophylactic threshold on the ratio of the amount
of synthetic data to the amount of real data that SIMS can tolerate before it is incapable of fully
preventing MADness. According to our experiments in Section 4.2, this threshold is approximately
60% for CIFAR-10, 20% for FFHQ-64, and 25% for two-dimensional Gaussian data. Regardless,
above this threshold, SIMS continues to mitigate MADness even if it cannot fully prevent it.

As synthetic data continues to proliferate online, naïve, unsupervised data collection will someday
result in the amount of synthetic data exceeding the prophylactic threshold in standard training
datasets and rendering methods like SIMS less effective at preventing MADness. Hence, careful
dataset curation using recent advances in watermarking and synthetic data detection (Bui et al.,
2023a;b; Wen et al., 2023) will be crucial for keeping the amount of synthetic data low enough in
tomorrow’s training datasets.

The SIMS concept and our experimental results point towards a number of interesting open research
questions. We sketch out four of them here.

First, we conjecture that SIMS’s performance might be similar if the auxiliary model differs from
the base model but matches the base model’s performance across the data domain (e.g., employ
two different state-of-the-art diffusion models in Algorithm 1). Confirming this could result in new
negative-guidance-based training algorithms that are broad spectrum prophylactics against synthetic
data from a range of different generative models.

Second, it seems important to understand why SIMS does not just tolerate but capitalizes on synthetic
data that is polluting the real training dataset employed by its base model. This suggests that
negative-guidance-based training algorithms have unexplored generalizability properties.

Third, models beyond diffusion models can likely be equipped with self-improvement and MADness
prophylactic capabilities. For instance, we can fine-tune a generative adversarial network (GAN) or
variational autoencoder (VAE) base model with its own synthetic data and then design a latent-space
sampler like Polarity (Humayun et al., 2022) to reduce the density of generated samples under the
synthetic distribution.

Fourth, extending our results on distribution shift, we can envision extending SIMS to engage with
users through synthetic data and collect feedback to adjust the model’s distribution to align with
user preferences. Interestingly, since the auxiliary model in SIMS needs to be trained on a synthetic
dataset with complementary characteristics to the target distribution, the synthetic data should be
curated based on what users do not prefer.
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Figure 9: Left: training the auxilary model score function sθs(x, t) using synthetic datasets of varying size for
ImageNet-64. Increasing synthetic dataset size helps obtain better FID during self-improvement with diminishing
returns. Middle-left: FID for different number of function evaluations (NFE). Middle-right Reducing the
number of learnable parameters during auxiliary model fine-tuning. Right Changing the guidance interval for
SIMS. Early and late denoising steps can be ignored with a minimal drop in FID.

A ABLATION STUDIES FOR SIMS

In this section, we present ablations on the synthetic dataset size used for training the auxiliary model,
FID for different number of function evaluations, and strategies for reducing number of function
evalutions during inference.

Synthetic dataset size. For ImageNet-64, we change the dataset size used for training the auxiliary
model score function sθs(x, t), and present the FID over training budget. In Figure 9 (left), we
see that increasing the dataset size allows obtaining better FID. However note that if |Ds| → ∞,
sθs(x, t) → sθr(x, t), i.e., the score functions become identical and negative guidance yields no gain.
Therefore increasing the synthetic dataset further to very large numbers may result in an decrease in
FID.

Number of function evaluations. Number of function evaluations (NFE) refer to the number of
times a score function is evaluated during denoising. For ImageNet-64 we compare NFE for the
EDM2-S base model with and without SIMS. In Figure 9 (middle left), we see that naturally, with
SIMS we need more function evaluations to achieve the lowest FID. At NFE= 40, FID for both with
and without guidance cases are almost equal to 1.70. For the SIMS we use a guidance strength of
ω = 0.9 and the best FID auxiliary model trained upto 56 Mi seen during training.

Reducing number of function evaluations. For a fixed denoising step, SIMS uses twice the
number of function evaluations (NFE) compared to the baseline method without any guidance. This
results in doubling the inference time computation. We propose two strategies to reduce the NFE
overhead.

The EDM model architecture consists of an encoder and a decoder, each responsible for half of
the computations for one function evaluation. As illustrated in Figure 9 (middle right), during the
fine-tuning of the base model, we froze the weights of the encoder and trained only the decoder part.
At inference time, the encoder is shared between the base model and the auxiliary model, differing
only in the decoder. Consequently, the effective number of function evaluations decreases from 2x to
1.5x. We observe that training only the decoder to obtain the auxiliary model slightly increases the
minimum FID from 0.92 to 1.01 during fine-tuning while reducing the NFE from 2 to 1.5.

The second strategy involves applying guidance from the auxiliary model for a limited interval. To
assess the impact of this guidance at different denoising steps, we compute the FID for SIMS with
guidance applied to a limited interval (tl, th), rather than the default setting of (0, 32). As shown in
Figure 9 (right), guidance is more crucial during the final denoising steps compared to the earlier
ones. The results indicate that we can exclude the first 10 steps in the denoising process with only a
minimal drop in FID, from 0.93 to 0.96. Utilizing the auxiliary model for guidance over a smaller
number of intervals can effectively reduce inference time and costs.

19



Self-Improving Diffusion Models with Synthetic Data

B CIFAR-10 SYNTHESIZED IMAGES

SIMS: w = 0.8, Training budget: 40 Mi

Base Model
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C FFHQ-64 SYNTHESIZED IMAGES

SIMS: w = 1.5, Training budget: 34 Mi

Base Model
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D IMAGENET-64 SYNTHESIZED IMAGES

SIMS: w = 0.9, Training budget: 56 Mi

Base Model
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E IMAGENET-512 SYNTHESIZED IMAGES

SIMS: w = 0.7, Training budget: 102 Mi
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F STANDARD TRAINING

Algorithm 2 Standard Training Procedure

Input: Training dataset D
1: Train diffusion model: Use dataset D to train the diffusion model using standard training,

resulting in the score function sθ(xt, t).
Synthesize: Generate synthetic data from the model using the score function sθ(xt, t).

The procedure of standard training is shown in Algorithm 2. Compared to SIMS (Algorithm 1),
standard training is essentially the same as using only the base diffusion model’s score function to
generate synthetic data, which is equivalent to setting ω = 0 in SIMS. It’s important to note that if
you already have a model trained using the standard approach, you can still apply steps 2-4 of SIMS
to develop a self-improved model.
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