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1 Basic Definitions
Definition 1 A Group (G, ∗) is a set G with a binary operation ∗ : G × G → G such
that

1. (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) ∀g1, g2, g3 ∈ G (associativity)

2. ∃e ∈ G such that g ∗ e = e ∗ g = g ∀g ∈ G (existence of identity)

3. ∀g ∈ G ∃g−1 ∈ G such that g−1 ∗ g = g ∗ g−1 = e (every element has an inverse)

The identity element of (G,+) is 0.
A group is Abelian if g1 ∗ g2 = g2 ∗ g1 ∀g1, g2 ∈ G (commutativity)

Definition 2 We can define a Field (K,+, ·) to be a non-empty set K with two binary
operations + and · such that (K,+) and (K \ {0}, ·) are abelian groups.

Example 1 (R,+, ·) and (C,+, ·), where R is the set of Real Numbers and C is the set
of Complex numbers are both Fields. We often denote these fields simply by R and C.

Definition 3 A Vector Space over a field (K,+, ·) is a non-empty setV with two oper-
ations + : V ×V → V and • : K ×V → V such that, ∀v,w ∈ V, a, b ∈ K

1. (V,+) is an abelian group.

2. ∃1 ∈ K such that 1 • v = v (existence of • identity)

3. (a · b) • v = a · (b • v) (associativity)

4. a • (u + v) = (a • u)+(a • v) (left distributivity)

5. (a + b) • v = (a • v) + (b • v) (right distributivity)

Example 2 The set of all 2 × 2 matrices under the operations of matrix addition and
matrix multiplication is a vector space over C.

Definition 4 An Algebra (A,+, •, ∗) is a vector space over a field (K,+, ·) with an
operation ∗ : A×A → A such that ∀X,Y,Z ∈ A and ∀a ∈ K

1. a • (X ∗ Y) = (a • X) ∗ Y = X ∗ (a • Y)

2. ∃! I ∈ A such that X ∗ I = I ∗ X = X (A has a unique ∗ identity).

3. X ∗ (Y + Z) = (X ∗ Y)+(X ∗ Z) (left distributivity)
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4. (X + Y) ∗ Z = (X ∗ Z) + (Y ∗ Z) (right distributivity)

An algebra is Associative if ∀X,Y,Z ∈ A

(X ∗ Y) ∗ Z = X ∗ (Y ∗ Z)

An algebra is Commutative if ∀X,Y ∈ A

X ∗ Y = Y ∗ X

Definition 5 A Lie Algebra L is a vector space over a field K on which we define a Lie
Bracket [, ] : L × L→ L that satisfies ∀a, b ∈ K and ∀X,Y,Z ∈ L:

1. [X, aY + bZ] = a[X,Y] + b[X,Z] (bilinearity)

2. [X,Y] = −[Y, X] (skew symmetry)

3. [X, [Y,Z]] + [Y, [Z, X]] + [Z, [X,Y]] = 0 (Jacobi Identity)

If K = R then L is a real Lie Algebra, if K = C then L is a complex Lie Algebra.

Definition 6 A Matrix Lie Algebra is an algebra of matrices where the Lie Bracket is
the commutator of X and Y:

[X,Y] = XY − YX

Definition 7 Two Lie Algebras (L1, [, ]1) and (L2, [, ]2) are isomorphic if ∃ρ : L1 → L2
such that ∀a, b ∈ K and ∀X,Y ∈ L1:

1. ρ(aX + bY) = aρ(X) + bρ(Y) (ρ is linear)

2. ∃ρ−1 : L2 → L1 such that ρ−1 ◦ ρ(X) = X (ρ is invertible)

3. [ρ(X), ρ(Y)]2 = ρ([X,Y])1

Theorem 1 (Ado’s Theorem)1 Every (finite-dimensional) Lie Algebra is isomorphic to
a Matrix Lie Algebra

1The original Ado’s Theorem imposes the restriction that the Lie Algebra be over a field of characteristic
zero.
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2 The Quantum Harmonic Oscillator

2.1 The Classical Harmonic Oscillator
Consider a point of mass m constrained to move along a straight line AB on a perfectly
smooth horizontal floor. The point is attached to the end of an elastic spring with
natural length l and modulus of elasticity λ whose other end is fixed to a vertical rod
anchored to the floor. Initially the spring is compressed so that the particle is a distance
x0 from the equilibrium point.
By taking AB to be the x-axis with the equilibrium point at x = 0, we can determine
the position of the particle by solving an ordinary differential equation.
Let ω2 = λ

lm . Using F = − λx
l = m d2 x

dt2 we obtain the O.D.E

d2x
dt2 = −ω2x

with initial conditions x(0) = −x0, ẋ(0) = 0.
We can also obtain this differential equation by use of a Classical Hamiltonian, a

function H depending on the position x(t) and the conjugate momentumto x, p(t) that
satisfies the equations

dx
dt

=
∂H
∂p

,
dp
dt

= −
∂H
∂x

The Classical Hamiltonian for the Classical Harmonic Oscillator is given by

H =
p2

2m
+

1
2

mω2x2

and we obtain
dx
dt

=
p
m
,

dp
dt

= −mω2x

and finally the O.D.E
d2x
dt2 = −ω2x

2.2 The Quantum Harmonic Oscillator
Definition 8 A Linear Operator is a function f : V → V such that ∀v,w ∈ V, k ∈ K

1. f (v + w) = f (v) + f (w)

2. f (kv) = k f (v)

Example 3 Any 2 × 2 matrix is a linear operator on the vector space of 2-vectors.

The Classical Hamiltonian can be Quantized by replacing the variables x and p
with the operators x̂ and p̂.

H =
p̂2

2m
+

1
2

mω2 x̂2

We now define the Creation Operator a† and the Annihilation Operator a in
terms of x̂ and p̂:

x̂ =

√
~

2mω
(a† + a), p̂ = i

√
~mω

2
(a† − a)
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where ~ is a constant (the normalised Planck Constant).
If we consider the Hamiltonian to be a square matrix, we can find its normalised eigen-
vectors, also known as normalised eigenstates. We write the normalised eigenstates of
the Hamiltonian in the following manner:

|n〉

Each eigenstate |n〉, n ∈ Z+ corresponds to an energy level of the system. The state |0〉
is the Ground State of the system, the state at which the system has the least energy.
It satisfies:

a|0〉 = 0

and the entire spectrum of eigenstates of H can be constructed from

|n〉 =
(a†)n

√
n!
|0〉

The creation and annihilation operators act on a state |n〉 as follows:

a†|n〉 =
√

n + 1|n + 1〉 a|n〉 =
√

n|n − 1〉

2.3 The Heisenberg Algebra
A finite dimensional Lie algebra A is a vector space of dimension dim(A). A is gen-
erated by a basis of elements T i, i = 1, ..., dim(A).

Definition 9 The elements T i are the Generators of the Lie Algebra

Note that the product T iT j is not necessarilty in the Lie Algebra, it is part of another
structure known as the Universal Enveloping Algebra.

Applying a commutator to any two elements of the basis of a Lie algebra results in
a linear combination of the basis elements:

[T i,T j] =

dim(A)∑
k=1

Ci j
k T k

Definition 10 The constants Ci j
k are called the Structure Constants 2 of the Lie Alge-

bra.

Let F be the set of all differentiable functions in Rn.

Consider the operators Q : F → F , P : F → F and I : F → F defined by

Q( f ) = x f , P( f ) =
∂ f
∂x
, I( f ) = f

2Some writers will give the linear combination as

[T a,T b] = i
dim(A)∑

c=1

f ab
c T c

where i2 = −1 and state that the real constants f ab
c are the structure constants
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Q,P and I form a basis for a Lie Algebra, [P,Q] = I, [P, I] = [Q, I] = 0. Taking P = T 1,
Q = T 2 and I = T 3 the non-zero structure constants are C12

3 = 1, and C21
3 = −1. We

have defined a Lie Algebra known as the Heisenberg Algebra
Returning to the Quantum Harmonic oscillator, we can see a Heisenberg Algebra

generated by a†, a, and the identity I 3

[a, a†] = I, [a, I] = [a†, I] = 0

2.4 The sl(2) Algebra
Consider the set of all 2×2 traceless matrices. This set is spanned by the three matrices

a+ =

(
0 1
0 0

)
a− =

(
0 0
1 0

)
a0 =

1
2

(
1 0
0 −1

)
In fact, (a+, a−, a0) is a basis for a Lie algebra called sl(2).
Returning to the Quantum Harmonic Oscillator, suppose we define the following oper-
ators:

h = a†a, e = [
√
−1 + a†a]a†, f = −a

√
−1 + a†a

We derive the action of these operators on the state of the tower:

h|n〉 = n|n〉, e|n〉 =
√

n(n + 1)|n + 1〉, f |n〉 = −
√

n(n − 1)|n − 1〉

And then obtain the following commutation relations:

[h, e] = e, [h, f ] = − f , [e, f ] = 2h

We then define:
T 1 = e, T 2 = f , T 3 = h

Then
[T 1,T 2] = 2T 3, [T 3,T 1] = T 3, [T 3,T 2] = −T 2

Which are the commutation relations of the sl(2) Lie algebra.

3In order to generate an algebra compatible with the alternative definition of the structure constants, we
select x̂, p̂ and I as generators.
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3 Lie Algebras and Spin

3.1 The Pauli Matrices
Recall that a matrix A is Hermitian if

A = (Ā)T

We write A = A†

Definition 11 The su(2) Lie Algebra is the vector space of 2 × 2 traceless Hermitian
matrices.

su(2) can be generated by the Pauli Matrices. The Pauli Matrices in Canonical Form
are given by:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
Definition 12 Let π : {1, 2, 3} → {1, 2, 3} be a permutation. The epsilon tensor of three
indices εi jk is defined by

ε123 = 1, επ(1)π(2)π(3) = sgn(π), εi jk = 0 otherwise

The commutation relations of the Pauli spin matrices are given by

[σi, σ j] = 2i
3∑

k=1

εi jkσk

Definition 13 The Quadratic Casimir operator on a Lie Algebra L is defined by

C2 =

dim(L)∑
a,b=1

κabT aT b

for a certain set of constants κab

The (normalised) Quadratic Casimir operator in su(2) is given by

C2 =
1
4

3∑
i=1

σ2
i =

3
4

(
1 0
0 1

)

3.2 The Spin on the Electron
We can associate the electron with a two-dimensional vector |v〉 in the vector space C2,
on which su(2) can act. The vectors

| ↑〉3 =

(
1
0

)
| ↓〉3 =

(
0
1

)
called the spin up and spin down states respectively, form a basis for this vector space.
The Pauli Matrix σ3 acts diagonally on these states:

σ3| ↑〉3 = | ↑〉3, σ3| ↓〉3 = −| ↓〉3
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The observable associated to sz = 1
2σ3 is called the z component of the spin.

The spin observable has three components (x, y, z) associated to the operators sx =
1
2σ1, sy = 1

2σ2, sz = 1
2σ3

By computing the effect of the other Pauli matrices on the spin up and spin down
states we find that

σ1| ↑〉3 = | ↓〉3, σ1| ↓〉3 = | ↑〉3, σ2| ↑〉3 = i| ↓〉3, σ2| ↓〉3 = −i| ↑〉3,

The electron is said to be a spin half particle. Now there exist infinitely many finite
dimensional representations of su(2), for which the Quadratic Casimir takes the value

C2 = s(s + 1)I, s = 0,
1
2
, 1,

3
2
, ...

where s is the Spin Quantum Number and I is the identity matrix of the representa-
tion. The value s = 1

2 gives us the representation relevant to the electron, hence the
term ’spin half’.

4 Moving On to the Yangian
In the first section we defined the various algebraic structures in the following manner:

Group→ Field → Vector space→ Algebra→ Lie Algebra→ Matrix Lie Algebra

Other structures include the Ring and the Module

By defining a counit and a coproduct we can define:

Algebra→ Coalgebra→ Bialgebra

Equipping a Bialgebra with an extra map called an antipode gives us a Hopf Algebra.
Just as groups have subgroups and fields have subfields, so Lie Algebras have Lie

Subalgebras:

Lie subalgebra→ Ideal subalgebra→ simple Lie algebra

And from this we can define the Chevalley-Serre presentation - in brief, a Chevalley-
Serre presentation of a Lie Algebra selects a minimal set of generators which can be
used to obtain all the remaining elements by repeated commutation.

If g is a complex finite dimensional Lie Algebra, we can define a Cartan-Weyl ba-
sis for it in terms of its generators. We can then define a Cartan subalgebra of g. If g
is a simple Lie Algebra (with simple root system) we can then find a Cartan Matrix of it.

The structure constants of a Lie Algebra provide an adjoint representation of it. We
define the Killing Form as the bilinear form associated to the adjoint representation of
g.

A Superalgebra is a graded algebra with a Z2 grading, it can be thought of as an al-
gebra made up of odd and even components. Recall the commutator [X,Y] = XY −YX.
The Anticommutator {X,Y} = XY + YX furnishes us with the structure for the Lie
Superalgebra.
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We can represent the information about a Lie Algebra using a Dynkin Diagram
Let g be a Lie Algebra. The loop algebra g[u] associated to g is the algebra of

g valued polynomials in the variable u. The Yangian Y(g) is a deformation of the
universal enveloping algebra of g[u]. Note, however that the Yangian is not a Lie
algebra.
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6 Further Reading
• Books on Lie Algebras include: Naive Lie Theory by John Stillwell (Springer, Un-
dergraduate Texts in Mathematics, 2008)
Lie Algebras by Nathan Jacobson (Dover Books on Mathematics, 1980)

• If you want to learn more about the project: Quantum Groups by Christian Kas-
sel (Springer Verlag, Graduate Texts in Mathematics, 1995)
Dictionary on Lie Algebras and Superalgebras by Frappat, Sciarrino, Sorba [http://arxiv.org/abs/hep-
th/9607161]

• For information on how the sl(2) Lie Algebra appears in the Quantum Harmonic
Oscillator see the research of Holstein and Primakoff ff:

Field dependence of the intrinsic domain magnetization of a ferromagnet, T.Holstein
and H.Primakoff, Phys.Rev. 58, 1098(1940). URL:http://prola.aps.org/abstract/PR/v58/il2/p1098 1.

• If you go onto the Surrey University website www.surrey.ac.uk you can find: Re-
search papers and presentation notes related to the summer project on Dr Torrielli’s
Personal Webpage [accessible via the Research section of
http://www.surrey.ac.uk/maths/people/torrielli alessandro/index.htm].

• The news story of the project may be found on
[http://www.surrey.ac.uk/maths/news/stories/2012/89914 summer project the yangian on a

distinguished dynkin diagram for the adscft correspondence.htm]
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