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Basic Definitions

Definition
A Group (G , ∗) is a set G with a binary operation ∗ : G × G → G
such that

1. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) ∀g1, g2, g3 ∈ G (associativity)

2. ∃e ∈ G such that g ∗ e = e ∗ g = g ∀g ∈ G (existence of
identity)

3. ∀g ∈ G ∃g−1 ∈ G such that g−1 ∗ g = g ∗ g−1 = e (every
element has an inverse)

The identity element of (G ,+) is 0.
A group is Abelian if g1 ∗ g2 = g2 ∗ g1 ∀g1, g2 ∈ G
(commutativity)



Definition
We can define a Field (K,+, ·) to be a non-empty set K with two
binary operations + and · such that (K,+) and (K \ {0}, ·) are
abelian groups.

Example

(R,+, ·) and (C,+, ·), where R is the set of Real Numbers and C
is the set of Complex numbers are both Fields. We often denote
these fields simply by R and C.



Definition
A Vector Space over a field (K,+, ·) is a non-empty set V with
two operations + : V × V → V and • : K× V → V such that,
∀v,w ∈ V, a, b ∈ K

1. (V,+) is an abelian group.

2. ∃1 ∈ K such that 1 • v = v (existence of • identity)

3. (a · b) • v = a · (b • v) (associativity)

4. a • (u + v) = (a • u)+(a • v) (left distributivity)

5. (a + b) • v = (a • v) + (b • v) (right distributivity)

Example

The set of all 2× 2 matrices under the operations of matrix
addition and matrix multiplication is a vector space over C.



Definition
An Algebra (A,+, •, ∗) is a vector space over a field (K,+, ·) with
an operation ∗ : A×A → A such that ∀X ,Y ,Z ∈ A and ∀a ∈ K

1. a • (X ∗ Y ) = (a • X ) ∗ Y = X ∗ (a • Y )

2. ∃! I ∈ A such that X ∗ I = I ∗ X = X (A has a unique ∗
identity).

3. X ∗ (Y + Z ) = (X ∗ Y )+(X ∗ Z ) (left distributivity)

4. (X + Y ) ∗ Z = (X ∗ Z ) + (Y ∗ Z ) (right distributivity)

An algebra is Associative if ∀X ,Y ,Z ∈ A

(X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z )

An algebra is Commutative if ∀X ,Y ∈ A

X ∗ Y = Y ∗ X



Definition
A Lie Algebra L is a vector space over a field K on which we
define a Lie Bracket [, ] : L× L→ L that satisfies ∀a, b ∈ K and
∀X ,Y ,Z ∈ L:

1. [X , aY + bZ ] = a[X ,Y ] + b[X ,Z ] (bilinearity)

2. [X ,Y ] = −[Y ,X ] (skew symmetry)

3. [X , [Y ,Z ]] + [Y , [Z ,X ]] + [Z , [X ,Y ]] = 0 (Jacobi Identity)

If K = R then L is a real Lie Algebra, if K = C then L is a
complex Lie Algebra.

Definition
A Matrix Lie Algebra is an algebra of matrices where the Lie
Bracket is the commutator of X and Y :

[X ,Y ] = XY − YX



Definition
Two Lie Algebras (L1, [, ]1) and (L2, [, ]2) are isomorphic if
∃ρ : L1 → L2 such that ∀a, b ∈ K and ∀X ,Y ∈ L1:

1. ρ(aX + bY ) = aρ(X ) + bρ(Y ) (ρ is linear)

2. ∃ρ−1 : L2 → L1 such that ρ−1 ◦ ρ(X ) = X (ρ is invertible)

3. [ρ(X ), ρ(Y )]2 = ρ([X ,Y ])1

Theorem
(Ado’s Theorem)1 Every (finite-dimensional) Lie Algebra is
isomorphic to a Matrix Lie Algebra

1The original Ado’s Theorem imposes the restriction that the Lie Algebra be
over a field of characteristic zero.



The Classical Harmonic Oscillator

Consider a point of mass m constrained to move along a straight
line AB on a perfectly smooth horizontal floor. The point is
attached to the end of an elastic spring with natural length l and
modulus of elasticity λ whose other end is fixed to a vertical rod
anchored to the floor. Initially the spring is compressed so that the
particle is a distance x0 from the equilibrium point.
By taking AB to be the x-axis with the equilibrium point at x = 0,
we can determine the position of the particle by solving an ordinary
differential equation.
Let ω2 = λ

lm . Using F = −λx
l = m d2x

dt2
we obtain the O.D.E

d2x

dt2
= −ω2x

with initial conditions x(0) = −x0, ẋ(0) = 0.



The Hamiltonian

We can also obtain this differential equation by use of a Classical
Hamiltonian, a function H depending on the position x(t) and
the conjugate momentum to x , p(t) that satisfies the equations

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x

The Classical Hamiltonian for the Classical Harmonic Oscillator is
given by

H =
p2

2m
+

1

2
mω2x2

and we obtain
dx

dt
=

p

m
,

dp

dt
= −mω2x

and finally the O.D.E
d2x

dt2
= −ω2x



Operators

Definition
A Linear Operator is a function f : V → V such that
∀v,w ∈ V, k ∈ K

1. f (v + w) = f (v) + f (w)

2. f (kv) = kf (v)

Example

Any 2× 2 matrix is a linear operator on the vector space of
2-vectors.



The Quantum Harmonic Oscillator

The Classical Hamiltonian can be Quantized by replacing the
variables x and p with the operators x̂ and p̂.

H =
p̂2

2m
+

1

2
mω2x̂2

We now define the Creation Operator a† and the Annihilation
Operator a in terms of x̂ and p̂:

x̂ =

√
~

2mω
(a† + a), p̂ = i

√
~mω

2
(a† − a)

where ~ is a constant (the normalised Planck Constant).



If we consider the Hamiltonian to be a square matrix, we can find
its normalised eigenvectors, also known as normalised eigenstates.
We write the normalised eigenstates of the Hamiltonian in the
following manner:

|n〉

Each eigenstate |n〉, n ∈ Z+ corresponds to an energy level of the
system. The state |0〉 is the Ground State of the system, the
state at which the system has the least energy. It satisfies:

a|0〉 = 0

and the entire spectrum of eigenstates of H can be constructed
from

|n〉 =
(a†)n√

n!
|0〉

The creation and annihilation operators act on a state |n〉 as
follows:

a†|n〉 =
√

n + 1|n + 1〉 a|n〉 =
√

n|n − 1〉



The Heisenberg Algebra

A finite dimensional Lie algebra A is a vector space of dimension
dim(A). A is generated by a basis of elements T i ,
i = 1, ..., dim(A).

Definition
The elements T i are the Generators of the Lie Algebra

Note that the product T iT j is not necessarilty in the Lie Algebra,
it is part of another structure known as the Universal Enveloping
Algebra.
Applying a commutator to any two elements of the basis of a Lie
algebra results in a linear combination of the basis elements:

[T i ,T j ] =

dim(A)∑
k=1

C ij
k T k



Definition
The constants C ij

k are called the Structure Constants 2 of the Lie
Algebra.

2Some writers will give the linear combination as

[T a,T b] = i

dim(A)∑
c=1

f abc T c

where i2 = −1 and state that the real constants f abc are the structure constants



Let F be the set of all differentiable functions in Rn.
Consider the operators Q : F → F , P : F → F and I : F → F
defined by

Q(f ) = xf , P(f ) =
∂f

∂x
, I (f ) = f

Q,P and I form a basis for a Lie Algebra, [P,Q] = I ,
[P, I ] = [Q, I ] = 0. Taking P = T 1, Q = T 2 and I = T 3 the
non-zero structure constants are C 12

3 = 1, and C 21
3 = −1. We

have defined a Lie Algebra known as the Heisenberg Algebra.
Returning to the Quantum Harmonic oscillator, we can see a
Heisenberg Algebra generated by a†, a, and the identity I 3

[a, a†] = I , [a, I ] = [a†, I ] = 0

3In order to generate an algebra compatible with the alternative definition of
the structure constants, we select x̂ , p̂ and I as generators.



The sl(2) Algebra

Consider the set of all 2× 2 traceless matrices. This set is spanned
by the three matrices

a+ =

(
0 1
0 0

)
a− =

(
0 0
1 0

)
a0 =

1

2

(
1 0
0 −1

)
In fact, (a+, a−, a0) is a basis for a Lie algebra called sl(2).
Returning to the Quantum Harmonic Oscillator, suppose we define
the following operators:

h = a†a, e = [
√
−1 + a†a]a†, f = −a

√
−1 + a†a



We derive the action of these operators on the state of the tower:

h|n〉 = n|n〉, e|n〉 =
√

n(n + 1)|n+1〉, f |n〉 = −
√

n(n − 1)|n−1〉

And then obtain the following commutation relations:

[h, e] = e, [h, f ] = −f , [e, f ] = 2h

We then define:

T 1 = e, T 2 = f , T 3 = h

Then

[T 1,T 2] = 2T 3, [T 3,T 1] = T 3, [T 3,T 2] = −T 2

Which are the commutation relations of the sl(2) Lie algebra.



The Pauli Matrices
Recall that a matrix A is Hermitian if

A = (Ā)T

We write A = A†

Definition
The su(2) Lie Algebra is the vector space of 2× 2 traceless
Hermitian matrices.

su(2) can be generated by the Pauli Matrices. The Pauli
Matrices in Canonical Form are given by:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Definition
Let π : {1, 2, 3} → {1, 2, 3} be a permutation. The epsilon tensor
of three indices εijk is defined by

ε123 = 1, επ(1)π(2)π(3) = sgn(π), εijk = 0 otherwise



The commutation relations of the Pauli spin matrices are given by

[σi , σj ] = 2i
3∑

k=1

εijkσk

Definition
The Quadratic Casimir operator on a Lie Algebra L is defined by

C2 =

dim(L)∑
a,b=1

κabT aT b

for a certain set of constants κab

The (normalised) Quadratic Casimir operator in su(2) is given by

C2 =
1

4

3∑
i=1

σ2i =
3

4

(
1 0
0 1

)



Spin on the Electron

We can associate the electron with a two-dimensional vector |v〉 in
the vector space C2, on which su(2) can act. The vectors

| ↑〉3 =

(
1
0

)
| ↓〉3 =

(
0
1

)
called the spin up and spin down states respectively, form a basis
for this vector space. The Pauli Matrix σ3 acts diagonally on these
states:

σ3| ↑〉3 = | ↑〉3, σ3| ↓〉3 = −| ↓〉3
The observable associated to sz = 1

2σ3 is called the z component
of the spin.



The spin observable has three components (x , y , z) associated to
the operators sx = 1

2σ1, sy = 1
2σ2, sz = 1

2σ3
By computing the effect of the other Pauli matrices on the spin up
and spin down states we find that

σ1| ↑〉3 = | ↓〉3, σ1| ↓〉3 = | ↑〉3, σ2| ↑〉3 = i | ↓〉3, σ2| ↓〉3 = −i | ↑〉3,

The electron is said to be a spin half particle. Now there exist
infinitely many finite dimensional representations of su(2), for
which the Quadratic Casimir takes the value

C2 = s(s + 1)I , s = 0,
1

2
, 1,

3

2
, ...

where s is the Spin Quantum Number and I is the identity
matrix of the representation. The value s = 1

2 gives us the
representation relevant to the electron, hence the term ’spin half’.



Moving on to the Yangian
In the first section we defined the various algebraic structures in
the following manner:

Group → Field → V . space → Algebra→ L. Algebra→ M. L. Algebra

Other structures include the Ring and the Module
By defining a counit and a coproduct we can define:

Algebra→ Coalgebra→ Bialgebra

Equipping a Bialgebra with an extra map called an antipode gives
us a Hopf Algebra.
Just as groups have subgroups and fields have subfields, so Lie
Algebras have Lie Subalgebras:

Lie subalgebra→ Ideal subalgebra→ simple Lie algebra

And from this we can define the Chevalley-Serre presentation -
in brief, a Chevalley-Serre presentation of a Lie Algebra selects a
minimal set of generators which can be used to obtain all the
remaining elements by repeated commutation.



If g is a complex finite dimensional Lie Algebra, we can define a
Cartan-Weyl basis for it in terms of its generators. We can then
define a Cartan Subalgebra of g. If g is a simple Lie Algebra
(with simple root system) we can then find a Cartan Matrix of it.
The structure constants of a Lie Algebra provide an adjoint
representation of it. We define the Killing Form as the bilinear
form associated to the adjoint representation of g.
A Superalgebra can be thought of as an algebra made up of odd
and even components. Recall the commutator [X ,Y ] = XY − YX .
The Anticommutator {X ,Y } = XY + YX furnishes us with the
structure for the Lie Superalgebra.
We can represent the information about a Lie Algebra using a
Dynkin Diagram
Let g be a Lie Algebra. The loop algebra g[u] associated to g is
the algebra of g valued polynomials in the variable u. The
Yangian Y(g) is a deformation of the universal enveloping algebra
of g[u]. Note, however that the Yangian is not a Lie algebra.
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Further Reading

• For information on how the sl(2) Lie Algebra appears in the
Quantum Harmonic Oscillator see the research of Holstein and
Primakoff ff:
Field dependence of the intrinsic domain magnetization of a
ferromagnet, T.Holstein and H.Primakoff, Phys.Rev. 58,
1098(1940).
URL:http://prola.aps.org/abstract/PR/v58/il2/p1098 1.
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Further Reading
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