How to weigh the Milky Way

Denis Erkal Astro evening - January 16th 2019

• Count up how much stuff there is

• Count up how much stuff there is

• Count up how much stuff there is

• Use a weighing scale

• Count up how much stuff there is

• Use a weighing scale

• Count up how much stuff there is

- Count up how much stuff there is
 - Dig a very deep hole?

- Count up how much stuff there is
 - Dig a very deep hole?

Stepanovas Alexander

- Count up how much stuff there is
 - Dig a very deep hole?

Stepanovas Alexander

Kola Superdeep Borehole

Rakot13

- Count up how much stuff there is
 - Dig a very deep hole?

Stepanovas Alexander

Kola Superdeep Borehole

Rakot13

Only 12 km deep...

- Count up how much stuff there is
 - Use neutrinos to take an "x-ray" of the Earth

• Count up how much stuff there is

• Use neutrinos to take an "x-ray" of the Earth

Sudraben

Count up how much stuff there is

• Use neutrinos to take an "x-ray" of the Earth

Sudraben

Donini et al. 2019

• Count up how much stuff there is

- Count up how much stuff there is
- Use a weighing scale?

- Count up how much stuff there is
- Use a weighing scale?

• Count up how much stuff there is

- Count up how much stuff there is
- Through its gravitational effect on an object

- Count up how much stuff there is
- Through its gravitational effect on an object

- Count up how much stuff there is
- Through its gravitational effect on an object

- Count up how much stuff there is
- Through its gravitational effect on an object

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration Acceleration tells us the mass!

- Count up how much stuff there is
- Through its gravitational effect on an object

Acceleration tells us the mass!

- Count up how much stuff there is
- Through its gravitational acceleration on an object

- Count up how much stuff there is
- Through its gravitational acceleration on an object

- Count up how much stuff there is
- Through its gravitational acceleration on an object

From the results of the fit, we compute the mass of the Earth as weighted by neutrinos and obtain $M_{\oplus}^{\nu} = (6.0_{-1.3}^{+1.6}) \times 10^{24}$ kg (Fig. 4a), to be compared to the most precise gravitational measurement to date^{22,23} of $M_{\oplus}^{\text{grav}} = (5.9722 \pm 0.0006) \times 10^{24}$ kg Clearly, albeit within large uncertainties, both results are in very good agreement.

Donini et al. 2019

- Count up how much stuff there is
- Through its gravitational acceleration on an object

From the results of the fit, we compute the mass of the Earth as weighted by neutrinos and obtain $M_{\oplus}^{\nu} = (6.0_{-1.3}^{+1.6}) \times 10^{24}$ kg (Fig. 4a), to be compared to the most precise gravitational measurement to date^{22,23} of $M_{\oplus}^{\text{grav}} = (5.9722 \pm 0.0006) \times 10^{24}$ kg Clearly, albeit within large uncertainties, both results are in very good agreement.

Direct measurement agrees with gravitational measurement

Donini et al. 2019

How do we weigh larger objects?

How do we weigh larger objects?

Count up how much stuff there is
• Count up how much stuff there is

Count up how much stuff there is

- Count up how much stuff there is
 - Stars + gas

Count up how much stuff there is

- Count up how much stuff there is
- Through its gravitational acceleration on another object

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

Vera Rubin

Image credit: Stefania Deluca

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

Vera Rubin

Image credit: Stefania Deluca

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

Vera Rubin

Image credit: Stefania Deluca

The difference is due to dark matter!

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

Masses match for globular clusters

- Count up how much stuff there is
- Through its gravitational acceleration on another object
 - e.g. on the stars and gas in the object

Masses match for globular clusters

• Count up all the gas and stars

• Count up all the gas and stars

Dickey & Lockman 1990

• Count up all the gas and stars

Dickey & Lockman 1990

ESA/Gaia/DPAC

• Count up all the gas and stars

Dickey & Lockman 1990

ESA/Gaia/DPAC

12 billion solar masses

• Count up all the gas and stars

Dickey & Lockman 1990

12 billion solar masses

54 billion solar masses

- Count up all the gas and stars
- Through its gravitational acceleration on another object

- Count up all the gas and stars
- Through its gravitational acceleration on another object

- Count up all the gas and stars
- Through its gravitational acceleration on another object

Image alone is not enough, need acceleration

How do we weigh the Milky Way? Moon Earth

How do we weigh the Milky Way? Moon Earth

How do we weigh the Milky Way? Moon Earth

Credit: V. Belokurov and the Sloan Digital Sky Survey.

Gives a Milky Way mass of 940 billion solar masses
• Count up all the gas and stars

- Count up all the gas and stars
 - 66 billion solar masses

- Count up all the gas and stars
 - 66 billion solar masses
- Through its gravitational acceleration on another object

- Count up all the gas and stars
 - 66 billion solar masses
- Through its gravitational acceleration on another object
 - 940 billion solar masses

- Count up all the gas and stars
 - 66 billion solar masses
- Through its gravitational acceleration on another object
 - 940 billion solar masses
- So 7% of the mass in the Milky Way is in stars and cool gas

This also gives the mass of the Large Magellanic Cloud

- This also gives the mass of the Large Magellanic Cloud
 - 138 billion solar masses

- This also gives the mass of the Large Magellanic Cloud
 - 138 billion solar masses

0.2

1.00

" have i maile

How do we weigh things?

• Count up how much stuff there is

• Use a weighing scale

How do we weigh things?

• Count up how much stuff there is

Use a weighing scale
Use gravity!

Count how much stuff there is

- Count how much stuff there is
- Through its gravitational acceleration on another object

- Count how much stuff there is
- Through its gravitational acceleration on another object
 - Earth acceleration 9.8 m/s²

- Count how much stuff there is
- Through its gravitational acceleration on another object
 - Earth acceleration 9.8 m/s²
 - Sun's acceleration on the Earth 0.006 m/s²

- Count how much stuff there is
- Through its gravitational acceleration on another object
 - Earth acceleration 9.8 m/s²
 - Sun's acceleration on the Earth 0.006 m/s²
 - Milky Way's acceleration on the Earth 2x10⁻¹⁰ m/s²

- Count how much stuff there is
- Through its gravitational acceleration on another object
 - Earth acceleration 9.8 m/s²
 - Sun's acceleration on the Earth 0.006 m/s²
 - Milky Way's acceleration on the Earth 2x10⁻¹⁰ m/s²
- Acceleration tells you the mass

- Count how much stuff there is
- Through its gravitational acceleration on another object
 - Earth acceleration 9.8 m/s²
 - Sun's acceleration on the Earth 0.006 m/s²
 - Milky Way's acceleration on the Earth 2x10⁻¹⁰ m/s²
- Acceleration tells you the mass

Thank you!