How to weigh the Milky Way

Denis Erkal
Astro evening - January 16h 2019

How do we weigh things?

How do we weigh things?

- Count up how much stuff there is

How do we weigh things?

- Count up how much stuff there is

How do we weigh things?

- Count up how much stuff there is

- Use a weighing scale

How do we weigh things?

- Count up how much stuff there is

- Use a weighing scale

How do we weigh the Earth?

How do we weigh the Earth?

- Count up how much stuff there is

How do we weigh the Earth?

- Count up how much stuff there is
- Dig a very deep hole?

How do we weigh the Earth?

- Count up how much stuff there is
- Dig a very deep hole?

Stepanovas Alexander

How do we weigh the Earth?

- Count up how much stuff there is
- Dig a very deep hole?

Kola Superdeep Borehole

Stepanovas Alexander
Rakot13

How do we weigh the Earth?

- Count up how much stuff there is
- Dig a very deep hole?

Kola Superdeep Borehole

Stepanovas Alexander

Rakot13
Only 12 km deep...

How do we weigh the Earth?

- Count up how much stuff there is
- Use neutrinos to take an "x-ray" of the Earth

How do we weigh the Earth?

- Count up how much stuff there is
- Use neutrinos to take an "x-ray" of the Earth

How do we weigh the Earth?

- Count up how much stuff there is
- Use neutrinos to take an "x-ray" of the Earth

Donini et al. 2019

How do we weigh the Earth?

How do we weigh the Earth?

- Count up how much stuff there is

How do we weigh the Earth?

- Count up how much stuff there is
- Use a weighing scale?

How do we weigh the Earth?

- Count up how much stuff there is
- Use a weighing scale?

How do we weigh the Earth?

How do we weigh the Earth?

- Count up how much stuff there is

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

This tells us the acceleration
Acceleration tells us the mass!

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational effect on an object

$$
g=\frac{G M}{R^{2}}
$$

This tells us the acceleration
Acceleration tells us the mass! $\quad M=\frac{g R^{2}}{G}$
This tells us the acceleration
Acceleration tells us the mass! $\quad M=\frac{g R^{2}}{G}$

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational acceleration on an object

$$
g=\frac{G M}{R^{2}}
$$

This tells us the acceleration
Acceleration tells us the mass! $\quad M=\frac{g R^{2}}{G}$
This tells us the acceleration
Acceleration tells us the mass! $\quad M=\frac{g R^{2}}{G}$

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational acceleration on an object

How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational acceleration on an object

```
From the results of the fit, we compute the mass of the Earth as weighted by neutrinos and obtain \(M_{\oplus}^{\nu}=\left(6.0_{-1.3}^{+1.6}\right) \times 10^{24} \mathrm{~kg}\) (Fig. 4a), to be compared to the most precise gravitational measurement to date \({ }^{22,23}\) of \(M_{\oplus}^{\text {grav }}=(5.9722 \pm 0.0006) \times 10^{24} \mathrm{~kg}\). Clearly, albeit within large uncertainties, both results are in very good agreement.
```


How do we weigh the Earth?

- Count up how much stuff there is
- Through its gravitational acceleration on an object

> From the results of the fit, we compute the mass of the Earth as weighted by neutrinos and obtain $M_{\oplus}^{\nu}=\left(6.0_{-1.3}^{+1.6}\right) \times 10^{24} \mathrm{~kg}($ Fig. 4 a$)$, to be compared to the most precise gravitationai measurement to date ${ }^{22,23}$ of $M_{\oplus}^{\text {grav }}=(5.9722 \pm 0.0006) \times 10^{24} \mathrm{~kg}$. Clearly, albeit within large uncertainties, both results are in very good agreement.

Direct measurement agrees with gravitational measurement

How do we weigh larger objects?

How do we weigh larger objects?

- Count up how much stuff there is

How do we weigh larger objects?

- Count up how much stuff there is

How do we weigh larger objects?

- Count up how much stuff there is

How do we weigh larger objects?

- Count up how much stuff there is
- Stars + gas

How do we weigh larger objects?

How do we weigh larger objects?

How do we weigh larger objects?

- Count up how much stuff there is

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

The difference is due to dark matter!

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

Masses match for globular clusters

How do we weigh larger objects?

- Count up how much stuff there is
- Through its gravitational acceleration on another object
- e.g. on the stars and gas in the object

How do we weigh the Milky Way?

How do we weigh the Milky Way?

- Count up all the gas and stars

How do we weigh the Milky Way?

- Count up all the gas and stars

Gas

Dickey \& Lockman 1990

How do we weigh the Milky Way?

- Count up all the gas and stars

Gas
Stars

Neutral Hydrogen

Dickey \& Lockman 1990
ESA/Gaia/DPAC

How do we weigh the Milky Way?

- Count up all the gas and stars

Gas
Stars

Neutral Hydrogen

Dickey \& Lockman 1990
ESA/Gaia/DPAC
12 billion solar masses

How do we weigh the Milky Way?

- Count up all the gas and stars

Gas
Stars

Neutral Hydrogen

Dickey \& Lockman 1990
ESA/Gaia/DPAC

54 billion solar masses

How do we weigh the Milky Way?

- Count up all the gas and stars
- Through its gravitational acceleration on another object

How do we weigh the Milky Way?

- Count up all the gas and stars
- Through its gravitational acceleration on another object

How do we weigh the Milky Way?

- Count up all the gas and stars
- Through its gravitational acceleration on another object

Image alone is not enough, need acceleration

How do we weigh the Milky Way?

How do we weigh the Milky Way?
 Moon
 Earth

How do we weigh the Milky Way?
 Moon
 Earth

How do we weigh the Milky Way?

Moon
Earth

How do we weigh the Milky Way?

Credit: V. Belokurov and the Sloan Digital Sky Survey.

How do we weigh the Milky Way?

Milky Way + LMC
$\mathrm{t}=-2.00 \mathrm{Gyr}, \mathrm{r}($ LMC-Orphan $)=507.6 \mathrm{kpc}$

How do we weigh the Milky Way?

Milky Way + LMC
$\mathrm{t}=-2.00 \mathrm{Gyr}, \mathrm{r}($ LMC-Orphan $)=507.6 \mathrm{kpc}$

How do we weigh the Milky Way?

Milky Way + LMC
$\mathrm{t}=-2.00 \mathrm{Gyr}, \mathrm{r}($ LMC-Orphan $)=507.6 \mathrm{kpc}$

Gives a Milky Way mass of 940 billion solar masses

How do we weigh the Milky Way?

How do we weigh the Milky Way?

- Count up all the gas and stars

How do we weigh the Milky Way?

- Count up all the gas and stars
- 66 billion solar masses

How do we weigh the Milky Way?

- Count up all the gas and stars
- 66 billion solar masses
- Through its gravitational acceleration on another object

How do we weigh the Milky Way?

- Count up all the gas and stars
- 66 billion solar masses
- Through its gravitational acceleration on another object
- 940 billion solar masses

How do we weigh the Milky Way?

- Count up all the gas and stars
- 66 billion solar masses
- Through its gravitational acceleration on another object
- 940 billion solar masses
- So 7% of the mass in the Milky Way is in stars and cool gas

How do we weigh the Milky Way?

How do we weigh the Milky Way?

- This also gives the mass of the Large Magellanic Cloud

How do we weigh the Milky Way?

- This also gives the mass of the Large Magellanic Cloud
- 138 billion solar masses

How do we weigh the Milky Way?

- This also gives the mass of the Large Magellanic Cloud
- 138 billion solar masses

How do we weigh the Milky Way?

How do we weigh the Milky Way?

How do we weigh things?

- Count up how much stuff there is

- Use a weighing scale

How do we weigh things?

- Count up how much stuff there is

- Use a weighing seale

Use gravity!

How to weigh the Milky Way

How to weigh the Milky Way

- Count how much stuff there is

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object
- Earth acceleration - 9.8 m/s²

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object
- Earth acceleration - 9.8 m/s²
- Sun's acceleration on the Earth $-0.006 \mathrm{~m} / \mathrm{s}^{2}$

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object
- Earth acceleration - 9.8 m/s²
- Sun's acceleration on the Earth $-0.006 \mathrm{~m} / \mathrm{s}^{2}$
- Milky Way's acceleration on the Earth $-2 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object
- Earth acceleration $-9.8 \mathrm{~m} / \mathrm{s}^{2}$
- Sun's acceleration on the Earth - $0.006 \mathrm{~m} / \mathrm{s}^{2}$
- Milky Way's acceleration on the Earth $-2 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$
- Acceleration tells you the mass

How to weigh the Milky Way

- Count how much stuff there is
- Through its gravitational acceleration on another object
- Earth acceleration - 9.8 m/s²
- Sun's acceleration on the Earth $-0.006 \mathrm{~m} / \mathrm{s}^{2}$
- Milky Way's acceleration on the Earth $-2 \times 10^{-10} \mathrm{~m} / \mathrm{s}^{2}$
- Acceleration tells you the mass

Thank you!

