
Two{Frequeny Fored Faraday Waves:Weakly Damped Modes and Pattern SeletionMary Silber and Chad M. TopazDepartment of Engineering Sienes & Applied MathematisNorthwestern UniversityEvanston, IL 60208 USAAnne C. SkeldonDepartment of MathematisCity University, Northampton SquareLondon, EC1V OHB, UKApril 16, 2000To the memory of John David CrawfordAbstratReent experiments [1℄ on two{frequeny parametrially exited surfae waves produe anintriguing \superlattie" wave pattern near a odimension{two bifuration point where bothsubharmoni and harmoni waves onset simultaneously, but with di�erent spatial wavenumbers.The superlattie pattern is synhronous with the foring, spatially periodi on a large hexagonallattie, and exhibits small{sale triangular struture. Similar patterns have been shown toexist as primary solution branhes of a generi 12{dimensional D6 _+T2{equivariant bifurationproblem, and may be stable if the nonlinear oeÆients of the bifuration problem satisfyertain inequalities [2℄. Here we use the spatial and temporal symmetries of the problem toargue that weakly damped harmoni waves may be ritial to understanding the stabilization ofthis pattern in the Faraday system. We illustrate this mehanism by onsidering the equationsdeveloped by Zhang and Vi~nals [3℄ for small amplitude, weakly damped surfae waves on asemi{in�nite uid layer. We ompute the relevant nonlinear oeÆients in the bifurationequations desribing the onset of patterns for exitation frequeny ratios of 2/3 and 6/7. Forthe 2/3 ase, we show that there is a fundamental di�erene in the pattern seletion problemsfor subharmoni and harmoni instabilities near the odimension{two point. Also, we �nd thatthe 6/7 ase is signi�antly di�erent from the 2/3 ase due to the presene of additional weaklydamped harmoni modes. These additional harmoni modes an result in a stabilization of thesuperpatterns.
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1 IntrodutionFaraday waves are parametrially exited on the free surfae of a uid layer when it is subjeted toa vertial vibration of suÆient strength. This pattern{forming hydrodynami system has provento be an espeially versatile one in laboratory experiments [4, 5℄, exhibiting the ommon patternsfamiliar from onvetion (stripes, squares, hexagons, spirals), as well as more exoti patterns suhas triangles [6℄, quasipatterns [1, 7, 8℄, superlattie patterns [1, 9, 10℄, time{dependent rhombipatterns [11℄ and loalized waves [9, 12℄. See [13℄ for a reent review paper on Faraday wavepattern formation.The temporal period of the Faraday waves is typially twie that of the vibration in the ase ofpurely sinusoidal foring. The observation of this subharmoni response is attributed to Faraday [14℄and was �rst explained theoretially by Benjamin and Ursell's linear stability analysis for invisid,potential ow [15℄. More reently it has been shown that waves, synhronous with the foring,an be exited in thin layers of uid vibrated at low frequeny [16, 17, 18℄; in ertain visoelastiuids [9℄; and in uids fored periodially, but with more than one frequeny omponent [7, 19, 20℄.In eah of these Faraday systems it is possible to tune the foring parameters in order to aessthe transition between subharmoni and harmoni response. At this odimension{two point, bothinstabilities set in simultaneously, but with di�erent spatial wavenumbers.Many of the experimental [6, 7, 10, 11, 12, 21, 22℄ and theoretial studies [3, 23, 24, 25℄ ofexoti patterns in the Faraday system attribute their formation near the odimension{two (or\biritial") point to resonant triad interations involving the ritial or near{ritial modes withdi�erent spatial wavenumbers. In partiular, the fous has been on spatial triads k1, k2 andk3 = k1�k2, where jk1j = jk2j is the wavenumber of one ritial mode, and jk3j is the wavenumberof the other ritial mode. The angle �r, whih separates k1 and k2, is readily tuned by hangingthe frequeny omponents m! and n! of a two{frequeny periodi foring funtion. It has beensuggested, for example, that by tuning this angle, di�erent types of exoti wave patterns may beseleted [7℄. Suh a simple mehanism for nonlinear pattern seletion, whih is based on examiningthe linear instabilities of the spatially homogeneous state, is naturally attrative, but warrantsareful examination as we show.Silber and Skeldon [26℄ reently showed that whether resonant triads assoiated with the bi-ritial point a�et pattern seletion depends on the temporal harateristis of the ompetinginstabilities. For instane, the biritial point of laboratory experiments typially involves a sub-harmoni mode (Floquet multiplier �1) and a harmoni mode (Floquet multiplier +1). On thesubharmoni side of the biritial point, the onset pattern seletion problem is strongly inuenedby the presene of the weakly damped harmoni mode. In ontrast, on the harmoni side, theonset pattern seletion problem is ompletely insensitive to the presene of near ritial subhar-moni modes. These general ideas were demonstrated in [26℄ through a bifuration analysis of ahydrodynami model of one{dimensional Faraday waves.Here, we extend the bifuration analysis in [26℄ to two{dimensional spatially{periodi pat-terns and to higher foring frequenies within the two{frequeny foring funtion. With theexperimentally{relevant higher foring frequenies (e.g. 6! and 7!) employed in this paper, we�nd the new possibility that spatially{resonant triads involving nearly ritial harmoni modesmay inuene the harmoni wave pattern seletion problem. This is not an option for the lowerforing frequenies (e.g. 1!=2! and 2!=3!) used in previous weakly nonlinear analyses of thetwo{frequeny Faraday problem [23, 26℄. 2



We follow J.D. Crawford's seminal work on Faraday waves [27, 28, 29, 30℄ by posing the pat-tern seletion problem in terms of a symmetry{breaking bifuration of the trivial �xed{point of astrobosopi map. By restriting solutions to those that are spatially{periodi on some hexagonallattie we obtain a �nite{dimensional bifuration problem that an be analyzed using the meth-ods of equivariant bifuration theory [31℄. For a review of this approah to hydrodynami patternformation problems, see Crawford and Knobloh [32℄.Our formulation of the bifuration problem allows us to address reent two{frequeny Fara-day wave experimental observations [1℄ of a transition between simple hexagons and the triangularsuperlattie wave pattern depited in Figure 1a. Spei�ally, we follow [2℄ and onsider a bifur-ation problem that is equivariant with respet to a twelve{dimensional irreduible representationof D6 _+T2, whih is analyzed in [33, 34℄. The observed harmoni wave states orrespond to pri-mary transritial branhes of the generi bifuration problem. In order for the observed hexagon{superlattie pattern transition to be reprodued by the bifuration problem, we must onsider adegenerate ase in whih the quadrati oeÆient vanishes. Moreover, the ubi oeÆients mustsatisfy ertain inequalities, e.g. ertain ombinations of nonlinear ross{oupling oeÆients mustbe small ompared to the ubi self{oupling oeÆient.In this paper we ompute the quadrati and ubi nonlinear oeÆients in the bifurationproblem from the Zhang{Vi~nals equations [23℄ whih apply to deep layers of low visosity uidssubjeted to a periodi aeleration. We show that the neessary inequalities for stable superlattiepatterns an be satis�ed for the foring frequenies employed in the experiments (6!=7!), andthat a resonant triad involving a weakly damped harmoni mode plays a key role in stabilizing thesuperpattern. Spei�ally, we �nd that the presene of a near ritial harmoni mode leads to aanellation in one of the ubi ross{oupling oeÆients, ausing this oeÆient to beome smallin magnitude as required. This selets a preferred angle �r for the superlattie patterns. In otherwords, it suggests whih of the ountably in�nite 12{dimensional represantations is most pertinentto this Faraday wave problem.The paper is organized as follows. Setion 2.1 presents bakground linear stability results forthe two{frequeny Faraday experiment, while setion 2.2 reviews results from [26℄ on the inueneof spatio{temporally resonant triads on pattern seletion. Setion 2.3 then formulates the generibifuration problem relevant to our investigation. The bifuration results derived from the two{frequeny Faraday problem modelled by the Zhang{Vi~nals equations are presented in Setion 3;the oeÆients of the leading nonlinear terms are evaluated numerially from expressions derivedperturbatively in the Appendix. We onsider two di�erent ases. In Setion 3.2 we onsider anexample involving foring frequenies in ratio m=n = 2=3, fousing on di�erenes between thepattern seletion problems for subharmoni and harmoni wave onset in a viinity of the biritialpoint. Setion 3.3 then turns to an example involving higher foring frequenies in ratiom=n = 6=7,and shows how weakly damped harmoni modes an stabilize harmoni wave superpatterns involvingthe angle �r assoiated with a harmoni wave resonant triad. Finally, Setion 4 onludes the paperwith a brief summary of our results and some disussion of issues we hope to address in the future.
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2 Bakground2.1 Linear ResultsIn the two-frequeny Faraday wave problem a ontainer of uid is aelerated in the vertial diretionwith an exitation of the formg(t) = g0 + gz�os(�) os(m!t) + sin(�) os(n!t+ �)�: (1)Here m and n are o{prime integers, so the foring funtion is periodi with period T = 2�! , and g0is the usual gravitational aeleration. For small amplitude aeleration gz the surfae of the uidremains at and the uid layer is merely translated up and down with the drive. For higher valuesof gz waves are parametrially exited on the surfae of the uid layer.Besson, Edwards and Tukerman [20℄, starting with the Navier{Stokes equations for the freeboundary problem, determined the linear stability of the at surfae in the ase that the uid layerhas �nite depth but is unbounded horizontally. They used a Floquet-Fourier ansatz and solvedthe linear stability problem numerially to determine, for eah spatial wavenumber k, the value ofgz where a Floquet multiplier �rst rosses the unit irle. The resulting neutral stability urvesshow that the primary instability is to either subharmoni or harmoni waves depending on thevalue of � and the values of m and n. (Harmoni/subharmoni response is relative to the foringperiod T = 2�=!.) Typially, if � is small so that os(�) os(m!t) is of greater signi�ane thansin(�) os(n!t + �), then the response is harmoni if m is even and subharmoni if m is odd.Similarly, if � is lose to �=2, the primary instability is (sub)harmoni if n is even (odd). At the so{alled biritial point, � = �, both harmoni and subharmoni instabilities onset at the same valueof the exitation amplitude, but with di�erent wavenumbers. The harmoni superlattie patternof Figure 1a, observed by Kudrolli, Pier and Gollub [1℄, was obtained near the biritial point form=n = 6=7 foring in (1). The pertinent neutral stability urve, omputed using the experimentaluid parameters, is given in Figure 1b.2.2 Spatio{Temporally Resonant TriadsWhen the hydrodynami problem is posed on a horizontally unbounded domain there is no pre-ferred diretion (in the horizontal) so that eah ritial wavenumber from linear analysis atuallyorresponds to a irle of ritial wavevetors. There are two suh ritial irles at the biritialpoint, as shown in Figure 2. In this situation it has been argued that resonant triads may play aentral role in the Faraday wave pattern seletion problem [7, 6, 23, 24, 22℄. Resonant triads areomprised of three ritial wavevetors that sum to zero; two examples are shown in Figure 2. Inthe �rst example, km1+km2�kn = 0, and in the seond example kn1�kn2�km = 0. Here them;nsubsripts indiate that the ritial wavenumbers an be roughly assoiated with the m! and n!exitation terms in (1). We identify with eah resonant triad an angle �r 2 (0; �2 ℄, whih separatesthe ritial wavevetors with the same length. For instane, the angle in Figure 2b satis�esos��r2 � = kn2km ; (2)while the angle in Figure 2 satis�es sin��r2 � = km2kn : (3)4
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(a) (b)Figure 1: (a) Blow up of the experimental superlattie Faraday wave pattern desribed in [1℄(ourtesy of Kudrolli, Pier and Gollub). The foring funtion (1) has m=n = 6=7, � = 61Æ and� = 20Æ. Note that the pattern is periodi on a (large) hexagonal lattie, and that in eah hexagonal`tile' there is small triangular struture. (b) The orresponding neutral stability urve, alulatedfrom the full (linearized) hydrodynami equations, for the experimental parameters reported in [1℄.(Sub)harmoni resonane tongues are given by solid (dashed) lines. The neutral urves are om-puted using the method desribed in [20℄.
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Figure 2: (a) A plot of a neutral stability urve gz(k) showing minima at k = km and k = kn. (b)An assoiated spatially resonant triad km1 , km2 and kn = km1 + km2 . () An assoiated spatiallyresonant triad kn1 , kn2 and km = kn1 � kn2 .To illustrate the potential for resonant triads to inuene pattern formation in parametriallyexited systems we onsider a bifuration problem involving the three ritial Fourier modes assoi-ated with the resonant triads of Figure 2. Muh of this disussion is a review of the key theoretialideas in [26℄. Beause of the periodi foring of the system, it is natural to formulate the bifura-tion problem in terms of a strobosopi map [27℄. Spei�ally, we denote the free surfae heightz = h(x; t) (x 2 R2) at time t = pT (p 2 Z) byh(x; pT ) = A(p)eikl1 �x +B(p)eikl2 �x + C(p)ei(kl1+kl2 )�x + ::+ � � � : (4)Here A;B and C are the omplex amplitudes of the linear modes that are neutrally stable at thebiritial point and whih form a resonant triad. In this disussion we assume that the angle �rbetween kl1 and kl2 is not �=3 so that the ritial modes interat nonlinearly to generate othermodes on a rhombi (rather than hexagonal) lattie. These additional modes, denoted by � � � above,are linearly damped at the biritial point. We may then use the spatial reetion and translationsymmetries to determine the general form of the bifuration equations that govern the dynamison a enter manifold. Spei�ally, to ubi order, the odimension{two bifuration problem takesthe form A ! �A+ �BC + (ajAj2 + bjBj2 + jCj2)AB ! �B + �AC + (ajBj2 + bjAj2 + jCj2)B (5)C ! �C + ÆAB + (djAj2 + djBj2 + ejCj2)C ;where A is the omplex onjugate of A, and the oeÆients are all real. The Floquet multipliers �and � are either +1 or �1 depending on whether the linear modes A, B, and C are harmoniallyor subharmonially exited, respetively.In deriving (5) we onsidered only the spatial symmetries assoiated with the resonant triad.Following [27℄, we enfore the temporal symmetry assoiated with the triad through a normalform transformation of (5). Spei�ally, there exists a near{identity nonlinear transformation thatremoves all nonlinear terms in (5) whih do not ommute with LT , where L is the Jaobian matrix6



assoiated with the linearized problem (see, for example, Crawford's review paper on bifurationtheory [35℄). Here L = 0�� 0 00 � 00 0 �1A ; (6)where j�j = j�j = 1. The normal form symmetry may be interpreted in terms of time{translation.Spei�ally, advaning by one period in time maps period{doubled modes to their negatives, e.g.if � = �1, then advaning one period takes C ! �C.In the ase that � = +1 (� = �1), the bifuration problem (5) is already in normal form.This observation is trivial if � = +1. If � = �1, then the normal form symmetry is equivalentin ation to that assoiated with the spatial translation symmetry x ! x + d, where d satis�eskl1 � d = kl2 � d = �.In ontrast, in the ase that � = �1, a normal form transformation removes the quadrati termsin the bifuration problem (5). The normal form of the bifuration problem, through ubi order,is then A ! �A+ (ajAj2 + bjBj2 + jCj2)AB ! �B + (ajBj2 + bjAj2 + jCj2)B (7)C ! �C + (djAj2 + djBj2 + ejCj2)C :We note that C = 0 is a dynamially{invariant subspae of (7). This is true to all orders of thenormal form sine C = 0 is the �xed point subspae of a (spatio{)temporal symmetry. Spei�ally,if � = +1 then C = 0 is the �xed point subspae assoiated with the time translation by one{period,i.e., (A;B;C) ! (A;B;�C). And if � = �1, then C = 0 is the �xed{point subspae assoiatedwith the spatio{temporal symmetry involving time translation by one period followed by spatialtranslation by d, where again kl1 � d = kl2 � d = �.We now examine (5) more losely in the ase that � = +1 so that we annot remove thequadrati nonlinearities by normal form transformation. We fous on a detuning from the biritialpoint suh that the C mode is weakly damped, while the A;B modes are neutrally stable. In thisase, j�j = 1; � < 1, we an further redue the bifuration problem to one involving the ritialmodes A and B, with C onstrained to the enter manifold: C = Æ(1��)AB + � � �. We then obtainthe redued bifuration problemA ! �A+ ajAj2A+ �(�r)jBj2AB ! �B + ajBj2B + �(�r)jAj2B ; (8)where the ross{oupling oeÆient is �(�r) = b+ �Æ(1� �) : (9)We see that in this ase, the near ritial spatio{temporally resonant mode C in (5) an ontributesigni�antly to the ross-oupling oeÆient �(�r) sine 0 < 1 � � � 1 in (9). For example, for� suÆiently lose to 1, the seond term in (9) dominates and �(�r) beomes large in magnitude.However, we also point out that if b and �Æ have opposite signs, then �(�r) ould atually vanish7



for some ��1 > 0. Examples of these two very di�erent situations are given in setions 3.2 and 3.3,respetively.We ontrast the above with what happens when � = �1 at the biritial point. In this ase� = Æ = 0 in the normal form (7) and C = 0 is an invariant subspae with assoiated dynamis of theform (8) with �(�r) = b. In this ase, the triad is spatially resonant, but not temporally resonant,and the ross{oupling oeÆient is insensitive to any parameter proximity to the biritial point.These observations about �(�r) are important for understanding whih patterns might be ob-servable near onset sine branhing diretion and stability of patterns are determined by variousnonlinear (ross{oupling) oeÆients in the amplitude equations. We disuss this further at theend of Setion 2.3.Finally we note that similar results to the � = �1 ase above apply when there are weaklydamped modes with omplex Floquet multipliers. Spei�ally, these modes do not ontribute sig-ni�antly to the ubi ross{oupling oeÆient �(�), even when they are spatially resonant with theritial modes. Only damped modes with Floquet multiplier � suÆiently lose to +1 ontribute.2.3 Hexagonal Lattie Bifuration ProblemThe analysis of the previous setion led to ertain onlusions about the nonlinear oeÆients inthe general rhombi lattie bifuration problemv1 ! �v1 + (ajv1j2 + �(�)jv2j2)v1v2 ! �v2 + (ajv2j2 + �(�)jv1j2)v2: (10)Here v1, v2 are the omplex amplitudes of two ritial Fourier modes with wavevetors k1, k2(jk1j = jk2j = k) that are separated by an angle � 2 (0; �2 ℄ (� 6= �3 ). In partiular, it followsfrom (9) that if a weakly damped harmoni mode is removed via enter manifold redution, then�(�) beomes large in magnitude when the spatial resonane ondition is met, i.e. when � = �r.This is in ontrast to the situation where there are weakly damped subharmoni modes, whih haveno speial inuene on the pattern seletion problem at onset.We now lay the framework for examining possible impliations of these results for stability of har-moni hexagonal and triangular superpatterns. We follow [2℄ and introdue the twelve{dimensionalD6 _+T2{equivariant bifuration problems that enable us to determine the relative stability of simplehexagonal patterns, stripe patterns and ertain rhombi and superlattie patterns. We make use ofbifuration results derived in [2, 33, 34℄, whih apply when there is a single ritial wavenumber k,to demonstrate how the magnitude of the ross{oupling terms are pivotal in determining patternstability. As before, we onsider a strobosopi map, but now restrit analysis to patterns that aredoubly{periodi on some hexagonal lattie. For instane, the free surfae height takes the formh(x; pT ) = Xm2Z2 ĥm(p)ei(m1k1+m2k2)�x + :: (11)at time t = pT , where k1;k2 2 R2 generate a hexagonal dual lattie (jk1j = jk2j and k1 � k2 =� 12 jk1j2); see Figure 3.The twelve{dimensional irreduible representations of D6 _+T2 apply to the bifuration problemwhen there are twelve integer pairs (m1;m2) in (11) suh that jm1k1 + m2k2j = k, where k isthe ritial wavenumber of the instability at the bifuration point. See Figure 3 for an example.8



Following [33℄ we will assoiate with eah twelve{dimensional irreduible representation an integerpair (n1; n2); in partiular n1 and n2 are o{prime, n1 > n2 > n1=2 > 0, and n1 + n2 is not amultiple of 3. The neutral modes that span the enter eigenspae at the bifuration point take theform fz1 eiK1�x + z2 eiK2�x + z3 eiK3�x + z4 eiK4�x + z5 eiK5�x + z6 eiK6�x + ::jzj 2 Cg; (12)where K1 = n1k1 + n2k2; K4 = n1k1 + (n1 � n2)k2;K2 = (�n1 + n2)k1 � n1k2; K5 = �n2k1 � n1k2; (13)K3 = �n2k1 + (n1 � n2)k2; K6 = (n2 � n1)k1 + n2k2 :Note that �K1;�K2;�K3 point to the verties of a hexagon, as do �K4;�K5;�K6, and that thetwo hexagons are rotated relative to eah other by an angle �h 2 (0; �3 ) indiated in Figure 3. Thisangle is related to (n1; n2) by os(�h) = n21 + 2n1n2 � 2n222(n21 � n1n2 + n22) : (14)Also note that the ratio of lengthsales for superpatterns depends on (n1; n2). Spei�ally, jk1jdetermines the larger periodiity sale of the superpatterns, while jKj j = k determines the smallerlengthsale assoiated with the instability; thus the lengthsale ratio isjKj j=jk1j =qn21 � n1n2 + n22 � p7: (15)The example of Figure 3 orresponds to (n1; n2) = (3; 2), for whih �h � 22Æ in (14) and thelengthsale ratio (15) is the smallest assoiated with a hexagonal lattie, namely p7. These are theangle and lengthsale ratio that apply to the experimental superlattie pattern reprodued from [1℄in Figure 1a.The general form of the twelve{dimensional D6 _+T2{equivariant mappings are derived in [34℄.Through ubi order in zj , they take the formz1 ! ��(1 + �)z1 + �z2z3 + (b1jz1j2 + b2jz2j2 + b2jz3j2 + b4jz4j2 + b5jz5j2 + b6jz6j2)z1�z2 ! ��(1 + �)z2 + �z1z3 + (b1jz2j2 + b2jz1j2 + b2jz3j2 + b4jz5j2 + b5jz6j2 + b6jz4j2)z2�z3 ! ��(1 + �)z3 + �z1z2 + (b1jz3j2 + b2jz1j2 + b2jz2j2 + b4jz6j2 + b5jz4j2 + b6jz5j2)z3� (16)z4 ! ��(1 + �)z4 + �z5z6 + (b1jz4j2 + b2jz5j2 + b2jz6j2 + b4jz1j2 + b5jz3j2 + b6jz2j2)z4�z5 ! ��(1 + �)z5 + �z4z6 + (b1jz5j2 + b2jz4j2 + b2jz6j2 + b4jz2j2 + b5jz1j2 + b6jz3j2)z5�z6 ! ��(1 + �)z6 + �z4z5 + (b1jz6j2 + b2jz4j2 + b2jz5j2 + b4jz3j2 + b5jz2j2 + b6jz1j2)z6�;where � measures the distane from the ritial exitation amplitude, and � = +1(�1) in thease of (sub)harmoni instability. All nonlinear oeÆients are real. If � = �1 then a normalform transformation removes all even terms on the right{hand{side of (16) and hene � = 0. The9
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Figure 3: Hexagonal k{spae lattie, with ritial irle of radius k superimposed. In this example(n1; n2) = (3; 2) in (13), and the ritial irle intersets twelve points that lie at the verties of twohexagons rotated by �h relative to eah other.dependene of the general equivariant bifuration problem on (n1; n2) does not appear until higherthan ubi order in its Taylor expansion [34℄.We now reall some basi results pertaining to the bifuration problem (16). In the � = +1 asethe equivariant branhing lemma [31℄ ensures the existene of harmoni wave solution branhes inthe form of stripes, simple hexagons, rhombs, and super hexagons [33℄. A primary solution branhwith submaximal isotropy, named super triangles, was also shown to exist in [2℄. See Figure 1afor an example of this pattern. Table 1 gives the general form of these solutions, along with theirbranhing and stability assignments. The general bifuration results in the ase that � = �1 anbe found in [34℄; this bifuration problem di�ers from the harmoni ase in that it possesses anadditional Z2 normal form symmetry. The equivariant branhing lemma then ensures existene of�ve additional solution branhes to those listed in Table 1 [34℄.The generi presene of a quadrati term in (16) for the harmoni ase renders all of the abovesolutions unstable at bifuration. Hene the transition from the at state to the patterned harmoniwave state is expeted to be hystereti. In order to apture stable weakly nonlinear solutions, wemust fous our analysis on the unfolding of the degenerate bifuration problem � = 0. Note thatwhen � = 0 the stability of simple and super hexagons/triangles is not determined at ubi ordersine the phases �j of solutions zj = rjei�j to (16) are then arbitrary. Even in the ase of 0 < j�j � 1the relative stability of super hexagons and super triangles depends on terms that are at least �fthorder. However, we may use the ubi trunation to determine that one (and only one) of thesetwo solutions is stable. The higher order terms are only needed to determine whether it is thehexagonal or triangular superpattern [2℄.When 0 < j�j � 1, it follows from Table 1 that a neessary ondition for one of the superpatternsto be stable over some range of � values near onset is forb1 + 2b2 < �jb4 + b5 + b6j < 0 : (17)10



Table 1: Branhing equations and stability assignments for the harmoni ase (� = +1); �; b1; : : : ; b6are oeÆients in the bifuration equations (16). A solution is stable if all quantities in the rightolumn are negative. See [2, 33, 34℄ for more details.Planform and branhing equation StabilityStripes sgn(b1),z = (x; 0; 0; 0; 0; 0) sgn(�x+ (b2 � b1)x2); sgn(��x+ (b2 � b1)x2),0 = �x+ b1x3 +O(x5) sgn(b4 � b1); sgn(b5 � b1); sgn(b6 � b1)Simple Hexagons sgn(�x+ 2(b1 + 2b2)x2); sgn(��x+ (b1 � b2)x2)z = (x; x; x; 0; 0; 0) sgn(��x+ (b4 + b5 + b6 � b1 � 2b2)x2)0 = �x+ �x2 + (b1 + 2b2)x3 +O(x4) sgn(��x+O(x3))Rhombs (Rh4) sgn(b1 + b4); sgn(b1 � b4); sgn(�1); sgn(�2);z = (x; 0; 0; x; 0; 0) where �1 + �2 = (�2b1 � 2b4 + 2b2 + b5 + b6)x2,0 = �x+ (b1 + b4)x3 +O(x5) �1�2 = ��2x2 + (b1 + b4 � b2 � b5)(b1 + b4 � b2 � b6)x4Rhombs (Rh5) same as Rh4 with b4 $ b5z = (x; 0; 0; 0; x; 0)Rhombs (Rh6) same as Rh4 with b4 $ b6z = (x; 0; 0; 0; 0; x) sgn(�x+ 2(b1 + 2b2 + b4 + b5 + b6)x2)Super Hexagons sgn(�x+ 2(b1 + 2b2 � b4 � b5 � b6)x2)z = (x; x; x; x; x; x) sgn(��x+O(x3)); sgn(�1); sgn(�2),0 = �x+ �x2 + (b1 + 2b2)x3 where �1 + �2 = �4�x+ 4(b1 � b2)x2,+(b4 + b5 + b6)x3 +O(x4) �1�2 = 4(�x� (b1 � b2)x2)2�2((b4 � b5)2 + (b4 � b6)2 + (b5 � b6)2))x4sgn(�3), where �3 = O(x2(n1�1))Super Triangles Same as super hexagonsz = (z; z; z; z; z; z); exept �3 ! ��3z = xei ;  6= 0; �; : : :
11



The ombination b1 + 2b2 is independent of the lattie angle �h in (14); it is omputed froma hydrodynami model of the two{frequeny Faraday problem in the Appendix by onsideringbifuration to simple hexagons. In ontrast, the ombination b4 + b5 + b6 depends on �h and isomputed in the appendix from the hydrodynami equations by onsidering the rhombi lattiebifuration problem (10). Spei�ally, the ross{oupling oeÆients b4; b5; b6 areb4 = �(�h); b5 = ���h + 2�3 �; b6 = ���h � 2�3 �; (18)where �h is the angle between K1 and K4 given by (14). (The funtion �(�) may be extendedfrom � 2 (0; �2 ℄ to angles � 2 (0; 2�) using �(�) = �(��) = �(� + �), identities that follow from thesymmetries of the rhombi lattie bifuration problem.)The inequality (17) will be satis�ed (if at all) only for those �h values where jb4 + b5 + b6j issmall ompared to jb1 + 2b2j. Moreover, if b1 � b2 < 0 in addition to (17), then simple hexagonsbeome unstable on a given hexagonal lattie when� = � �2(b4 + b5 + b6)(b1 + 2b2 � b4 � b5 � b6)2 : (19)If b4 + b5 + b6 < 0 for all �h, then simple hexagons �rst lose stability with inreasing � to aperturbation in the diretion of a superpattern for that value of �h that minimizes jb4 + b5 + b6j.If b4 + b5 + b6 > 0 for any �h, then small amplitude simple hexagons are unstable when � > 0.Thus we expet the stability properties of superpatterns and simple hexagons to be a�eted by thepresene of a weakly damped harmoni mode when �h or �h � 2�=3 is near �r (or � � �r), theresonant triad angle, sine it is in this situation that one of the ross{oupling oeÆients b4, b5 orb6 may suddenly hange in magnitude.3 ResultsThis setion shows expliitly the role of resonant triads and weakly damped harmoni modes inthe pattern seletion problem for two{frequeny fored Faraday waves. We examine how the ubinonlinear oeÆients in (16), for the Zhang{Vi~nals hydrodynami equations vary as a funtion of�h, the lattie angle and explain how this an be related to �r, the resonant triad angle. Thedetails of the omputation of the oeÆients are relegated to the Appendix. We fous on twoexamples, involving foring frequeny ratios m=n = 2=3 and 6/7. The 2/3 ase demonstrates thebasi di�erene between the pattern seletion problems for subharmoni and harmoni instabilitiesnear the biritial point. Our investigation also reveals a fundamental di�erene between harmoniwave pattern seletion in the 2/3 and 6/7 ases, due to the presene of additional harmoni waveresonane tongues for the higher 6/7 foring frequenies; see Figure 4.3.1 The Zhang-Vi~nals Hydrodynami EquationsThe quadrati and ubi nonlinear oeÆients in the hexagonal bifuration problem (16) are om-puted in the appendix from a model of the two{frequeny Faraday problem derived by Zhang andVi~nals [3℄ from the Navier{Stokes equations. Their equations, whih apply to weakly damped,12
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(b)Figure 4: Neutral stability urves omputed from (20) linearized about h = � = 0. Floquetmultipliers of +1 (�1) are indiated by solid (dashed) lines. (a)m=n = 2=3, � = 0Æ, � = � = 66:6Æ,�0 = 0:53, G0 = 0:47 and  = 0:09 in (20){(21). (b) m=n = 6=7, � = 0Æ, � = � = 53:0Æ, �0 = 7:5,G0 = 1:5 and  = 0:08.small amplitude surfae waves on a semi{in�nite layer of uid, desribe the evolution of the surfaeheight h(x; �) and surfae veloity potential �(x; �). Spei�ally,��h = r2h+ bD��r � (hr�) + 12r2(h2 bD�)� bD(h bD�) + bD[h bD(h bD�) + 12h2r2�℄��� = r2�+ �0r2h�G(�)h + 12( bD�)2 � 12(r�)2 � ( bD�)[hr2�+ bD(h bD�)℄ (20)� 12�0r � ((rh)(rh)2);where bD is a nonloal operator that multiplies eah Fourier omponent of a �eld by its wavenumber, i.e. bDeik�x = jkjeik�x. Here time has been saled by ! so that the (non{dimensionalized)two{frequeny aeleration isG(�) = G0 � f(os(�) os(m�) + sin(�) os(n� + �)): (21)The damping number (), apillarity number (�0), gravity number (G0), and dimensionless ael-eration (f) are related to the foring funtion (1) and the uid parameters by � 2�k20! ; �0 � �k30�!2 ; G0 � g0k0!2 ; f � gzk0!2 : (22)Here � is the kinemati visosity, � is the surfae tension, � is the uid density, and the wavenumber k0 is hosen to satisfy the dispersion relationg0k0 + �k30� = �m!2 �2: (23)13



3.2 Example 1: m/n=2/3This example demonstrates a result of the general normal form analysis of Setion 2.2, namelythat proximity to the subharmoni/harmoni biritial point will strongly inuene the patternseletion problem for subharmoni waves, but not for harmoni waves. Spei�ally, we examinethe ross{oupling oeÆient �(�) in (10) as a funtion of the angle � for onset of both harmoniand subharmoni waves near the biritial point. We show that only in the subharmoni ase doesj�(�)j beome large at the resonant angle �r in (3).As desribed in Setion 2.1, the primary instability hanges from harmoni (Floquet multiplier+1) to subharmoni (Floquet multiplier �1) as � in (21) is inreased through the biritial point �.This transition is determined from the linear hydrodynami problem, whih for the Zhang{Vi~nalsmodel (20) takes the form of a damped Mathieu equation for eah Fourier mode h = hk(�)eikx:h00k + 2k2h0k + (2k4 +
2k)hk = fk�os(�) os(m�) + sin(�) os(n�)�hk: (24)Here the natural frequeny 
k satis�es the dispersion relation 
2k = G0k + �0k3. A numerially{omputed neutral urve f(k) for m=n = 2=3 foring and � = � = 66:6Æ is given in Figure 4a. Theother parameters of this example are � = 0Æ, �0 = 0:53, G0 = 0:47 and  = 0:09.We now vary � near �, holding all other parameters �xed, and examine the rhombi lattieross{oupling oeÆient �(�) in (10) for onset subharmoni/harmoni waves, as appropriate. Wehave saled the amplitudes v1 and v2 in (10) so that a = �1. We note that in the harmoniase � diverges as � ! 60Æ, i.e. when the rhombi lattie approahes the hexagonal one andthere is an additional mode assoiated with the enter manifold dynamis. This is in ontrastto the subharmoni ase, for whih there is a normal form symmetry that ensures existene of adynamially invariant subspae spanned by a pair of subharmoni modes separated by 60Æ. Thusin the subharmoni ase � remains �nite at � = 60Æ.For � > � the primary instability is to subharmoni waves. For instane, for � = 66:7Æ theminimum of the neutral urve ours at wavenumber k;s = 1:415 with foring amplitude f = 0:842,and is assoiated with a Floquet multiplier � = �1. The nearly ritial harmoni resonane tonguehas its minimum at (k; f) = (0:962; 0:846). In this ase, there is a spatio{temporally resonant triadomprised of the weakly damped harmoni mode and, from (3), two subharmoni modes separatedby �r = 39:9Æ. It follows from our general analysis of Setion 2.2 that �(�) will be large in magnitudefor � near �r. Figure 5a shows �(�) for this ase, and indeed, the nonlinear oeÆient exhibits alarge dip entered at � = �r = 39:9Æ. At this angle, j�(�)j takes on its largest value. Similarobservations have been made by Zhang and Vi~nals [23℄ for foring frequenies in ratio m=n = 1=2.In ontrast, when � < �, so that the �rst instability to our with inreasing f is harmoni,we �nd that the weakly damped subharmoni mode leaves no signature in the plot �(�). Forinstane, for � = 66:5Æ the primary instability is to harmoni waves at wavenumber k;h = 0:963and foring amplitude f = 0:841. The subhharmoni resonane tongue has a minimum at (k; f) =(1:415; 0:843). While there is a spatially resonant triad involving two ritial harmoni modes,whih by (2) are separated by �r = 85:7Æ, the triad of modes is not spatio{temporally resonant.Figure 5b shows the ross-oupling oeÆient �(�) for this ase (with the region near 60Æ removed).As antiipated, there is no signature of the weakly damped subharmoni mode in the plot. Similarobservations have been made by Silber and Skeldon [26℄ in the setting of one{dimensional surfaewave patterns. 14
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(b)Figure 5: Cross oupling oeÆients �(�) in (10) omputed in the Appendix from (20) for the asem=n = 2=3 and � = 0Æ in (21). The uid parameters used are given in the aption of Figure 4a.(a) � = 66:7Æ > �, when the bifuration is to subharmoni waves. Note the dip at � = �r = 39:9Æ.(b) � = 66:5Æ < �, when the bifuration is to harmoni waves. Beause the (nearly) ritial modesare not in temporal resonane, �(�) shows no speial struture at � = �r = 85:7Æ. We have removedfrom this plot the region near � = 60Æ, where �(�) diverges.3.3 Example 2: m/n=6/7This example demonstrates a fundamental di�erene between harmoni wave pattern seletion forlow foring frequenies (e.g., 2!=3!) and for high foring frequenies (e.g., 6!=7!). This di�ereneis due to the presene of multiple harmoni resonane tongues in the neutral urve assoiated withthe higher foring frequenies; see Figure 4. In partiular, these resonane tongues suggest thepossiblity that weakly damped harmoni modes may inuene the harmoni wave pattern seletionproblem. This is in ontrast to the m=n = 2=3 example of the previous setion, for whih onlysubharmoni wave pattern ompetition was a�eted by weakly damped harmoni waves. In thissetion we also demonstrate that the weakly damped harmoni modes may stabilize harmoni wavesuperpatterns at a lattie angle �h � �r, due to a near anellation of the two terms that ontibuteto �(�r) given by (9) as desribed in Setion 2.2.We fous on bifuration to harmoni waves for � = 52:4Æ, whih is lose to the biritial value� = 53:0Æ. The remaining parameters are � = 0Æ, �0 = 7:5, G0 = 1:5 and  = 0:08. We note thatwhile the foring frequeny ratiom=n = 6=7 oinides with that used in the experiments of Kudrolli,et al. [1℄, the remaining parameters do not oinide with the experiment. One problem with usingthe experimental parameters in the Zhang{Vi~nals equations is that the primary instability thenmoves to a subharmoni resonane tongue at very small wavenumber, i.e., the �rst resonanetongue of Figure 4b. This is beause the Zhang{Vi~nals model does not aurately apture thedamping at small k that is due to �nite depth e�ets.In this example we �nd two prominent features in the plot of the ross{oupling oeÆient �(�)in Figure 6a: a large dip at � = 67:6Æ and a small spike at � = 22:2Æ. We now disuss the origin ofthese two features.The large dip around � = 67:6Æ is not a onsequene of two{frequeny foring. Spei�ally,15



the dip remains in �(�) even for purely 6! foring (i.e. in the limit � ! 0); f. plots of �(�)in Figures 6a and 6 whih are obtained with � = 52:4Æ and � = 0Æ, respetively. Thus thisfeature may be understood in the ontext of single frequeny foring, and has in fat already beeninvestigated by Zhang and Vi~nals [3℄ in that setting. Spei�ally, if � = 0Æ then the foring periodis T 0 = T6 = 2�6 and the primary instability is to subharmoni waves with period 2T 0. A plotof the orresponding neutral urve is given in Figure 6d, with the primary harmoni resonanetongue from Figure 4b superimposed on it. In this single{frequeny setting the feature at 67:6Æis understood as being due to the damped harmoni mode around k = 1:7 in Figure 6d. Perhapsmore relevant to this disussion is our observation that this feature, whih leads to a large value ofjb4 + b5 + b6j, is destabilizing for superpatterns. To see this, we refer to the disussion surroundingequation (17) and to Figure 6b, whih shows that0 > b1 + 2b2 > b4 + b5 + b6 = �(�h) + ���h + 2�3 �+ ���h � 2�3 �;= �(�h) + ���3 � �h�+ ���3 + �h� for �3 + �h � 67:6Æ: (25)In ontrast the spike at � = 22:2Æ in Figure 6a minimizes jb4 + b5 + b6j at �h � 22:2Æ, as shownin Figure 6b. As we show below, this feature an lead to a stabilization of superpatterns and adestabilization of the simple hexagons. First we provide strong evidene that the spike is due to aresonane between the primary harmoni instability (� = 1) and a weakly damped harmoni modewith a real Floquet multiplier � that is lose to 1 (see (5) and (9) of Setion 2.2). In order toshow this we must �rst ompute the Floquet multipliers �(k) at the ritial foring amplitude fto determine the wavenumbers k at whih � � 1 at the onset of instability.We determine the Floquet multipliers �(k) at f = f = 1:552 numerially from the linearproblem (24). These are presented in Figure 7. We �nd that the multipliers are well approximatedaway from the two primary resonane tongues by onsidering the unfored problem (f = 0 inequation 24), for whih �� = e2��� ; �� = �k2 � i
k : (26)Figures 7a and 7b show the magnitude � and the phase  of the Floquet multipliers � = �ei bothas omputed numerially from (24) (solid line) and approximated by (26) (dotted line). Figure 7shows the real part of the Floquet multipliers, � os , versus wavenumber k. The \bubbles" in thisplot orrespond to wavenumbers at whih the Floquet multipliers are real (as opposed to a omplexonjugate pair). Weakly damped harmoni modes are assoiated with bubbles near a Floquetmultiplier of +1. Numerially we �nd that there are small bubbles of real Floquet multiplierswhenever the phase  is a multiple of �; this is demonstrated in Figure 7d. In partiular, we �nda bubble at wavenumber k = 0:383, with assoiated real Floquet multiplier � = 0:93. This mode isweakly damped and forms a resonant triad with primary harmoni modes separated by �r = 22:2Æ.(Here k;h = 0:997 for the primary instability, whih orresponds to kn in (3), with km = 0:393determined by the weakly damped harmoni mode.) Here we have foused on the wavenumbersassoiated with real Floquet multipliers near � = +1 sine weakly damped modes with omplexFloquet multipliers do not form a spatio{temporally resonant triad with the primary harmonimodes.We now present some hexagonal lattie bifuration results for the spei� parameters of thisexample, whih are given in Figure 4b. The omputation of the quadrati and ubi oeÆients inthe bifuration problem (16) is desribed in the Appendix. We sale the amplitudes zj in (16) so16
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(d)Figure 6: (a) Cross-oupling oeÆient �(�) in (10) omputed from (20) for the ase m=n = 6=7,� = 0Æ and � = 52:4Æ < � in (21), and for uid parameters given in the aption of Figure 4b.(b) Plots of b1 + 2b2 (dashed) and b4 + b5 + b6 (solid) versus �h. We note that �h only takes onthe disrete values satisfying (14). () Cross-oupling oeÆient �(�) for 6! foring only; we haveused the same parameters as in (a) exept that now � = 0Æ. (d) Neutral urve for single frequenyforing. Floquet multipliers of +1 (�1) are indiated by solid (dashed) lines, and are omputedrelative to the period T 0 = 2�=6. The primary harmoni resonane tongue from the two{frequenyase of Figure 4b is superimposed as a dotted line.
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that b1 = �1, in whih ase we �nd that � = 0:00014 and b2 = �2:73. Thus we expet results ofSetion 2.3, whih foused on the unfolding of the degenerate bifuration problem � = 0, to apply.We �nd that simple hexagons, super hexagons and super triangles all bifurate transritiallywith the subritial branh turning around in a saddle{node bifuration. The stripes and rhombssolutions arise in superritial pithfork bifurations. These laims are true for all lattie angles�h sine the ubi oeÆients b1; : : : ; b6 in (16) are always negative; see Figure 6a. Moreover, we�nd that simple hexagons are always stabilized in a saddle{node bifuration and that they do notlose stability until after they reah the superritial regime � > 0. In ontrast, super hexagons andsuper triangles are always unstable at � = 0, sine at that point the sign of the seond eigenvalue inTable 1 is determined by sgn(b1 +2b2� 3b4� 3b5� 3b6), whih is positive for all � (see Figure 6b).Thus, as � is inreased through 0, we expet a jump to �nite amplitude simple hexagons as theother primary branhes of (16) are unstable.We �nd that simple hexagons eventually lose stability as � inreases sine the following twoexpressions from Table 1 hange sign to positive (at least for some �h)sgn(��x+ (b1 � b2)x2); sgn(��x+ (b4 + b5 + b6 � b1 � 2b2)x2): (27)as the amplitude x of simple hexagons grows with �. The �rst quantity hanges from negative topositive at � � 3:2�10�8. The seond quantity hanges sign with inreasing � only for those valuesof �h where b4 + b5 + b6 � b1 � 2b2 > 0, a ondition whih is met for �h � 11:5Æ. Figure 8a showsthe value of � where the expressions of (27) hange sign as a funtion of �h. It follows that simplehexagons lose stability �rst on the lattie with angle �h � 22:2Æ. This instability has an assoiatedeigenvetor in the diretion of super hexagon/triangles, and at this value of �, super hexagons (ortriangles) are stable. These results are summarized in Figure 8b, whih shows part of the bifurationdiagram omputed for the hexagonal lattie with (n1; n2) = (3; 2), whih orresponds to an angle�h = 21:8Æ. Note that when simple hexagons lose stability, both rhombs (Rh) and a superpatternare stable. Beause the instability that �rst destabilizes the simple hexagons is in the diretion ofa superpattern with �h � 22:2Æ, we expet that the transition would be a hystereti one involvingthe simple hexagons and a superpattern, at least in the absene of noise and other imperfetions.We annot determine whether the superpattern is hexagonal or triangular from our alulations,sine this requires knowledge of �fth order terms in the bifuration problem [34℄.4 ConlusionsIn this paper we have examined the e�et of spatio-temporally resonant triads on two-dimensionalpattern seletion in parametrially exited systems. Using a normal form transformation to enforetemporal symmetry and enter manifold redution, we have argued that weakly damped harmonimodes an strongly inuene pattern seletion by ausing ertain ubi ross-oupling oeÆientsin a twelve{dimensional D6 _+T2{equivariant bifuration problem to suddenly vary in magnitude forertain lattie angles �h. This suggests an important onsideration in hoosing one over another ofthe ountable set of twelve{dimensional representations relevant to hexagonal bifuration problems.Weakly damped subharmoni modes, on the other hand, do not have suh an e�et.Our general analysis applies to any parametrially exited pattern forming system, but in par-tiular is relevant to the interpretation of many reent experiments on two-frequeny fored Faradaywaves. In suh experiments, a biritial point exists where subharmoni and harmoni instabilities19
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instability to a superlattie pattern assoiated with a hexagonal lattie with (n1; n2) = (3; 2).The experiments of Kudrolli, Pier and Gollub [1℄ found a superlattie pattern near the biritialpoint whih sits on a lattie with (n1; n2) = (3; 2). The work in this paper suggests that theobservation of this pattern ould be explained by the interation of the primary harmoni stabilityand weakly damped harmoni modes. However, the Zhang-Vi~nals equations are not valid in theparameter regime where this experiment was performed, and thus a study of the full hydrodynamiproblem is neessary to on�rm this onjeture. A omplete study should also involve a moreomplete analysis of the odimension-2 bifuration point and the assoiated dynamis, in the spiritof J.D. Craword's early work on ompeting instabilities in the Faraday problem [27℄. This wouldbe of interest in light of reent two{frequeny experiments by Arbell and Fineberg [11℄ that showa variety of dynami states near the biritial point, whih involve both ritial modes.A Perturbation TheoryHere we outline the omputation of the oeÆients in (10) and (16) from the equations of Zhang andVi~nals (20). A multiple-sale perturbation method is used to derive expressions for the oeÆientswhih are then evaluated numerially using a pseudospetral approah. This follows losely themethod desribed in [26℄ for the onset of one-dimensional patterns and we refer the reader therefor further details.The oeÆients an be derived by onsidering two di�erent alulations, namely the bifurationproblem (16) restrited in turn to a rhombi and a simple hexagons subspae.A.1 Rhombi lattie omputationIn order to ompute the oeÆient a and the ross-oupling oeÆient �(�) in (10) we seek solutionswhih are periodi on a rhombi lattie assoiated with an angle �. We are thereby able to omputethe oeÆients b1, b4, b5, and b6 in the bifuration equations (16) sine b1 = a, b4 = �(�h),b5 = �(�h + 2�=3), and b6 = �(�h � 2�=3).First we introdue a small parameter �, suh thath(x; y; �) = �h1(x; y; �; T ) + �2h2(x; y; �; T ) (28)+ �3h3(x; y; �; T ) + � � ��(x; y; �) = ��1(x; y; �; T ) + �2�2(x; y; �; T )+ �3�3(x; y; �; T ) + � � � ;in (20) where T = �2�; f = f + �2f2: (29)Here f is the ritial exitation amplitude. The terms in the expansion for h and � may be writtenin the following separable Floquet-Fourier form:h1 = [w1(T )eikx + w4(T )eik(x+sy) + ::℄p1(�) (30)�1 = [w1(T )eikx + w4(T )eik(x+sy) + ::℄q1(�)h2 = [w21(T )e2ikx + w24(T )e2ik(x+sy)℄p2;1(�)21



+ w1(T )w4(T )eik((1�)x�sy)p2;2(�)+ w1(T )w4(T )eik((1+)x+sy)p2;3(�) + ::�2 = [w21(T )e2ikx + w24(T )e2ik(x+sy)℄q2;1(�)+ w1(T )w4(T )eik((1�)x�sy)q2;2(�)+ w1(T )w4(T )eik((1+)x+sy)q2;3(�) + ::where  = os �, s = sin �, and � is not a multiple of �3 . Here p1 and q1 are real 2�-periodifuntions of the fast time � in the ase of harmoni waves; in the ase of subharmoni waves theyare 4�-periodi in � . Additionally, p2;r and q2;r (r = 1; 2; 3) are real 2�-periodi funtions of � .The wave number k is assoiated with the onset unstable mode.At O(�) we reover the linear problem whih determines k and f, as well as the funtions p1,q1 to within a multipliative onstant. At O(�2), equations are found whih allow us to solve forthe funtions p2;r and q2;r. Finally, at O(�3), we apply a solvability ondition to ensure that aperiodi solution exists. This ondition leads to the amplitude equationsÆ dw1dT = �f2w1 +Ajw1j2w1 +B(�)jw4j2w1 (31)Æ dw4dT = �f2w4 +Ajw4j2w4 +B(�)jw1j2w4;where Æ = 12� Z 4�0 (p01 + k2p1)ep1 d� (32)� = k4� Z 4�0 [os(�) os(m�) + sin(�) os(n� + �)℄p1ep1 d�A = k24� Z 4�0 ��k(p21q1)0 � k3p21q1 � 2(q1p2;1)0 � 2k2q1p2;1+ k2q21p1 + 32k3�0p31�ep1 d�B(�) = k24� Z 4�0 h(1� �p2� 2)[(p1q2;2)0 + k2p1q2;2 � kq1q2;2℄+ (1 + �p2 + 2)[(p1q2;3)0 + k2p1q2;3 � kq1q2;3℄� (1� )[(p2;2q1)0 + k2p2;2q1℄� (1 + )[(p2;3q1)0 + k2p2;3q1℄� (6� 2p2� 2� 2p2 + 2)[k(p21q1)0 + k3p21q1 � k2p1q21 ℄+ �0(32 + s2)k3p31)iep1 d�:In the above, a prime denotes di�erentiation with respet to � and ep1 is the equivalent of p1 forthe adjoint problem at O(�). The amplitude equations (31) may be re-saled and then omparisonwith the map (10) yields a = b1 = sgn(A�); �(�) = sgn(A�)B(�)A : (33)22



A.2 Hexagonal lattie omputationSimilarly, we ompute the oeÆients � and b2 in the bifuration equations (16) by seeking solutionsin the form of simple hexagons. Here we use a three-timing perturbation method, writing thesolution as h(x; y; �) = �h1(x; y; �; T1; T2) + �2h2(x; y; �; T1; T2) (34)+ �3h3(x; y; �; T1; T2) + � � ��(x; y; �) = ��1(x; y; �; T1; T2) + �2�2(x; y; �; T1; T2)+ �3�3(x; y; �; T1; T2) + � � � ;where T1 = ��; T2 = �2�; (35)and h1 = w1(T1; T2)p1(�)[eikx + eik(� 12x+p32 y) + eik(� 12x�p32 y) + ::℄ (36)�1 = w1(T1; T2)q1(�)[eikx + eik(� 12x+p32 y) + eik(� 12x�p32 y) + ::℄h2 = w21(T1; T2)�p2;1(�)[eik2x + eik(�x+p3y) + eik(�x�p3y) + ::℄+ p2;2(�)[eikx + eik(� 12x+p32 y) + eik(� 12x�p32 y) + ::℄+ p2;3(�)[eik( 32x�p32 y) + eikp3y + eik( 32x+p32 y) + ::℄	�2 = w21(T1; T2)�q2;1(�)[eik2x + eik(�x+p3y) + eik(�x�p3y) + ::℄+ q2;2(�)[eikx + eik(� 12x+p32 y) + eik(� 12x�p32 y) + ::℄+ q2;3(�)[eik( 32x�p32 y) + eikp3y + eik( 32x+p32 y) + ::℄	:As with the rhombi ase, p1, q1, p2;r and q2;r are real. Additionally, we take the amplitudew1(T1; T2) to be real.For the harmoni ase, at O(�2) the solvability ondition,Æ �w1�T1 = �0w21 ; (37)must be satsi�ed, where Æ is given by (32). The quadrati oeÆient is�0 = k24� Z 4�0 [�(p1q1)0 � k2p1q1 + 12kq21 ℄ ep1 d� : (38)There is no solvability ondition for subharmoni waves at O(�2), orresponding to the fat thatthere are no even terms in the amplitude equations (16) for this ase.At order O(�3), we again apply a solvability ondition to ensure that a periodi solution exists.This onditions leads to the amplitude equationÆ �w1�T2 = �f2w1 + (A+ 2�2)w31 (39)23
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