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tRe
ent experiments [1℄ on two{frequen
y parametri
ally ex
ited surfa
e waves produ
e anintriguing \superlatti
e" wave pattern near a 
odimension{two bifur
ation point where bothsubharmoni
 and harmoni
 waves onset simultaneously, but with di�erent spatial wavenumbers.The superlatti
e pattern is syn
hronous with the for
ing, spatially periodi
 on a large hexagonallatti
e, and exhibits small{s
ale triangular stru
ture. Similar patterns have been shown toexist as primary solution bran
hes of a generi
 12{dimensional D6 _+T2{equivariant bifur
ationproblem, and may be stable if the nonlinear 
oeÆ
ients of the bifur
ation problem satisfy
ertain inequalities [2℄. Here we use the spatial and temporal symmetries of the problem toargue that weakly damped harmoni
 waves may be 
riti
al to understanding the stabilization ofthis pattern in the Faraday system. We illustrate this me
hanism by 
onsidering the equationsdeveloped by Zhang and Vi~nals [3℄ for small amplitude, weakly damped surfa
e waves on asemi{in�nite 
uid layer. We 
ompute the relevant nonlinear 
oeÆ
ients in the bifur
ationequations des
ribing the onset of patterns for ex
itation frequen
y ratios of 2/3 and 6/7. Forthe 2/3 
ase, we show that there is a fundamental di�eren
e in the pattern sele
tion problemsfor subharmoni
 and harmoni
 instabilities near the 
odimension{two point. Also, we �nd thatthe 6/7 
ase is signi�
antly di�erent from the 2/3 
ase due to the presen
e of additional weaklydamped harmoni
 modes. These additional harmoni
 modes 
an result in a stabilization of thesuperpatterns.
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1 Introdu
tionFaraday waves are parametri
ally ex
ited on the free surfa
e of a 
uid layer when it is subje
ted toa verti
al vibration of suÆ
ient strength. This pattern{forming hydrodynami
 system has provento be an espe
ially versatile one in laboratory experiments [4, 5℄, exhibiting the 
ommon patternsfamiliar from 
onve
tion (stripes, squares, hexagons, spirals), as well as more exoti
 patterns su
has triangles [6℄, quasipatterns [1, 7, 8℄, superlatti
e patterns [1, 9, 10℄, time{dependent rhombi
patterns [11℄ and lo
alized waves [9, 12℄. See [13℄ for a re
ent review paper on Faraday wavepattern formation.The temporal period of the Faraday waves is typi
ally twi
e that of the vibration in the 
ase ofpurely sinusoidal for
ing. The observation of this subharmoni
 response is attributed to Faraday [14℄and was �rst explained theoreti
ally by Benjamin and Ursell's linear stability analysis for invis
id,potential 
ow [15℄. More re
ently it has been shown that waves, syn
hronous with the for
ing,
an be ex
ited in thin layers of 
uid vibrated at low frequen
y [16, 17, 18℄; in 
ertain vis
oelasti

uids [9℄; and in 
uids for
ed periodi
ally, but with more than one frequen
y 
omponent [7, 19, 20℄.In ea
h of these Faraday systems it is possible to tune the for
ing parameters in order to a

essthe transition between subharmoni
 and harmoni
 response. At this 
odimension{two point, bothinstabilities set in simultaneously, but with di�erent spatial wavenumbers.Many of the experimental [6, 7, 10, 11, 12, 21, 22℄ and theoreti
al studies [3, 23, 24, 25℄ ofexoti
 patterns in the Faraday system attribute their formation near the 
odimension{two (or\bi
riti
al") point to resonant triad intera
tions involving the 
riti
al or near{
riti
al modes withdi�erent spatial wavenumbers. In parti
ular, the fo
us has been on spatial triads k1, k2 andk3 = k1�k2, where jk1j = jk2j is the wavenumber of one 
riti
al mode, and jk3j is the wavenumberof the other 
riti
al mode. The angle �r, whi
h separates k1 and k2, is readily tuned by 
hangingthe frequen
y 
omponents m! and n! of a two{frequen
y periodi
 for
ing fun
tion. It has beensuggested, for example, that by tuning this angle, di�erent types of exoti
 wave patterns may besele
ted [7℄. Su
h a simple me
hanism for nonlinear pattern sele
tion, whi
h is based on examiningthe linear instabilities of the spatially homogeneous state, is naturally attra
tive, but warrants
areful examination as we show.Silber and Skeldon [26℄ re
ently showed that whether resonant triads asso
iated with the bi-
riti
al point a�e
t pattern sele
tion depends on the temporal 
hara
teristi
s of the 
ompetinginstabilities. For instan
e, the bi
riti
al point of laboratory experiments typi
ally involves a sub-harmoni
 mode (Floquet multiplier �1) and a harmoni
 mode (Floquet multiplier +1). On thesubharmoni
 side of the bi
riti
al point, the onset pattern sele
tion problem is strongly in
uen
edby the presen
e of the weakly damped harmoni
 mode. In 
ontrast, on the harmoni
 side, theonset pattern sele
tion problem is 
ompletely insensitive to the presen
e of near 
riti
al subhar-moni
 modes. These general ideas were demonstrated in [26℄ through a bifur
ation analysis of ahydrodynami
 model of one{dimensional Faraday waves.Here, we extend the bifur
ation analysis in [26℄ to two{dimensional spatially{periodi
 pat-terns and to higher for
ing frequen
ies within the two{frequen
y for
ing fun
tion. With theexperimentally{relevant higher for
ing frequen
ies (e.g. 6! and 7!) employed in this paper, we�nd the new possibility that spatially{resonant triads involving nearly 
riti
al harmoni
 modesmay in
uen
e the harmoni
 wave pattern sele
tion problem. This is not an option for the lowerfor
ing frequen
ies (e.g. 1!=2! and 2!=3!) used in previous weakly nonlinear analyses of thetwo{frequen
y Faraday problem [23, 26℄. 2



We follow J.D. Crawford's seminal work on Faraday waves [27, 28, 29, 30℄ by posing the pat-tern sele
tion problem in terms of a symmetry{breaking bifur
ation of the trivial �xed{point of astrobos
opi
 map. By restri
ting solutions to those that are spatially{periodi
 on some hexagonallatti
e we obtain a �nite{dimensional bifur
ation problem that 
an be analyzed using the meth-ods of equivariant bifur
ation theory [31℄. For a review of this approa
h to hydrodynami
 patternformation problems, see Crawford and Knoblo
h [32℄.Our formulation of the bifur
ation problem allows us to address re
ent two{frequen
y Fara-day wave experimental observations [1℄ of a transition between simple hexagons and the triangularsuperlatti
e wave pattern depi
ted in Figure 1a. Spe
i�
ally, we follow [2℄ and 
onsider a bifur-
ation problem that is equivariant with respe
t to a twelve{dimensional irredu
ible representationof D6 _+T2, whi
h is analyzed in [33, 34℄. The observed harmoni
 wave states 
orrespond to pri-mary trans
riti
al bran
hes of the generi
 bifur
ation problem. In order for the observed hexagon{superlatti
e pattern transition to be reprodu
ed by the bifur
ation problem, we must 
onsider adegenerate 
ase in whi
h the quadrati
 
oeÆ
ient vanishes. Moreover, the 
ubi
 
oeÆ
ients mustsatisfy 
ertain inequalities, e.g. 
ertain 
ombinations of nonlinear 
ross{
oupling 
oeÆ
ients mustbe small 
ompared to the 
ubi
 self{
oupling 
oeÆ
ient.In this paper we 
ompute the quadrati
 and 
ubi
 nonlinear 
oeÆ
ients in the bifur
ationproblem from the Zhang{Vi~nals equations [23℄ whi
h apply to deep layers of low vis
osity 
uidssubje
ted to a periodi
 a

eleration. We show that the ne
essary inequalities for stable superlatti
epatterns 
an be satis�ed for the for
ing frequen
ies employed in the experiments (6!=7!), andthat a resonant triad involving a weakly damped harmoni
 mode plays a key role in stabilizing thesuperpattern. Spe
i�
ally, we �nd that the presen
e of a near 
riti
al harmoni
 mode leads to a
an
ellation in one of the 
ubi
 
ross{
oupling 
oeÆ
ients, 
ausing this 
oeÆ
ient to be
ome smallin magnitude as required. This sele
ts a preferred angle �r for the superlatti
e patterns. In otherwords, it suggests whi
h of the 
ountably in�nite 12{dimensional represantations is most pertinentto this Faraday wave problem.The paper is organized as follows. Se
tion 2.1 presents ba
kground linear stability results forthe two{frequen
y Faraday experiment, while se
tion 2.2 reviews results from [26℄ on the in
uen
eof spatio{temporally resonant triads on pattern sele
tion. Se
tion 2.3 then formulates the generi
bifur
ation problem relevant to our investigation. The bifur
ation results derived from the two{frequen
y Faraday problem modelled by the Zhang{Vi~nals equations are presented in Se
tion 3;the 
oeÆ
ients of the leading nonlinear terms are evaluated numeri
ally from expressions derivedperturbatively in the Appendix. We 
onsider two di�erent 
ases. In Se
tion 3.2 we 
onsider anexample involving for
ing frequen
ies in ratio m=n = 2=3, fo
using on di�eren
es between thepattern sele
tion problems for subharmoni
 and harmoni
 wave onset in a vi
inity of the bi
riti
alpoint. Se
tion 3.3 then turns to an example involving higher for
ing frequen
ies in ratiom=n = 6=7,and shows how weakly damped harmoni
 modes 
an stabilize harmoni
 wave superpatterns involvingthe angle �r asso
iated with a harmoni
 wave resonant triad. Finally, Se
tion 4 
on
ludes the paperwith a brief summary of our results and some dis
ussion of issues we hope to address in the future.
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2 Ba
kground2.1 Linear ResultsIn the two-frequen
y Faraday wave problem a 
ontainer of 
uid is a

elerated in the verti
al dire
tionwith an ex
itation of the formg(t) = g0 + gz�
os(�) 
os(m!t) + sin(�) 
os(n!t+ �)�: (1)Here m and n are 
o{prime integers, so the for
ing fun
tion is periodi
 with period T = 2�! , and g0is the usual gravitational a

eleration. For small amplitude a

eleration gz the surfa
e of the 
uidremains 
at and the 
uid layer is merely translated up and down with the drive. For higher valuesof gz waves are parametri
ally ex
ited on the surfa
e of the 
uid layer.Besson, Edwards and Tu
kerman [20℄, starting with the Navier{Stokes equations for the freeboundary problem, determined the linear stability of the 
at surfa
e in the 
ase that the 
uid layerhas �nite depth but is unbounded horizontally. They used a Floquet-Fourier ansatz and solvedthe linear stability problem numeri
ally to determine, for ea
h spatial wavenumber k, the value ofgz where a Floquet multiplier �rst 
rosses the unit 
ir
le. The resulting neutral stability 
urvesshow that the primary instability is to either subharmoni
 or harmoni
 waves depending on thevalue of � and the values of m and n. (Harmoni
/subharmoni
 response is relative to the for
ingperiod T = 2�=!.) Typi
ally, if � is small so that 
os(�) 
os(m!t) is of greater signi�
an
e thansin(�) 
os(n!t + �), then the response is harmoni
 if m is even and subharmoni
 if m is odd.Similarly, if � is 
lose to �=2, the primary instability is (sub)harmoni
 if n is even (odd). At the so{
alled bi
riti
al point, � = �
, both harmoni
 and subharmoni
 instabilities onset at the same valueof the ex
itation amplitude, but with di�erent wavenumbers. The harmoni
 superlatti
e patternof Figure 1a, observed by Kudrolli, Pier and Gollub [1℄, was obtained near the bi
riti
al point form=n = 6=7 for
ing in (1). The pertinent neutral stability 
urve, 
omputed using the experimental
uid parameters, is given in Figure 1b.2.2 Spatio{Temporally Resonant TriadsWhen the hydrodynami
 problem is posed on a horizontally unbounded domain there is no pre-ferred dire
tion (in the horizontal) so that ea
h 
riti
al wavenumber from linear analysis a
tually
orresponds to a 
ir
le of 
riti
al waveve
tors. There are two su
h 
riti
al 
ir
les at the bi
riti
alpoint, as shown in Figure 2. In this situation it has been argued that resonant triads may play a
entral role in the Faraday wave pattern sele
tion problem [7, 6, 23, 24, 22℄. Resonant triads are
omprised of three 
riti
al waveve
tors that sum to zero; two examples are shown in Figure 2. Inthe �rst example, km1+km2�kn = 0, and in the se
ond example kn1�kn2�km = 0. Here them;nsubs
ripts indi
ate that the 
riti
al wavenumbers 
an be roughly asso
iated with the m! and n!ex
itation terms in (1). We identify with ea
h resonant triad an angle �r 2 (0; �2 ℄, whi
h separatesthe 
riti
al waveve
tors with the same length. For instan
e, the angle in Figure 2b satis�es
os��r2 � = kn2km ; (2)while the angle in Figure 2
 satis�es sin��r2 � = km2kn : (3)4
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(a) (b)Figure 1: (a) Blow up of the experimental superlatti
e Faraday wave pattern des
ribed in [1℄(
ourtesy of Kudrolli, Pier and Gollub). The for
ing fun
tion (1) has m=n = 6=7, � = 61Æ and� = 20Æ. Note that the pattern is periodi
 on a (large) hexagonal latti
e, and that in ea
h hexagonal`tile' there is small triangular stru
ture. (b) The 
orresponding neutral stability 
urve, 
al
ulatedfrom the full (linearized) hydrodynami
 equations, for the experimental parameters reported in [1℄.(Sub)harmoni
 resonan
e tongues are given by solid (dashed) lines. The neutral 
urves are 
om-puted using the method des
ribed in [20℄.

5



z

mk nk
k

mk
1

mk

g

2

(c)

nk

θr

n1
k

n2
k

mk

θr

(a) (b)

Figure 2: (a) A plot of a neutral stability 
urve gz(k) showing minima at k = km and k = kn. (b)An asso
iated spatially resonant triad km1 , km2 and kn = km1 + km2 . (
) An asso
iated spatiallyresonant triad kn1 , kn2 and km = kn1 � kn2 .To illustrate the potential for resonant triads to in
uen
e pattern formation in parametri
allyex
ited systems we 
onsider a bifur
ation problem involving the three 
riti
al Fourier modes asso
i-ated with the resonant triads of Figure 2. Mu
h of this dis
ussion is a review of the key theoreti
alideas in [26℄. Be
ause of the periodi
 for
ing of the system, it is natural to formulate the bifur
a-tion problem in terms of a strobos
opi
 map [27℄. Spe
i�
ally, we denote the free surfa
e heightz = h(x; t) (x 2 R2) at time t = pT (p 2 Z) byh(x; pT ) = A(p)eikl1 �x +B(p)eikl2 �x + C(p)ei(kl1+kl2 )�x + 
:
:+ � � � : (4)Here A;B and C are the 
omplex amplitudes of the linear modes that are neutrally stable at thebi
riti
al point and whi
h form a resonant triad. In this dis
ussion we assume that the angle �rbetween kl1 and kl2 is not �=3 so that the 
riti
al modes intera
t nonlinearly to generate othermodes on a rhombi
 (rather than hexagonal) latti
e. These additional modes, denoted by � � � above,are linearly damped at the bi
riti
al point. We may then use the spatial re
e
tion and translationsymmetries to determine the general form of the bifur
ation equations that govern the dynami
son a 
enter manifold. Spe
i�
ally, to 
ubi
 order, the 
odimension{two bifur
ation problem takesthe form A ! �A+ �BC + (ajAj2 + bjBj2 + 
jCj2)AB ! �B + �AC + (ajBj2 + bjAj2 + 
jCj2)B (5)C ! �C + ÆAB + (djAj2 + djBj2 + ejCj2)C ;where A is the 
omplex 
onjugate of A, and the 
oeÆ
ients are all real. The Floquet multipliers �and � are either +1 or �1 depending on whether the linear modes A, B, and C are harmoni
allyor subharmoni
ally ex
ited, respe
tively.In deriving (5) we 
onsidered only the spatial symmetries asso
iated with the resonant triad.Following [27℄, we enfor
e the temporal symmetry asso
iated with the triad through a normalform transformation of (5). Spe
i�
ally, there exists a near{identity nonlinear transformation thatremoves all nonlinear terms in (5) whi
h do not 
ommute with LT , where L is the Ja
obian matrix6



asso
iated with the linearized problem (see, for example, Crawford's review paper on bifur
ationtheory [35℄). Here L = 0�� 0 00 � 00 0 �1A ; (6)where j�j = j�j = 1. The normal form symmetry may be interpreted in terms of time{translation.Spe
i�
ally, advan
ing by one period in time maps period{doubled modes to their negatives, e.g.if � = �1, then advan
ing one period takes C ! �C.In the 
ase that � = +1 (� = �1), the bifur
ation problem (5) is already in normal form.This observation is trivial if � = +1. If � = �1, then the normal form symmetry is equivalentin a
tion to that asso
iated with the spatial translation symmetry x ! x + d, where d satis�eskl1 � d = kl2 � d = �.In 
ontrast, in the 
ase that � = �1, a normal form transformation removes the quadrati
 termsin the bifur
ation problem (5). The normal form of the bifur
ation problem, through 
ubi
 order,is then A ! �A+ (ajAj2 + bjBj2 + 
jCj2)AB ! �B + (ajBj2 + bjAj2 + 
jCj2)B (7)C ! �C + (djAj2 + djBj2 + ejCj2)C :We note that C = 0 is a dynami
ally{invariant subspa
e of (7). This is true to all orders of thenormal form sin
e C = 0 is the �xed point subspa
e of a (spatio{)temporal symmetry. Spe
i�
ally,if � = +1 then C = 0 is the �xed point subspa
e asso
iated with the time translation by one{period,i.e., (A;B;C) ! (A;B;�C). And if � = �1, then C = 0 is the �xed{point subspa
e asso
iatedwith the spatio{temporal symmetry involving time translation by one period followed by spatialtranslation by d, where again kl1 � d = kl2 � d = �.We now examine (5) more 
losely in the 
ase that � = +1 so that we 
annot remove thequadrati
 nonlinearities by normal form transformation. We fo
us on a detuning from the bi
riti
alpoint su
h that the C mode is weakly damped, while the A;B modes are neutrally stable. In this
ase, j�j = 1; � < 1, we 
an further redu
e the bifur
ation problem to one involving the 
riti
almodes A and B, with C 
onstrained to the 
enter manifold: C = Æ(1��)AB + � � �. We then obtainthe redu
ed bifur
ation problemA ! �A+ ajAj2A+ �(�r)jBj2AB ! �B + ajBj2B + �(�r)jAj2B ; (8)where the 
ross{
oupling 
oeÆ
ient is �(�r) = b+ �Æ(1� �) : (9)We see that in this 
ase, the near 
riti
al spatio{temporally resonant mode C in (5) 
an 
ontributesigni�
antly to the 
ross-
oupling 
oeÆ
ient �(�r) sin
e 0 < 1 � � � 1 in (9). For example, for� suÆ
iently 
lose to 1, the se
ond term in (9) dominates and �(�r) be
omes large in magnitude.However, we also point out that if b and �Æ have opposite signs, then �(�r) 
ould a
tually vanish7



for some ��1 > 0. Examples of these two very di�erent situations are given in se
tions 3.2 and 3.3,respe
tively.We 
ontrast the above with what happens when � = �1 at the bi
riti
al point. In this 
ase� = Æ = 0 in the normal form (7) and C = 0 is an invariant subspa
e with asso
iated dynami
s of theform (8) with �(�r) = b. In this 
ase, the triad is spatially resonant, but not temporally resonant,and the 
ross{
oupling 
oeÆ
ient is insensitive to any parameter proximity to the bi
riti
al point.These observations about �(�r) are important for understanding whi
h patterns might be ob-servable near onset sin
e bran
hing dire
tion and stability of patterns are determined by variousnonlinear (
ross{
oupling) 
oeÆ
ients in the amplitude equations. We dis
uss this further at theend of Se
tion 2.3.Finally we note that similar results to the � = �1 
ase above apply when there are weaklydamped modes with 
omplex Floquet multipliers. Spe
i�
ally, these modes do not 
ontribute sig-ni�
antly to the 
ubi
 
ross{
oupling 
oeÆ
ient �(�), even when they are spatially resonant with the
riti
al modes. Only damped modes with Floquet multiplier � suÆ
iently 
lose to +1 
ontribute.2.3 Hexagonal Latti
e Bifur
ation ProblemThe analysis of the previous se
tion led to 
ertain 
on
lusions about the nonlinear 
oeÆ
ients inthe general rhombi
 latti
e bifur
ation problemv1 ! �v1 + (ajv1j2 + �(�)jv2j2)v1v2 ! �v2 + (ajv2j2 + �(�)jv1j2)v2: (10)Here v1, v2 are the 
omplex amplitudes of two 
riti
al Fourier modes with waveve
tors k1, k2(jk1j = jk2j = k
) that are separated by an angle � 2 (0; �2 ℄ (� 6= �3 ). In parti
ular, it followsfrom (9) that if a weakly damped harmoni
 mode is removed via 
enter manifold redu
tion, then�(�) be
omes large in magnitude when the spatial resonan
e 
ondition is met, i.e. when � = �r.This is in 
ontrast to the situation where there are weakly damped subharmoni
 modes, whi
h haveno spe
ial in
uen
e on the pattern sele
tion problem at onset.We now lay the framework for examining possible impli
ations of these results for stability of har-moni
 hexagonal and triangular superpatterns. We follow [2℄ and introdu
e the twelve{dimensionalD6 _+T2{equivariant bifur
ation problems that enable us to determine the relative stability of simplehexagonal patterns, stripe patterns and 
ertain rhombi
 and superlatti
e patterns. We make use ofbifur
ation results derived in [2, 33, 34℄, whi
h apply when there is a single 
riti
al wavenumber k
,to demonstrate how the magnitude of the 
ross{
oupling terms are pivotal in determining patternstability. As before, we 
onsider a strobos
opi
 map, but now restri
t analysis to patterns that aredoubly{periodi
 on some hexagonal latti
e. For instan
e, the free surfa
e height takes the formh(x; pT ) = Xm2Z2 ĥm(p)ei(m1k1+m2k2)�x + 
:
: (11)at time t = pT , where k1;k2 2 R2 generate a hexagonal dual latti
e (jk1j = jk2j and k1 � k2 =� 12 jk1j2); see Figure 3.The twelve{dimensional irredu
ible representations of D6 _+T2 apply to the bifur
ation problemwhen there are twelve integer pairs (m1;m2) in (11) su
h that jm1k1 + m2k2j = k
, where k
 isthe 
riti
al wavenumber of the instability at the bifur
ation point. See Figure 3 for an example.8



Following [33℄ we will asso
iate with ea
h twelve{dimensional irredu
ible representation an integerpair (n1; n2); in parti
ular n1 and n2 are 
o{prime, n1 > n2 > n1=2 > 0, and n1 + n2 is not amultiple of 3. The neutral modes that span the 
enter eigenspa
e at the bifur
ation point take theform fz1 eiK1�x + z2 eiK2�x + z3 eiK3�x + z4 eiK4�x + z5 eiK5�x + z6 eiK6�x + 
:
:jzj 2 Cg; (12)where K1 = n1k1 + n2k2; K4 = n1k1 + (n1 � n2)k2;K2 = (�n1 + n2)k1 � n1k2; K5 = �n2k1 � n1k2; (13)K3 = �n2k1 + (n1 � n2)k2; K6 = (n2 � n1)k1 + n2k2 :Note that �K1;�K2;�K3 point to the verti
es of a hexagon, as do �K4;�K5;�K6, and that thetwo hexagons are rotated relative to ea
h other by an angle �h 2 (0; �3 ) indi
ated in Figure 3. Thisangle is related to (n1; n2) by 
os(�h) = n21 + 2n1n2 � 2n222(n21 � n1n2 + n22) : (14)Also note that the ratio of lengths
ales for superpatterns depends on (n1; n2). Spe
i�
ally, jk1jdetermines the larger periodi
ity s
ale of the superpatterns, while jKj j = k
 determines the smallerlengths
ale asso
iated with the instability; thus the lengths
ale ratio isjKj j=jk1j =qn21 � n1n2 + n22 � p7: (15)The example of Figure 3 
orresponds to (n1; n2) = (3; 2), for whi
h �h � 22Æ in (14) and thelengths
ale ratio (15) is the smallest asso
iated with a hexagonal latti
e, namely p7. These are theangle and lengths
ale ratio that apply to the experimental superlatti
e pattern reprodu
ed from [1℄in Figure 1a.The general form of the twelve{dimensional D6 _+T2{equivariant mappings are derived in [34℄.Through 
ubi
 order in zj , they take the formz1 ! ��(1 + �)z1 + �z2z3 + (b1jz1j2 + b2jz2j2 + b2jz3j2 + b4jz4j2 + b5jz5j2 + b6jz6j2)z1�z2 ! ��(1 + �)z2 + �z1z3 + (b1jz2j2 + b2jz1j2 + b2jz3j2 + b4jz5j2 + b5jz6j2 + b6jz4j2)z2�z3 ! ��(1 + �)z3 + �z1z2 + (b1jz3j2 + b2jz1j2 + b2jz2j2 + b4jz6j2 + b5jz4j2 + b6jz5j2)z3� (16)z4 ! ��(1 + �)z4 + �z5z6 + (b1jz4j2 + b2jz5j2 + b2jz6j2 + b4jz1j2 + b5jz3j2 + b6jz2j2)z4�z5 ! ��(1 + �)z5 + �z4z6 + (b1jz5j2 + b2jz4j2 + b2jz6j2 + b4jz2j2 + b5jz1j2 + b6jz3j2)z5�z6 ! ��(1 + �)z6 + �z4z5 + (b1jz6j2 + b2jz4j2 + b2jz5j2 + b4jz3j2 + b5jz2j2 + b6jz1j2)z6�;where � measures the distan
e from the 
riti
al ex
itation amplitude, and � = +1(�1) in the
ase of (sub)harmoni
 instability. All nonlinear 
oeÆ
ients are real. If � = �1 then a normalform transformation removes all even terms on the right{hand{side of (16) and hen
e � = 0. The9



K1K2
K3K5
K4

K6
�h

Figure 3: Hexagonal k{spa
e latti
e, with 
riti
al 
ir
le of radius k
 superimposed. In this example(n1; n2) = (3; 2) in (13), and the 
riti
al 
ir
le interse
ts twelve points that lie at the verti
es of twohexagons rotated by �h relative to ea
h other.dependen
e of the general equivariant bifur
ation problem on (n1; n2) does not appear until higherthan 
ubi
 order in its Taylor expansion [34℄.We now re
all some basi
 results pertaining to the bifur
ation problem (16). In the � = +1 
asethe equivariant bran
hing lemma [31℄ ensures the existen
e of harmoni
 wave solution bran
hes inthe form of stripes, simple hexagons, rhombs, and super hexagons [33℄. A primary solution bran
hwith submaximal isotropy, named super triangles, was also shown to exist in [2℄. See Figure 1afor an example of this pattern. Table 1 gives the general form of these solutions, along with theirbran
hing and stability assignments. The general bifur
ation results in the 
ase that � = �1 
anbe found in [34℄; this bifur
ation problem di�ers from the harmoni
 
ase in that it possesses anadditional Z2 normal form symmetry. The equivariant bran
hing lemma then ensures existen
e of�ve additional solution bran
hes to those listed in Table 1 [34℄.The generi
 presen
e of a quadrati
 term in (16) for the harmoni
 
ase renders all of the abovesolutions unstable at bifur
ation. Hen
e the transition from the 
at state to the patterned harmoni
wave state is expe
ted to be hystereti
. In order to 
apture stable weakly nonlinear solutions, wemust fo
us our analysis on the unfolding of the degenerate bifur
ation problem � = 0. Note thatwhen � = 0 the stability of simple and super hexagons/triangles is not determined at 
ubi
 ordersin
e the phases �j of solutions zj = rjei�j to (16) are then arbitrary. Even in the 
ase of 0 < j�j � 1the relative stability of super hexagons and super triangles depends on terms that are at least �fthorder. However, we may use the 
ubi
 trun
ation to determine that one (and only one) of thesetwo solutions is stable. The higher order terms are only needed to determine whether it is thehexagonal or triangular superpattern [2℄.When 0 < j�j � 1, it follows from Table 1 that a ne
essary 
ondition for one of the superpatternsto be stable over some range of � values near onset is forb1 + 2b2 < �jb4 + b5 + b6j < 0 : (17)10



Table 1: Bran
hing equations and stability assignments for the harmoni
 
ase (� = +1); �; b1; : : : ; b6are 
oeÆ
ients in the bifur
ation equations (16). A solution is stable if all quantities in the right
olumn are negative. See [2, 33, 34℄ for more details.Planform and bran
hing equation StabilityStripes sgn(b1),z = (x; 0; 0; 0; 0; 0) sgn(�x+ (b2 � b1)x2); sgn(��x+ (b2 � b1)x2),0 = �x+ b1x3 +O(x5) sgn(b4 � b1); sgn(b5 � b1); sgn(b6 � b1)Simple Hexagons sgn(�x+ 2(b1 + 2b2)x2); sgn(��x+ (b1 � b2)x2)z = (x; x; x; 0; 0; 0) sgn(��x+ (b4 + b5 + b6 � b1 � 2b2)x2)0 = �x+ �x2 + (b1 + 2b2)x3 +O(x4) sgn(��x+O(x3))Rhombs (Rh4) sgn(b1 + b4); sgn(b1 � b4); sgn(�1); sgn(�2);z = (x; 0; 0; x; 0; 0) where �1 + �2 = (�2b1 � 2b4 + 2b2 + b5 + b6)x2,0 = �x+ (b1 + b4)x3 +O(x5) �1�2 = ��2x2 + (b1 + b4 � b2 � b5)(b1 + b4 � b2 � b6)x4Rhombs (Rh5) same as Rh4 with b4 $ b5z = (x; 0; 0; 0; x; 0)Rhombs (Rh6) same as Rh4 with b4 $ b6z = (x; 0; 0; 0; 0; x) sgn(�x+ 2(b1 + 2b2 + b4 + b5 + b6)x2)Super Hexagons sgn(�x+ 2(b1 + 2b2 � b4 � b5 � b6)x2)z = (x; x; x; x; x; x) sgn(��x+O(x3)); sgn(�1); sgn(�2),0 = �x+ �x2 + (b1 + 2b2)x3 where �1 + �2 = �4�x+ 4(b1 � b2)x2,+(b4 + b5 + b6)x3 +O(x4) �1�2 = 4(�x� (b1 � b2)x2)2�2((b4 � b5)2 + (b4 � b6)2 + (b5 � b6)2))x4sgn(�3), where �3 = O(x2(n1�1))Super Triangles Same as super hexagonsz = (z; z; z; z; z; z); ex
ept �3 ! ��3z = xei ;  6= 0; �; : : :
11



The 
ombination b1 + 2b2 is independent of the latti
e angle �h in (14); it is 
omputed froma hydrodynami
 model of the two{frequen
y Faraday problem in the Appendix by 
onsideringbifur
ation to simple hexagons. In 
ontrast, the 
ombination b4 + b5 + b6 depends on �h and is
omputed in the appendix from the hydrodynami
 equations by 
onsidering the rhombi
 latti
ebifur
ation problem (10). Spe
i�
ally, the 
ross{
oupling 
oeÆ
ients b4; b5; b6 areb4 = �(�h); b5 = ���h + 2�3 �; b6 = ���h � 2�3 �; (18)where �h is the angle between K1 and K4 given by (14). (The fun
tion �(�) may be extendedfrom � 2 (0; �2 ℄ to angles � 2 (0; 2�) using �(�) = �(��) = �(� + �), identities that follow from thesymmetries of the rhombi
 latti
e bifur
ation problem.)The inequality (17) will be satis�ed (if at all) only for those �h values where jb4 + b5 + b6j issmall 
ompared to jb1 + 2b2j. Moreover, if b1 � b2 < 0 in addition to (17), then simple hexagonsbe
ome unstable on a given hexagonal latti
e when� = � �2(b4 + b5 + b6)(b1 + 2b2 � b4 � b5 � b6)2 : (19)If b4 + b5 + b6 < 0 for all �h, then simple hexagons �rst lose stability with in
reasing � to aperturbation in the dire
tion of a superpattern for that value of �h that minimizes jb4 + b5 + b6j.If b4 + b5 + b6 > 0 for any �h, then small amplitude simple hexagons are unstable when � > 0.Thus we expe
t the stability properties of superpatterns and simple hexagons to be a�e
ted by thepresen
e of a weakly damped harmoni
 mode when �h or �h � 2�=3 is near �r (or � � �r), theresonant triad angle, sin
e it is in this situation that one of the 
ross{
oupling 
oeÆ
ients b4, b5 orb6 may suddenly 
hange in magnitude.3 ResultsThis se
tion shows expli
itly the role of resonant triads and weakly damped harmoni
 modes inthe pattern sele
tion problem for two{frequen
y for
ed Faraday waves. We examine how the 
ubi
nonlinear 
oeÆ
ients in (16), for the Zhang{Vi~nals hydrodynami
 equations vary as a fun
tion of�h, the latti
e angle and explain how this 
an be related to �r, the resonant triad angle. Thedetails of the 
omputation of the 
oeÆ
ients are relegated to the Appendix. We fo
us on twoexamples, involving for
ing frequen
y ratios m=n = 2=3 and 6/7. The 2/3 
ase demonstrates thebasi
 di�eren
e between the pattern sele
tion problems for subharmoni
 and harmoni
 instabilitiesnear the bi
riti
al point. Our investigation also reveals a fundamental di�eren
e between harmoni
wave pattern sele
tion in the 2/3 and 6/7 
ases, due to the presen
e of additional harmoni
 waveresonan
e tongues for the higher 6/7 for
ing frequen
ies; see Figure 4.3.1 The Zhang-Vi~nals Hydrodynami
 EquationsThe quadrati
 and 
ubi
 nonlinear 
oeÆ
ients in the hexagonal bifur
ation problem (16) are 
om-puted in the appendix from a model of the two{frequen
y Faraday problem derived by Zhang andVi~nals [3℄ from the Navier{Stokes equations. Their equations, whi
h apply to weakly damped,12
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(b)Figure 4: Neutral stability 
urves 
omputed from (20) linearized about h = � = 0. Floquetmultipliers of +1 (�1) are indi
ated by solid (dashed) lines. (a)m=n = 2=3, � = 0Æ, � = �
 = 66:6Æ,�0 = 0:53, G0 = 0:47 and 
 = 0:09 in (20){(21). (b) m=n = 6=7, � = 0Æ, � = �
 = 53:0Æ, �0 = 7:5,G0 = 1:5 and 
 = 0:08.small amplitude surfa
e waves on a semi{in�nite layer of 
uid, des
ribe the evolution of the surfa
eheight h(x; �) and surfa
e velo
ity potential �(x; �). Spe
i�
ally,��h = 
r2h+ bD��r � (hr�) + 12r2(h2 bD�)� bD(h bD�) + bD[h bD(h bD�) + 12h2r2�℄��� = 
r2�+ �0r2h�G(�)h + 12( bD�)2 � 12(r�)2 � ( bD�)[hr2�+ bD(h bD�)℄ (20)� 12�0r � ((rh)(rh)2);where bD is a nonlo
al operator that multiplies ea
h Fourier 
omponent of a �eld by its wavenumber, i.e. bDeik�x = jkjeik�x. Here time has been s
aled by ! so that the (non{dimensionalized)two{frequen
y a

eleration isG(�) = G0 � f(
os(�) 
os(m�) + sin(�) 
os(n� + �)): (21)The damping number (
), 
apillarity number (�0), gravity number (G0), and dimensionless a

el-eration (f) are related to the for
ing fun
tion (1) and the 
uid parameters by
 � 2�k20! ; �0 � �k30�!2 ; G0 � g0k0!2 ; f � gzk0!2 : (22)Here � is the kinemati
 vis
osity, � is the surfa
e tension, � is the 
uid density, and the wavenumber k0 is 
hosen to satisfy the dispersion relationg0k0 + �k30� = �m!2 �2: (23)13



3.2 Example 1: m/n=2/3This example demonstrates a result of the general normal form analysis of Se
tion 2.2, namelythat proximity to the subharmoni
/harmoni
 bi
riti
al point will strongly in
uen
e the patternsele
tion problem for subharmoni
 waves, but not for harmoni
 waves. Spe
i�
ally, we examinethe 
ross{
oupling 
oeÆ
ient �(�) in (10) as a fun
tion of the angle � for onset of both harmoni
and subharmoni
 waves near the bi
riti
al point. We show that only in the subharmoni
 
ase doesj�(�)j be
ome large at the resonant angle �r in (3).As des
ribed in Se
tion 2.1, the primary instability 
hanges from harmoni
 (Floquet multiplier+1) to subharmoni
 (Floquet multiplier �1) as � in (21) is in
reased through the bi
riti
al point �
.This transition is determined from the linear hydrodynami
 problem, whi
h for the Zhang{Vi~nalsmodel (20) takes the form of a damped Mathieu equation for ea
h Fourier mode h = hk(�)eikx:h00k + 2
k2h0k + (
2k4 +
2k)hk = f
k�
os(�) 
os(m�) + sin(�) 
os(n�)�hk: (24)Here the natural frequen
y 
k satis�es the dispersion relation 
2k = G0k + �0k3. A numeri
ally{
omputed neutral 
urve f(k) for m=n = 2=3 for
ing and � = �
 = 66:6Æ is given in Figure 4a. Theother parameters of this example are � = 0Æ, �0 = 0:53, G0 = 0:47 and 
 = 0:09.We now vary � near �
, holding all other parameters �xed, and examine the rhombi
 latti
e
ross{
oupling 
oeÆ
ient �(�) in (10) for onset subharmoni
/harmoni
 waves, as appropriate. Wehave s
aled the amplitudes v1 and v2 in (10) so that a = �1. We note that in the harmoni

ase � diverges as � ! 60Æ, i.e. when the rhombi
 latti
e approa
hes the hexagonal one andthere is an additional mode asso
iated with the 
enter manifold dynami
s. This is in 
ontrastto the subharmoni
 
ase, for whi
h there is a normal form symmetry that ensures existen
e of adynami
ally invariant subspa
e spanned by a pair of subharmoni
 modes separated by 60Æ. Thusin the subharmoni
 
ase � remains �nite at � = 60Æ.For � > �
 the primary instability is to subharmoni
 waves. For instan
e, for � = 66:7Æ theminimum of the neutral 
urve o

urs at wavenumber k
;s = 1:415 with for
ing amplitude f
 = 0:842,and is asso
iated with a Floquet multiplier � = �1. The nearly 
riti
al harmoni
 resonan
e tonguehas its minimum at (k; f) = (0:962; 0:846). In this 
ase, there is a spatio{temporally resonant triad
omprised of the weakly damped harmoni
 mode and, from (3), two subharmoni
 modes separatedby �r = 39:9Æ. It follows from our general analysis of Se
tion 2.2 that �(�) will be large in magnitudefor � near �r. Figure 5a shows �(�) for this 
ase, and indeed, the nonlinear 
oeÆ
ient exhibits alarge dip 
entered at � = �r = 39:9Æ. At this angle, j�(�)j takes on its largest value. Similarobservations have been made by Zhang and Vi~nals [23℄ for for
ing frequen
ies in ratio m=n = 1=2.In 
ontrast, when � < �
, so that the �rst instability to o

ur with in
reasing f is harmoni
,we �nd that the weakly damped subharmoni
 mode leaves no signature in the plot �(�). Forinstan
e, for � = 66:5Æ the primary instability is to harmoni
 waves at wavenumber k
;h = 0:963and for
ing amplitude f
 = 0:841. The subhharmoni
 resonan
e tongue has a minimum at (k; f) =(1:415; 0:843). While there is a spatially resonant triad involving two 
riti
al harmoni
 modes,whi
h by (2) are separated by �r = 85:7Æ, the triad of modes is not spatio{temporally resonant.Figure 5b shows the 
ross-
oupling 
oeÆ
ient �(�) for this 
ase (with the region near 60Æ removed).As anti
ipated, there is no signature of the weakly damped subharmoni
 mode in the plot. Similarobservations have been made by Silber and Skeldon [26℄ in the setting of one{dimensional surfa
ewave patterns. 14
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(b)Figure 5: Cross 
oupling 
oeÆ
ients �(�) in (10) 
omputed in the Appendix from (20) for the 
asem=n = 2=3 and � = 0Æ in (21). The 
uid parameters used are given in the 
aption of Figure 4a.(a) � = 66:7Æ > �
, when the bifur
ation is to subharmoni
 waves. Note the dip at � = �r = 39:9Æ.(b) � = 66:5Æ < �
, when the bifur
ation is to harmoni
 waves. Be
ause the (nearly) 
riti
al modesare not in temporal resonan
e, �(�) shows no spe
ial stru
ture at � = �r = 85:7Æ. We have removedfrom this plot the region near � = 60Æ, where �(�) diverges.3.3 Example 2: m/n=6/7This example demonstrates a fundamental di�eren
e between harmoni
 wave pattern sele
tion forlow for
ing frequen
ies (e.g., 2!=3!) and for high for
ing frequen
ies (e.g., 6!=7!). This di�eren
eis due to the presen
e of multiple harmoni
 resonan
e tongues in the neutral 
urve asso
iated withthe higher for
ing frequen
ies; see Figure 4. In parti
ular, these resonan
e tongues suggest thepossiblity that weakly damped harmoni
 modes may in
uen
e the harmoni
 wave pattern sele
tionproblem. This is in 
ontrast to the m=n = 2=3 example of the previous se
tion, for whi
h onlysubharmoni
 wave pattern 
ompetition was a�e
ted by weakly damped harmoni
 waves. In thisse
tion we also demonstrate that the weakly damped harmoni
 modes may stabilize harmoni
 wavesuperpatterns at a latti
e angle �h � �r, due to a near 
an
ellation of the two terms that 
ontibuteto �(�r) given by (9) as des
ribed in Se
tion 2.2.We fo
us on bifur
ation to harmoni
 waves for � = 52:4Æ, whi
h is 
lose to the bi
riti
al value�
 = 53:0Æ. The remaining parameters are � = 0Æ, �0 = 7:5, G0 = 1:5 and 
 = 0:08. We note thatwhile the for
ing frequen
y ratiom=n = 6=7 
oin
ides with that used in the experiments of Kudrolli,et al. [1℄, the remaining parameters do not 
oin
ide with the experiment. One problem with usingthe experimental parameters in the Zhang{Vi~nals equations is that the primary instability thenmoves to a subharmoni
 resonan
e tongue at very small wavenumber, i.e., the �rst resonan
etongue of Figure 4b. This is be
ause the Zhang{Vi~nals model does not a

urately 
apture thedamping at small k that is due to �nite depth e�e
ts.In this example we �nd two prominent features in the plot of the 
ross{
oupling 
oeÆ
ient �(�)in Figure 6a: a large dip at � = 67:6Æ and a small spike at � = 22:2Æ. We now dis
uss the origin ofthese two features.The large dip around � = 67:6Æ is not a 
onsequen
e of two{frequen
y for
ing. Spe
i�
ally,15



the dip remains in �(�) even for purely 6! for
ing (i.e. in the limit � ! 0); 
f. plots of �(�)in Figures 6a and 6
 whi
h are obtained with � = 52:4Æ and � = 0Æ, respe
tively. Thus thisfeature may be understood in the 
ontext of single frequen
y for
ing, and has in fa
t already beeninvestigated by Zhang and Vi~nals [3℄ in that setting. Spe
i�
ally, if � = 0Æ then the for
ing periodis T 0 = T6 = 2�6 and the primary instability is to subharmoni
 waves with period 2T 0. A plotof the 
orresponding neutral 
urve is given in Figure 6d, with the primary harmoni
 resonan
etongue from Figure 4b superimposed on it. In this single{frequen
y setting the feature at 67:6Æis understood as being due to the damped harmoni
 mode around k = 1:7 in Figure 6d. Perhapsmore relevant to this dis
ussion is our observation that this feature, whi
h leads to a large value ofjb4 + b5 + b6j, is destabilizing for superpatterns. To see this, we refer to the dis
ussion surroundingequation (17) and to Figure 6b, whi
h shows that0 > b1 + 2b2 > b4 + b5 + b6 = �(�h) + ���h + 2�3 �+ ���h � 2�3 �;= �(�h) + ���3 � �h�+ ���3 + �h� for �3 + �h � 67:6Æ: (25)In 
ontrast the spike at � = 22:2Æ in Figure 6a minimizes jb4 + b5 + b6j at �h � 22:2Æ, as shownin Figure 6b. As we show below, this feature 
an lead to a stabilization of superpatterns and adestabilization of the simple hexagons. First we provide strong eviden
e that the spike is due to aresonan
e between the primary harmoni
 instability (� = 1) and a weakly damped harmoni
 modewith a real Floquet multiplier � that is 
lose to 1 (see (5) and (9) of Se
tion 2.2). In order toshow this we must �rst 
ompute the Floquet multipliers �(k) at the 
riti
al for
ing amplitude f
to determine the wavenumbers k at whi
h � � 1 at the onset of instability.We determine the Floquet multipliers �(k) at f = f
 = 1:552 numeri
ally from the linearproblem (24). These are presented in Figure 7. We �nd that the multipliers are well approximatedaway from the two primary resonan
e tongues by 
onsidering the unfor
ed problem (f = 0 inequation 24), for whi
h �� = e2��� ; �� = �
k2 � i
k : (26)Figures 7a and 7b show the magnitude � and the phase  of the Floquet multipliers � = �ei bothas 
omputed numeri
ally from (24) (solid line) and approximated by (26) (dotted line). Figure 7
shows the real part of the Floquet multipliers, � 
os , versus wavenumber k. The \bubbles" in thisplot 
orrespond to wavenumbers at whi
h the Floquet multipliers are real (as opposed to a 
omplex
onjugate pair). Weakly damped harmoni
 modes are asso
iated with bubbles near a Floquetmultiplier of +1. Numeri
ally we �nd that there are small bubbles of real Floquet multiplierswhenever the phase  is a multiple of �; this is demonstrated in Figure 7d. In parti
ular, we �nda bubble at wavenumber k = 0:383, with asso
iated real Floquet multiplier � = 0:93. This mode isweakly damped and forms a resonant triad with primary harmoni
 modes separated by �r = 22:2Æ.(Here k
;h = 0:997 for the primary instability, whi
h 
orresponds to kn in (3), with km = 0:393determined by the weakly damped harmoni
 mode.) Here we have fo
used on the wavenumbersasso
iated with real Floquet multipliers near � = +1 sin
e weakly damped modes with 
omplexFloquet multipliers do not form a spatio{temporally resonant triad with the primary harmoni
modes.We now present some hexagonal latti
e bifur
ation results for the spe
i�
 parameters of thisexample, whi
h are given in Figure 4b. The 
omputation of the quadrati
 and 
ubi
 
oeÆ
ients inthe bifur
ation problem (16) is des
ribed in the Appendix. We s
ale the amplitudes zj in (16) so16
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(d)Figure 6: (a) Cross-
oupling 
oeÆ
ient �(�) in (10) 
omputed from (20) for the 
ase m=n = 6=7,� = 0Æ and � = 52:4Æ < �
 in (21), and for 
uid parameters given in the 
aption of Figure 4b.(b) Plots of b1 + 2b2 (dashed) and b4 + b5 + b6 (solid) versus �h. We note that �h only takes onthe dis
rete values satisfying (14). (
) Cross-
oupling 
oeÆ
ient �(�) for 6! for
ing only; we haveused the same parameters as in (a) ex
ept that now � = 0Æ. (d) Neutral 
urve for single frequen
yfor
ing. Floquet multipliers of +1 (�1) are indi
ated by solid (dashed) lines, and are 
omputedrelative to the period T 0 = 2�=6. The primary harmoni
 resonan
e tongue from the two{frequen
y
ase of Figure 4b is superimposed as a dotted line.
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Figure 7: Floquet multipliers � = �ei 
omputed from (24) for the parameters used in Figure 4b andfor 
riti
al for
ing amplitude f = f
 = 1:552. (a) Magnitude �, and (b) phase  vs. wavenumberk. The solid lines in (a) and (b) are 
omputed numeri
ally, while the the dotted lines are obtainedby 
onsidering the unfor
ed problem f = 0; see equation 26. (
) Numeri
ally 
omputed real part� 
os of the Floquet multipliers. The \bubbles" 
orrespond to real-valued Floquet multipliers.The boxed region, shown blown up in (d), reveals a tiny \bubble" around k = 0:383, with realFloquet multiplier � = 0:93.
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that b1 = �1, in whi
h 
ase we �nd that � = 0:00014 and b2 = �2:73. Thus we expe
t results ofSe
tion 2.3, whi
h fo
used on the unfolding of the degenerate bifur
ation problem � = 0, to apply.We �nd that simple hexagons, super hexagons and super triangles all bifur
ate trans
riti
allywith the sub
riti
al bran
h turning around in a saddle{node bifur
ation. The stripes and rhombssolutions arise in super
riti
al pit
hfork bifur
ations. These 
laims are true for all latti
e angles�h sin
e the 
ubi
 
oeÆ
ients b1; : : : ; b6 in (16) are always negative; see Figure 6a. Moreover, we�nd that simple hexagons are always stabilized in a saddle{node bifur
ation and that they do notlose stability until after they rea
h the super
riti
al regime � > 0. In 
ontrast, super hexagons andsuper triangles are always unstable at � = 0, sin
e at that point the sign of the se
ond eigenvalue inTable 1 is determined by sgn(b1 +2b2� 3b4� 3b5� 3b6), whi
h is positive for all � (see Figure 6b).Thus, as � is in
reased through 0, we expe
t a jump to �nite amplitude simple hexagons as theother primary bran
hes of (16) are unstable.We �nd that simple hexagons eventually lose stability as � in
reases sin
e the following twoexpressions from Table 1 
hange sign to positive (at least for some �h)sgn(��x+ (b1 � b2)x2); sgn(��x+ (b4 + b5 + b6 � b1 � 2b2)x2): (27)as the amplitude x of simple hexagons grows with �. The �rst quantity 
hanges from negative topositive at � � 3:2�10�8. The se
ond quantity 
hanges sign with in
reasing � only for those valuesof �h where b4 + b5 + b6 � b1 � 2b2 > 0, a 
ondition whi
h is met for �h � 11:5Æ. Figure 8a showsthe value of � where the expressions of (27) 
hange sign as a fun
tion of �h. It follows that simplehexagons lose stability �rst on the latti
e with angle �h � 22:2Æ. This instability has an asso
iatedeigenve
tor in the dire
tion of super hexagon/triangles, and at this value of �, super hexagons (ortriangles) are stable. These results are summarized in Figure 8b, whi
h shows part of the bifur
ationdiagram 
omputed for the hexagonal latti
e with (n1; n2) = (3; 2), whi
h 
orresponds to an angle�h = 21:8Æ. Note that when simple hexagons lose stability, both rhombs (Rh) and a superpatternare stable. Be
ause the instability that �rst destabilizes the simple hexagons is in the dire
tion ofa superpattern with �h � 22:2Æ, we expe
t that the transition would be a hystereti
 one involvingthe simple hexagons and a superpattern, at least in the absen
e of noise and other imperfe
tions.We 
annot determine whether the superpattern is hexagonal or triangular from our 
al
ulations,sin
e this requires knowledge of �fth order terms in the bifur
ation problem [34℄.4 Con
lusionsIn this paper we have examined the e�e
t of spatio-temporally resonant triads on two-dimensionalpattern sele
tion in parametri
ally ex
ited systems. Using a normal form transformation to enfor
etemporal symmetry and 
enter manifold redu
tion, we have argued that weakly damped harmoni
modes 
an strongly in
uen
e pattern sele
tion by 
ausing 
ertain 
ubi
 
ross-
oupling 
oeÆ
ientsin a twelve{dimensional D6 _+T2{equivariant bifur
ation problem to suddenly vary in magnitude for
ertain latti
e angles �h. This suggests an important 
onsideration in 
hoosing one over another ofthe 
ountable set of twelve{dimensional representations relevant to hexagonal bifur
ation problems.Weakly damped subharmoni
 modes, on the other hand, do not have su
h an e�e
t.Our general analysis applies to any parametri
ally ex
ited pattern forming system, but in par-ti
ular is relevant to the interpretation of many re
ent experiments on two-frequen
y for
ed Faradaywaves. In su
h experiments, a bi
riti
al point exists where subharmoni
 and harmoni
 instabilities19
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Figure 8: (a) � value at whi
h the �rst (dashed) and se
ond (solid) eigenvalue expressions in (27)turn positive versus the latti
e angle �h. Note that simple hexagons (H) �rst lose stability toperturbations in the super hexagon/triangle (SH/ST) dire
tion at �h � 22:2Æ. (b) S
hemati
bifur
ation diagram for the (n1; n2) = (3; 2) latti
e of Figure 3, whi
h 
orresponds to �h = 21:8Æ.Stable (unstable) solutions are indi
ated by a solid (dotted) line. We do not show se
ondarybran
hes or primary bran
hes that are never stable. The stable rhombs solution (Rh) 
orrespondsto one with an angle of 81:8Æ, whi
h is the rhombs solution 
losest to 90Æ for this hexagonal latti
e.The other two rhombs solutions are unstable.are simultaneously ex
ited. On one side of the bi
riti
al point, a subharmoni
 mode is ex
ited andthere is a weakly damped harmoni
 mode, while on the other, it is the harmoni
 mode whi
h isex
ited and the subharmoni
 mode whi
h is weakly damped. We showed that this weakly dampedsubharmoni
 mode does not in
uen
e the harmoni
 wave pattern sele
tion problem.We have derived the quadrati
 and 
ubi
 
oeÆ
ients in the rhombi
 and hexagonal bifur
ationequations des
ribing the onset of patterns from the hydrodynami
 equations of Zhang and Vi~nals.We presented results for two di�erent sets of parameters. In the �rst 
ase, the two for
ing frequen
iesare in the ratio 2/3 and the modes near the bi
riti
al point are the only ones of relevan
e. Asexpe
ted from our normal form analysis, for subharmoni
 waves, the weakly damped harmoni
 modea�e
ts the 
ross{
oupling 
oeÆ
ients, while for harmoni
 waves, the weakly damped subharmoni
mode had no e�e
t.In the se
ond 
ase of 6/7 for
ing we have shown that, in addition to the modes near the bi
riti
alpoint, there are other harmoni
 modes that are important. These modes are not 
lose to onset inthe sense that they only be
ome 
riti
al at a mu
h higher value of the ex
itation amplitude, butare weakly damped and thus must be taken into a

ount. We demonstrate that they 
an have astabilizing e�e
t on superlatti
e patterns at a latti
e angle approximately equal to the angle of theharmoni
{harmoni
 resonan
e. This 
an o

ur if the 
ontribution of these weakly damped modesto the nonlinear 
ross{
oupling 
oeÆ
ient nearly 
an
els the other 
ontributions to this term, andhen
e is a subtle e�e
t that depends on 
ertain details of the nonlinear problem, as well as theresults of the linear analysis whi
h identi�es the near 
riti
al modes. For the parameters we have
hosen, the onset pattern is simple hexagons, but upon a further in
rease the for
ing, there is an20



instability to a superlatti
e pattern asso
iated with a hexagonal latti
e with (n1; n2) = (3; 2).The experiments of Kudrolli, Pier and Gollub [1℄ found a superlatti
e pattern near the bi
riti
alpoint whi
h sits on a latti
e with (n1; n2) = (3; 2). The work in this paper suggests that theobservation of this pattern 
ould be explained by the intera
tion of the primary harmoni
 stabilityand weakly damped harmoni
 modes. However, the Zhang-Vi~nals equations are not valid in theparameter regime where this experiment was performed, and thus a study of the full hydrodynami
problem is ne
essary to 
on�rm this 
onje
ture. A 
omplete study should also involve a more
omplete analysis of the 
odimension-2 bifur
ation point and the asso
iated dynami
s, in the spiritof J.D. Craword's early work on 
ompeting instabilities in the Faraday problem [27℄. This wouldbe of interest in light of re
ent two{frequen
y experiments by Arbell and Fineberg [11℄ that showa variety of dynami
 states near the bi
riti
al point, whi
h involve both 
riti
al modes.A Perturbation TheoryHere we outline the 
omputation of the 
oeÆ
ients in (10) and (16) from the equations of Zhang andVi~nals (20). A multiple-s
ale perturbation method is used to derive expressions for the 
oeÆ
ientswhi
h are then evaluated numeri
ally using a pseudospe
tral approa
h. This follows 
losely themethod des
ribed in [26℄ for the onset of one-dimensional patterns and we refer the reader therefor further details.The 
oeÆ
ients 
an be derived by 
onsidering two di�erent 
al
ulations, namely the bifur
ationproblem (16) restri
ted in turn to a rhombi
 and a simple hexagons subspa
e.A.1 Rhombi
 latti
e 
omputationIn order to 
ompute the 
oeÆ
ient a and the 
ross-
oupling 
oeÆ
ient �(�) in (10) we seek solutionswhi
h are periodi
 on a rhombi
 latti
e asso
iated with an angle �. We are thereby able to 
omputethe 
oeÆ
ients b1, b4, b5, and b6 in the bifur
ation equations (16) sin
e b1 = a, b4 = �(�h),b5 = �(�h + 2�=3), and b6 = �(�h � 2�=3).First we introdu
e a small parameter �, su
h thath(x; y; �) = �h1(x; y; �; T ) + �2h2(x; y; �; T ) (28)+ �3h3(x; y; �; T ) + � � ��(x; y; �) = ��1(x; y; �; T ) + �2�2(x; y; �; T )+ �3�3(x; y; �; T ) + � � � ;in (20) where T = �2�; f = f
 + �2f2: (29)Here f
 is the 
riti
al ex
itation amplitude. The terms in the expansion for h and � may be writtenin the following separable Floquet-Fourier form:h1 = [w1(T )eik
x + w4(T )eik
(
x+sy) + 
:
:℄p1(�) (30)�1 = [w1(T )eik
x + w4(T )eik
(
x+sy) + 
:
:℄q1(�)h2 = [w21(T )e2ik
x + w24(T )e2ik
(
x+sy)℄p2;1(�)21



+ w1(T )w4(T )eik
((1�
)x�sy)p2;2(�)+ w1(T )w4(T )eik
((1+
)x+sy)p2;3(�) + 
:
:�2 = [w21(T )e2ik
x + w24(T )e2ik
(
x+sy)℄q2;1(�)+ w1(T )w4(T )eik
((1�
)x�sy)q2;2(�)+ w1(T )w4(T )eik
((1+
)x+sy)q2;3(�) + 
:
:where 
 = 
os �, s = sin �, and � is not a multiple of �3 . Here p1 and q1 are real 2�-periodi
fun
tions of the fast time � in the 
ase of harmoni
 waves; in the 
ase of subharmoni
 waves theyare 4�-periodi
 in � . Additionally, p2;r and q2;r (r = 1; 2; 3) are real 2�-periodi
 fun
tions of � .The wave number k
 is asso
iated with the onset unstable mode.At O(�) we re
over the linear problem whi
h determines k
 and f
, as well as the fun
tions p1,q1 to within a multipli
ative 
onstant. At O(�2), equations are found whi
h allow us to solve forthe fun
tions p2;r and q2;r. Finally, at O(�3), we apply a solvability 
ondition to ensure that aperiodi
 solution exists. This 
ondition leads to the amplitude equationsÆ dw1dT = �f2w1 +Ajw1j2w1 +B(�)jw4j2w1 (31)Æ dw4dT = �f2w4 +Ajw4j2w4 +B(�)jw1j2w4;where Æ = 12� Z 4�0 (p01 + 
k2
p1)ep1 d� (32)� = k
4� Z 4�0 [
os(�) 
os(m�) + sin(�) 
os(n� + �)℄p1ep1 d�A = k2
4� Z 4�0 ��k
(p21q1)0 � 
k3
p21q1 � 2(q1p2;1)0 � 2
k2
q1p2;1+ k2
q21p1 + 32k3
�0p31�ep1 d�B(�) = k2
4� Z 4�0 h(1� 
�p2� 2
)[(p1q2;2)0 + 
k2
p1q2;2 � k
q1q2;2℄+ (1 + 
�p2 + 2
)[(p1q2;3)0 + 
k2
p1q2;3 � k
q1q2;3℄� (1� 
)[(p2;2q1)0 + 
k2
p2;2q1℄� (1 + 
)[(p2;3q1)0 + 
k2
p2;3q1℄� (6� 2p2� 2
� 2p2 + 2
)[k
(p21q1)0 + 
k3
p21q1 � k2
p1q21 ℄+ �0(3
2 + s2)k3
p31)iep1 d�:In the above, a prime denotes di�erentiation with respe
t to � and ep1 is the equivalent of p1 forthe adjoint problem at O(�). The amplitude equations (31) may be re-s
aled and then 
omparisonwith the map (10) yields a = b1 = sgn(A�); �(�) = sgn(A�)B(�)A : (33)22



A.2 Hexagonal latti
e 
omputationSimilarly, we 
ompute the 
oeÆ
ients � and b2 in the bifur
ation equations (16) by seeking solutionsin the form of simple hexagons. Here we use a three-timing perturbation method, writing thesolution as h(x; y; �) = �h1(x; y; �; T1; T2) + �2h2(x; y; �; T1; T2) (34)+ �3h3(x; y; �; T1; T2) + � � ��(x; y; �) = ��1(x; y; �; T1; T2) + �2�2(x; y; �; T1; T2)+ �3�3(x; y; �; T1; T2) + � � � ;where T1 = ��; T2 = �2�; (35)and h1 = w1(T1; T2)p1(�)[eik
x + eik
(� 12x+p32 y) + eik
(� 12x�p32 y) + 
:
:℄ (36)�1 = w1(T1; T2)q1(�)[eik
x + eik
(� 12x+p32 y) + eik
(� 12x�p32 y) + 
:
:℄h2 = w21(T1; T2)�p2;1(�)[eik
2x + eik
(�x+p3y) + eik
(�x�p3y) + 
:
:℄+ p2;2(�)[eik
x + eik
(� 12x+p32 y) + eik
(� 12x�p32 y) + 
:
:℄+ p2;3(�)[eik
( 32x�p32 y) + eik
p3y + eik
( 32x+p32 y) + 
:
:℄	�2 = w21(T1; T2)�q2;1(�)[eik
2x + eik
(�x+p3y) + eik
(�x�p3y) + 
:
:℄+ q2;2(�)[eik
x + eik
(� 12x+p32 y) + eik
(� 12x�p32 y) + 
:
:℄+ q2;3(�)[eik
( 32x�p32 y) + eik
p3y + eik
( 32x+p32 y) + 
:
:℄	:As with the rhombi
 
ase, p1, q1, p2;r and q2;r are real. Additionally, we take the amplitudew1(T1; T2) to be real.For the harmoni
 
ase, at O(�2) the solvability 
ondition,Æ �w1�T1 = �0w21 ; (37)must be satsi�ed, where Æ is given by (32). The quadrati
 
oeÆ
ient is�0 = k2
4� Z 4�0 [�(p1q1)0 � 
k2
p1q1 + 12k
q21 ℄ ep1 d� : (38)There is no solvability 
ondition for subharmoni
 waves at O(�2), 
orresponding to the fa
t thatthere are no even terms in the amplitude equations (16) for this 
ase.At order O(�3), we again apply a solvability 
ondition to ensure that a periodi
 solution exists.This 
onditions leads to the amplitude equationÆ �w1�T2 = �f2w1 + (A+ 2�2)w31 (39)23



The 
oeÆ
ients Æ, �, and A are given by (32), and�2 = 14� Z 4�0 h(32 �p3)k2
 [(p1q2;3)0 + 
k2
p1q2;3 � k
q1q2;3℄ (40)+ (2p3� 4)k3
 [(p21q1)0 + 
k2
p21q1 � k
p1q21 ℄� 32k2
 [(p2;3q1)0 + 
k2
p2;3q1 � �0k3
p31℄� 12k2
 [(p1q2;2)0 + 
k2
p1q2;2 + (p2;2q1)0 + 
k2
p2;2q1 � k
q1q2;2℄� �0Æ [k2
p1q1 + �0Æ p1 + 2p02;2 + 2
k2
p2;2℄iep1 d�:By res
aling �wj(T1; T2) ! wj(T ) and �2�f2 ! �f2, we obtain the re
onsituted hexagonal bifur-
ation equation Æ dw1dT = �f2q1 + �0w21 + (A+ 2�2)w31 (41)Finally, after res
aling as for the rhombi
 
ase, and 
omparing (41) to (16) we �nd that� = sgn(�) �0pj�Aj ; b2 = sgn(A�)�2A : (42)A
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