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Abstract

We consider the transition from a spatially uniform state to a steady, spatially-
periodic pattern in a partial differential equation describing long-wavelength convec-
tion [1]. This both extends existing work on the study of rolls, squares and hexagons
and demonstrates how recent generic results for the stability of spatially-periodic
patterns may be applied in practice. We find that squares, even if stable to roll
perturbations, are often unstable when a wider class of perturbations is considered.
We also find scenarios where transitions from hexagons to rectangles can occur. In
some cases we find that, near onset, more exotic spatially-periodic planforms are
preferred over the usual rolls, squares and hexagons.

1 Introduction

Pattern forming instabilities arise in a wide number of physical and chemi-

cal problems. Model partial differential equations are used to try to capture

the essential features of the observed transitions. In many interesting exam-

ples such as Rayleigh-Bénard convection and reaction-diffusion problems, the

model equations are invariant under all translations, rotations and reflections

in the plane and patterns arise at a transition from a trivial solution consist-

ing of no pattern. Linear stability analysis of the trivial solution leads to a

critical curve describing how the wavenumber for instability, k, depends on a

parameter, µ, in the problem. For parameter values below the critical curve

the trivial solution is stable. At a critical parameter, µc, instability onsets at

a critical wavenumber kc.



Weakly nonlinear analysis is often used to try to predict the type of patterns

observed once the trivial solution becomes unstable. Two aspects make this

particularly difficult: firstly, the rotational invariance of the problem means

that instability to a single wavenumber gives instability to a whole circle of

wavevectors. In other words, if the trivial solution is unstable to rolls then it

is unstable to rolls with any orientation in the plane. Secondly, for µ > µc, not

just a single wavenumber but a whole band of wavenumbers is unstable. Of-

ten this second problem is addressed by assuming that, sufficiently close to µc,

boundaries in any real problem will select out one particular wavenumber and

modes with neighbouring wavenumbers will be suppressed. In the case of the

first problem, a tacit assumption is often made that, for a given wavenumber,

only a finite number of critical wavevectors are relevant. For example, four

critical wavevectors oriented at π
2

to each other (see figure 1(a)) are chosen or

six critical wavevectors oriented at π
3

to each other are chosen (see figure 1(b)).

In both cases the critical wavevectors generate a periodic lattice of points, a

square lattice in the first case and a hexagonal lattice in the second. Con-

sequently, the circle of critical wavevectors is replaced by a finite set and a

finite dimensional centre manifold exists for the problem, of dimension four

in the case of squares and of dimension six in the case of hexagons. If critical

wavevectors are used which do not generate a periodic lattice then there is no

reason a priori why a finite dimensional centre manifold exists, since modes

arbitrarily close to critical occur. While non-periodic cases have been consid-

ered [2], their validity requires an additional assumption on the suppression

of these near critical modes.

Weakly nonlinear analysis using wavevectors on a square lattice or a hexagonal

lattice as shown in figure 1, provide a framework for examining the relative

stability of either squares and rolls or hexagons and rolls respectively. In both

cases generic bifurcation equations have been derived using symmetry argu-

ments [3–5]. A more complete stability analysis for rolls has been performed,

for example by Brattkus and Davis [6], who consider the relative stability of

two sets of rolls oriented at an arbitrary angle for a problem arising in crys-

tal growth. Similarly, a more complete analysis can be performed for squares

and hexagons by considering families of different square and hexagonal lat-
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tices (for specific examples see figure 2). This problem has a high degree of

symmetry and using group theoretic arguments, Dionne and Golubitsky show

that, for each lattice, additional branches other than hexagons, rolls or squares

bifurcate as primary bifurcations [9,10]. In spite of the fact that the Fourier

transform of the new patterns involves only one critical wavenumber, in phys-

ical space they appear to have more than one lengthscale. Such “superlattice”

patterns have recently been observed in the Faraday crispation experiment

[7,8]. (For examples see figures 4 and 8 below.)

Using symmetry arguments, Dionne et al. derive the generic bifurcation equa-

tions for the families of square and hexagonal lattices and examine the stability

of certain primary bifurcation branches in terms of the coefficients of the bifur-

cation equations [11]. This stability analysis enables two types of statement to

be made. Firstly, since each lattice problem corresponds to a subspace of the

original unbounded problem, and since hexagons and squares each exist on a

whole family of lattices, the stability of these planforms can be considered to

a countably infinite number of perturbations. While this is not equivalent to

completely determining the stability of squares and hexagons in an unbounded

domain, it does considerably extend previous results. Secondly, each individ-

ual lattice corresponds to either a square or hexagonal domain with periodic

boundary conditions. For each lattice, the relative stability of the primary

branches known to exist from [9] can be calculated. These results, contained

in [11], have not as yet been applied to any specific partial differential equation

and it is this issue we address here.

In this paper, we re-examine the relative stability of spatially-periodic so-

lutions to a partial differential equation considered by Knobloch [1]. This

equation,

ft = αf − µ∇2f −∇4f + κ∇ · |∇f |2∇f

+β∇ · ∇2f∇f − γ∇ · f∇f + δ∇2|∇f |2, (1)

describes a number of long-wavelength partial differential equations which

arise in convection problems. For example, when κ = 1, β = δ = γ = 0 we

recover the planform equation for convection in a layer between two poorly
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conducting boundaries [12], and when κ = 1, γ = 0, β = −
√

7
8

, δ = −3
√

7
8

equa-

tion (1) models long-wavelength Marangoni convection [13]. Further examples

are given in [1]. For equation (1) we demonstrate, that with relatively little

additional analysis, we can derive all the coefficients necessary to apply the

results from [11]. We thereby significantly extend Knobloch’s stability results

by inclusion of the additional perturbations.

In section 2 we define the critical modes which generate square and hexagonal

lattices used here and the resulting generic bifurcation equations. The deriva-

tion of the coefficients of the bifurcation equations is given in section 3. Then

in section 4 we discuss the results for two specific cases. In Case I we take

γ = 0, κ = +1. Knobloch called this Case B, the nature of our conclusions

for his Case A are similar and we do not present them in detail. For Case I,

provided β 6= δ, the coefficient of the quadratic term in the bifurcation equa-

tions for the hexagonal lattices is nonzero. This quadratic term renders all of

the primary solution branches for the hexagonal lattices unstable at bifurca-

tion [14] and thus we restrict our attention to the square lattice bifurcation

problems. We divide our discussion into two parts: in section 4.1.1 we consider

the stability of squares and rolls in an unbounded domain by considering their

stability on the whole family of square lattices; in section 4.1.2 we consider the

particular example of long-wavelength Marangoni convection and show that

different bifurcation scenarios can occur for different square lattices. In Case

II we consider γ/k2 = δ−β, κ = +1. This choice of parameters yields a degen-

erate bifurcation problem for the hexagonal lattice since the coefficient of the

quadratic term in the bifurcation equations is zero. Stable primary branches

are therefore a possibility for all lattices and we consider both square and

hexagonal types. We first discuss what can be deduced of the stability of rolls,

hexagons and squares in an unbounded domain in section 4.2.1; then in sec-

tion 4.2.2 we discuss the unfolding expected if the coefficient of the quadratic

term is non-zero but sufficiently small. Finally, in 4.2.3 we discuss the spe-

cific example of Marangoni convection for different hexagonal lattices. Our

conclusions are summarised in section 5.
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2 Preliminaries

In order to apply the analysis given in [11], we consider sets of eight or twelve

critical modes whose wavevectors generate square or hexagonal lattices respec-

tively, where the length of the critical wavevector is greater than the distance

between neighbouring points on the lattice. A typical example is shown in

figure 2(a) for the square lattice. This figure should be contrasted with figure

1(a), which shows the wavevectors which are used conventionally in pattern

selection studies. In both figures, a circle representing the critical wavevectors

for the original unbounded problem has been superimposed on the lattice. In

figure 1(a) this circle only intersects the lattice at four points and there are

consequently four critical modes, whereas in figure 2(a) the circle intersects

the lattice at eight points and hence there are eight critical modes. Sufficiently

close to the critical value of the parameter, µc, all other modes, represented

by vectors not of length kc, will be damped. A family of finer and finer lattices

can be constructed each with eight points on the critical circle. Each lattice

can be encoded by a pair of integers, (m, n); for example, the lattice shown in

figure 2(a) corresponds to the case (2, 1) i.e. K1s
is two squares of the lattice

across and one up. The eight wavevectors consist of two sets of four wavevec-

tors, (±K1s
,±K2s

) and (±K3s
,±K4s

), that comprise squares and are rotated

by an angle θs relative to each other. An alternative way to specify each lattice

is therefore through the lattice angle θs, where,

θs = cos−1
(

2mn

m2 + n2

)

, (2)

and m > n > 0 are relatively prime positive integers that are not both odd.

Reducing the circle of critical wavevectors to four critical wavevectors, as

shown in figure 1(a), is equivalent to changing the original unbounded domain

to a box whose side length is 1
kc

and applying periodic boundary conditions.

Using eight critical wavevectors, illustrated in figure 2(a) for the case (m, n) =

(2, 1), corresponds to changing the domain to a box of side length
√

m2+n2

kc
and

again applying periodic boundary conditions.
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In a similar way, a family of hexagonal lattices exists where the number of crit-

ical wavevectors is twelve. These twelve wavevectors consist of two sets of six

wavevectors, (±K1h
,±K2h

,±K3h
) and (±K4h

,±K5h
,±K6h

), that comprise

hexagons rotated at the angle θh given by

θh = cos−1

(

m2 + 2mn − 2n2

2(m2 − mn + n2)

)

, (3)

where now m > n > m
2

are relatively prime positive integers, and where m+n

is not a multiple of 3. An example of the case (m, n) = (3, 2) is shown in figure

2(b). For both the square and hexagonal lattices the requirement that m and

n are positive integers ensures that the critical wavevectors generate a peri-

odic lattice. This is necessary if the centre manifold theorem is to be invoked

to formally justify the use of finite-dimensional bifurcation equations. The re-

maining conditions on m and n ensure that each lattice angle corresponds to

a genuinely different case [10].

For the square case, letting zj be the complex amplitude of mode ei(Kjs ·r)

where r = (x, y) then the generic bifurcation equations take the form

ż1 = λz1 + (a1|z1|2 + a2|z2|2 + a3|z3|2 + a4|z4|2)z1 + O(|z|5),
ż2 = λz2 + (a2|z1|2 + a1|z2|2 + a4|z3|2 + a3|z4|2)z1 + O(|z|5),
ż3 = λz3 + (a3|z1|2 + a4|z2|2 + a1|z3|2 + a2|z4|2)z1 + O(|z|5), (4)

ż4 = λz4 + (a4|z1|2 + a3|z2|2 + a2|z3|2 + a1|z4|2)z1 + O(|z|5).

One recovers the bifurcation equations associated with the wavevectors given

in figure 1 by restricting to the subspace z3 = z4 = 0. Equations (4) have six

known types of primary branch which are listed in table 1 along with their

stability assignments in terms of the coefficients. Note that rolls and squares

are the same on all lattices, but the rhombs (rectangles), super squares and

anti-squares take a different form depending on (m, n). For example, changing

(m, n) changes the aspect ratio of the rhombs. An example of one of the super

square solutions can be seen in figure 4. Further examples of the different

planforms are given in [9–11].

For the hexagonal lattice problem, letting zj be the complex amplitude of

mode ei(Kjh
·r) then the generic bifurcation equations take the form
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Table 1
Signs of eigenvalues for primary bifurcation branches on the square lattice; a1, . . . , a4

are coefficients in the bifurcation equation (4).

Planform Signs of non-zero eigenvalues

Rolls (R) sgn(a1), sgn(a2 − a1), sgn(a3 − a1), sgn(a4 − a1)

z = AR(1, 0, 0, 0)

Simple Squares (S) sgn(a1 + a2), sgn(a1 − a2), sgn(a3 + a4 − a1 − a2)

z = AS(1, 1, 0, 0)

Rhombs (Rhs1,m,n) sgn(a1 + a3), sgn(a1 − a3), sgn(a2 + a4 − a1 − a3)

z = ARh(θs)(1, 0, 1, 0)

Rhombs (Rhs2,m,n) sgn(a1 + a4), sgn(a1 − a4), sgn(a2 + a3 − a1 − a4)

z = ARh(θs + π
2 )(1, 0, 0, 1)

Super Squares (SSm,n) sgn(a1 + a2 + a3 + a4), sgn(a1 + a2 − a3 − a4)

z = ASS(1, 1, 1, 1) sgn(a1 − a2 + a3 − a4), sgn(a1 − a2 − a3 + a4)

sgn(µ0), where µ0 = O(A
2(m+n−1)
SS )

Anti–Squares (ASm,n) same as super squares, except µ0 → −µ0

z = AAS(1, 1,−1,−1)

ż1 = λz1 + ǫz̄2z̄3

+(b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2)z1 + O(|z|4),
ż2 = λz2 + ǫz̄3z̄1

+(b2|z1|2 + b1|z2|2 + b2|z3|2 + b6|z4|2 + b4|z5|2 + b5|z6|2)z2 + O(|z|4),
ż3 = λz3 + ǫz̄1z̄2

+(b2|z1|2 + b2|z2|2 + b1|z3|2 + b5|z4|2 + b6|z5|2 + b4|z6|2)z3 + O(|z|4),
ż4 = λz4 + ǫz̄6z̄5 (5)

+(b4|z1|2 + b5|z2|2 + b6|z3|2 + b1|z4|2 + b2|z5|2 + b2|z6|2)z4 + O(|z|4),
ż5 = λz5 + ǫz̄4z̄6

+(b5|z1|2 + b4|z2|2 + b6|z3|2 + b2|z4|2 + b1|z5|2 + b2|z6|2)z5 + O(|z|4),
ż6 = λz6 + ǫz̄5z̄4

+(b6|z1|2 + b5|z2|2 + b4|z3|2 + b2|z4|2 + b2|z5|2 + b1|z6|2)z6 + O(|z|4).

The standard hexagonal bifurcation problem is recovered by restricting to

the subspace z4 = z5 = z6 = 0. Primary branches for equations (5) are

listed in table 2. Note that rolls and hexagons are the same on all lattices,

but the rhombs and the super hexagons take a different form depending on

(m, n). Examples of one of the rhombs and one of the super hexagon states

are given in figure 6(b) and figure 8 respectively. As for the square lattice,
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further examples of the different planforms may be seen in [9–11].

3 Calculation of the Coefficients

The form of the bifurcation equations (4) and (5) is determined by the symme-

try of the problem. However, the coefficients, and therefore the stability of the

different planforms, depend upon the particular application. One important

result in [11] is that, although high order terms in the bifurcation equations are

required to find the relative stability of some planforms, much is fixed by the

cubic order truncation. Therefore, in this section we determine the coefficients

of the quadratic and cubic terms in the bifurcation equations (4) and (5) from

the long-wavelength equation (1). Our approach is to infer these quantities

from the branching equations for rolls, simple squares, rhombs, and simple

hexagons, which are computed using perturbation theory below . The reason

we take this indirect approach is twofold. Firstly, it is simpler than a direct ap-

proach since although it requires four separate calculations, each is only one-

dimensional: the direct approach requires one eight-dimensional calculation

and one twelve-dimensional calculation. Secondly, for cases such as this one,

where stability on the simplest square and hexagonal lattices has been con-

sidered already, we wish to emphasize that only one further one-dimensional

calculation is required to obtain all the information for the extended stability

analysis presented here.

We let

f = ǫf0 + ǫ2f1 + ǫ3f2 + . . .

µ= µc + ǫµ1 + ǫµ2 + . . . ,

where µ is the bifurcation parameter and instability onsets at the critical value

µc = 2(−α)1/2, at the critical wavenumber kc = (−α)1/2. In turn, we take

Rolls : f0 = AReikx + · · · + c.c.

Squares : f0 = AS(eikx + eiky) + · · ·+ c.c. (6)

Hexagons : f0 = AH(eikx + eik(−x+
√

3 y)/2 + eik(−x−
√

3 y)/2) + · · · + c.c.

Rhombs : f0 = ARh(e
ikx + eik(cx+sy)) + · · ·+ c.c., where c ≡ cos(θ), s ≡ sin(θ) .
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Table 2
Branching equations and signs of eigenvalues for primary bifurcation branches on
the hexagonal lattice; ǫ, b1, . . . , b6 are coefficients in the bifurcation equation (5).

Planform and branching equation Signs of non-zero eigenvalues

Rolls (R) sgn(b1), sgn(ǫAR + (b2 − b1)A
2
R),

z = AR(1, 0, 0, 0, 0, 0) sgn(−ǫAR + (b2 − b1)A
2
R),

0 = λAR + b1A
3
R + O(A5

R) sgn(b4 − b1), sgn(b5 − b1), sgn(b6 − b1).

Simple Hexagons (H±) sgn(ǫAH + 2(b1 + 2b2)A
2
H),

z = AH(1, 1, 1, 0, 0, 0) sgn(−ǫAH + (b1 − b2)A
2
H),

0 = λAH + ǫA2
H sgn(−ǫAH + (b4 + b5 + b6 − b1 − 2b2)A

2
H),

+(b1 + 2b2)A
3
H + O(A4

H) sgn(−ǫAH + O(A3
H)).

Rhombs (Rhh1,m,n) sgn(b1 + b4), sgn(b1 − b4)

z = ARh(θh)(1, 0, 0, 1, 0, 0) sgn(µ1), sgn(µ2), where,

0 = λARh + (b1 + b4)A
3
Rh + O(A5

Rh) µ1 + µ2 = (−2b1 − 2b4 + 2b2 + b5 + b6)A
2
Rh,

µ1µ2 = −ǫ2A2
Rh + (b1 + b4 − b2 − b5)(b1 + b4 − b2 − b6)A

4
Rh.

Rhombs (Rhh2,m,n) sgn(b1 + b5), sgn(b1 − b5)

z = ARh(θh + 2π
3 )(1, 0, 0, 0, 1, 0) sgn(µ1), sgn(µ2), where,

0 = λARh + (b1 + b5)A
3
Rh + O(A5

Rh) µ1 + µ2 = (−2b1 − 2b5 + 2b2 + b4 + b6)A
2
Rh,

µ1µ2 = −ǫ2A2
Rh + (b1 + b5 − b2 − b4)(b1 + b5 − b2 − b6)A

4
Rh.

Rhombs (Rhh3,m,n) sgn(b1 + b6), sgn(b1 − b6)

z = ARh(θh − 2π
3 )(1, 0, 0, 0, 0, 1) sgn(µ1), sgn(µ2), where,

0 = λARh + (b1 + b6)A
3
Rh + O(A5

Rh) µ1 + µ2 = (−2b1 − 2b6 + 2b2 + b4 + b5)A
2
Rh,

µ1µ2 = −ǫ2A2
Rh + (b1 + b6 − b2 − b4)(b1 + b6 − b2 − b5)A

4
Rh,

sgn(ǫASH + 2(b1 + 2b2 + b4 + b5 + b6)A
2
SH)

Super Hexagons (SH±
m,n)∗∗ sgn(ǫASH + 2(b1 + 2b2 − b4 − b5 − b6)A

2
SH)

z = ASH(1, 1, 1, 1, 1, 1) sgn(−ǫASH + O(A3
SH)), sgn(−ǫASH + O(A3

SH))∗

0 = λASH + ǫA2
SH + (b1 + 2b2)A

3
SH sgn(µ1), sgn(µ2), where,

+(b4 + b5 + b6)A
3
SH + O(A4

SH) µ1 + µ2 = −4ǫASH + 4(b1 − b2)A
2
SH ,

µ1µ2 = 4(ǫASH − (b1 − b2)A
2
SH)2

−2((b4 − b5)
2 + (b4 − b6)

2 + (b5 − b6)
2))A4

SH

sgn(µ0), where, µ0 = O(A
2(m−1)
SH ).

∗ These two eigenvalues differ at O(A3
SH).

∗∗ Super triangles [8] have the same eigenvalues except sgn(µ0) → -sgn(µ0).
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At O(ǫ3) the solvability condition gives an equation for the amplitudes AR, AS, AH , ARh

respectively. That is,

ȦR = λAR + CRA3
R + O(A5

R),

ȦS = λAS + CSA3
S + O(A5

S),

ȦH = λAH + ǫA2
H + CHA3

H + O(A4
H), (7)

ȦRh = λARh + CRhA
3
Rh + O(A5

Rh),

where λ = k2(µ − µc) and

ǫ = k4
(

β +
γ

k2
− δ

)

CR =−k4
(

3κ + 2
(

β + δ − ǫ

3k4

)(

δ +
ǫ

3k4

))

CS =CR − 2k4

(

κ + 2

(

δ2 − ǫ2

k8

))

(8)

CH =CR − 3k4

2

(

4κ +
(

β + 2δ − ǫ

k4

)(

2δ +
ǫ

k4

))

CRh(θ) =CS − 4k4 cos2 θ

(

κ + βδ − βǫ

k4(1 − 4 cos2 θ)
− 8ǫ2(1 − 2 cos2 θ)

k8(1 − 4 cos2 θ)2

)

.

Note that, as expected, CRh(
π
2
) = CS. Also note that CRh diverges as θ → π

3

since when θ = π
3

there is resonance between eikx and eik(cx+sy).

The cubic coefficients in the equivariant bifurcation equations (4) and (5)

are readily expressed in terms of the branching coefficients CR, CS, CH and

CRh. For instance, if (4) is restricted to the simple squares subspace z =

(AS, AS, 0, 0), we find

ȦS = λAS + (a1 + a2)A
3
S. (9)

Comparing equation (9) with the appropriate branching equation from equa-

tions (7) gives a1 + a2 = CS. Similarly, by restricting to subspaces for rolls

and rhombs for the square lattice problems (4), we find

a1 = CR, a2 = CS − CR,

a3 = CRh(θs) − CR, a4 = CRh

(

θs +
π

2

)

− CR, (10)
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where θs ∈ (0, π
2
) takes on one of the discrete set of values (2). Similarly, re-

striction to subspaces for rolls, hexagons and rhombs for the hexagonal lattice

bifurcation problems (5) leads to

b1 =CR, b2 =
1

2
(CH − CR), b4 = CRh(θh) − CR,

b5 =CRh

(

θh +
2π

3

)

− CR, b6 = CRh

(

θh − 2π

3

)

− CR, (11)

where θh ∈ (0, π
3
) takes on one of the values in the discrete set (3).

Note that the expressions for CR, CS, ǫ, and CH are given in [1] and, in that

paper, are used to calculate the coefficients a1, a2, b1 and b2. The remaining

expression for CRh is the only additional calculation required to enable all the

remaining coefficients in the bifurcation equations (4) and (5) to be found.

4 Stability Results

In this section we use the bifurcation equations (4) and (5) to determine the

relative stability of the steady planforms which are given in section 2. The

results depend on the parameters κ, β, δ, and γ in the long-wave equation

(1). They also depend on the size of the periodic domain through the lattice

parameters (m, n). We restrict our discussion to two cases and, where possible,

compare and contrast our results with those given in [1].

The relative stability of each primary branch is obtained by linearising about

the solutions of the bifurcation problem, (4) or (5), and then explicitly cal-

culating the eigenvalues. These calculations were carried out in [11] and the

signs of the eigenvalues are summarized in tables 1 and 2 for the square and

hexagonal lattices, respectively. The sign of the first quantity listed for each

planform gives the branching direction; if this eigenvalue is negative (positive),

then the branch is supercritical (subcritical). If ǫ 6= 0 then simple hexagons

and super hexagons bifurcate transcritically; all other patterns arise through

pitchfork bifurcations. We distinguish between the two branches of hexagons,

denoted H+ and H−, which satisfy AH > 0 and AH < 0, respectively. Sim-

ilarly, there are two distinct branches of super hexagons, denoted by SH±
m,n.
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Omitted from the tables are the zero eigenvalues associated with translations

of the patterns, and also information about the multiplicities of each eigen-

value; this information can be found in [11]. Note that certain eigenvalues in

tables 1 and 2 are not determined at cubic order in the bifurcation equations.

For instance, the relative stability of super squares and anti-squares depends

on a resonant term of O(|z|2m+2n−1). However, in this case, if super squares

and anti-squares are neutrally stable at cubic order, then, generically, exactly

one of the two states is stable. There is an analogous stability result for super

hexagons and triangles [8].

In the case of the square lattice, the eigenvalues that depend only on a1 and a2

can be determined by considering the restricted bifurcation problem z3 = z4 =

0 in equation (4). Similarly, those results for the hexagonal lattice that depend

only on ǫ, b1 and b2 can be obtained by considering the simpler hexagonal

bifurcation problem. In general, the signs of all the remaining eigenvalues are

dependent on the choice of lattice. However, in the special case when ǫ = 0,

we find that those eigenvalues which are unchanged on permutation of a3 and

a4 are independent of θs, and those which are unchanged on permutation of

b4, b5 and b6 are independent of θh. This is due to the particularly simple θ-

dependence of CRh(θ) in equation (8) when ǫ = 0. Also, in the case of the

square lattices, results for angles close to π
6

and π
3

must be interpreted with

care because of the singularity in CRh(θ) at θ = π
3

that occurs due to resonant

interactions.

In each of the cases we discuss below, we evaluate the signs of the eigenvalues

for each planfrom and determine if and where they change sign. We present

the results in the form of bifurcation sets separating different regions of sta-

bility and instability for the relevant patterns. Note that along the stability

boundaries themselves, the bifurcation problem is degenerate and the bifurca-

tion equations (4) and (5) are insufficient to locally determine the bifurcation

structure. Some of these degenerate points have been analysed by Knobloch

[1].
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4.1 Case I: γ = 0, κ = +1

In case I, solutions on the hexagonal lattices are unstable at onset unless β = δ

i.e. ǫ = 0 in equations (5). Thus here we focus on the square lattice problems

and defer discussion of the hexagonal cases to section 4.2.

4.1.1 The stability of squares and rolls

If we can show that squares or rolls are unstable on any one lattice then

they must be unstable in the original unbounded problem sufficiently close to

onset. From the hexagonal lattice result, we can immediately infer that rolls

are unstable to hexagonal perturbations for β 6= δ. Here we show that squares

are also unstable unless β is sufficiently close to δ. The bifurcation sets for

rolls and for squares in the (β, δ)-plane are presented in figures 3(a) and (b)

respectively.

The sign of the branching eigenvalue for rolls, sgn(a1), is always negative,

so rolls always bifurcate supercritically. The sign of a2 − a1 determines the

relative stability of squares and rolls and the corresponding bifurcation line,

a1 = a2 in figure 3(a), is identical to the line q(0) = 0 given in figure 2(b) of

[1]. The relative stability of rolls and the two rhombic patterns is determined

by the signs of a3 − a1 and a4 − a1. Since a3 and a4 are dependent on θs, the

precise position of the corresponding bifurcation curves a1 = a3 and a1 = a4

depends on the choice of lattice: those shown in figure 3(a) are for the case

(m, n) = (2, 1). Qualitatively the picture is the same in all cases corresponding

to 0 < θs < π
4
. For θs > π

4
, the picture is similar except a3 − a1 and a4 − a1

switch roles. The region of stability is indicated by the shaded wedges in the

(β, γ)-plane between a1 = a2 and a1 = a4 (a1 = a2 and a1 = a3 if θs > π
4
).

As the lattice angle, θs, approaches π
6

or π
3

the region of stability of the rolls

is reduced to a narrower and narrower region occurring only for large |β| and

|δ|. At precisely θ = π
3

(or the complementary π
6
) the hexagonal lattice must

be considered.

In figure 3(b) we show the analogous bifurcation set for squares showing where

each of the three expressions given in table 1 for the eigenvalues for squares

13



change sign. The lines a1 = a2 and a1 = −a2 correspond to the lines q(0) = 0

and pN(0) = 0 given by Knobloch. In his study he found the squares were

preferred to rolls for the region between these two curves. However, this region

is significantly reduced when instability to super square (or anti-square) states

is included through the eigenvalue a3 + a4 − a1 − a2. The position of the

corresponding bifurcation line given by a3 + a4 = a1 + a2 is again dependent

on the value of the lattice angle. As the lattice angle approaches π
6

or π
3

the

region of stability of the squares is reduced to a narrower and narrower region.

Interestingly this narrow region always includes the line β = δ, for which the

hexagonal problem is degenerate. Recall that, for hexagonal lattices, it is only

in this degenerate case that stable planforms can exist at onset. Thus, in

summary, we find that there are only stable squares or rolls when β ≈ δ, that

is, the coefficient of the quadratic term, ǫ, is approximately zero.

Knobloch also considered the case where β = δ, γ 6= 0 which he refers to as case

A. In this case we find that the region of stability for the rolls and for squares

is diminished to a narrow region about γ = 0 as the lattice angle approaches
π
6

or π
3
. Since γ = 0 corresponds to the degenerate hexagonal problem, again

we find that squares and rolls are unstable unless ǫ ≈ 0.

Some time dependent computations of equation (1) have been carried out in

case B by Pontes, Christov and Velarde [15]. They present results for three

different sets of parameter values, two of which result in hexagons and one

in which they find squares. While these results are not inconsistent with our

predictions for their parameter values, two points should be born in mind

when trying to make a comparison. Firstly, in [15] they use rigid rather than

periodic boundary conditions in their computations, which could supress some

of the instabilities we predict. Secondly, their computations are carried out at

values of the bifurcation parameter which are not particularly close to critical.

4.1.2 Stability of other planforms: the example of Marangoni convection

As discussed in section 2, for each lattice, there are in fact six primary branches

known to exist, any one of which could in principle be stable. Since many of

the eigenvalues are dependent on the lattice angle θs, the precise region of
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stability for each state is dependent on the choice of lattice, i.e. on the size of

the domain for a box with periodic boundary conditions. Consequently, for a

given physical problem, which planforms are stable at onset, can be dependent

on the size of the box. We illustrate this with the example of Marangoni

convection which corresponds to β = −
√

7
8

, δ = −3
√

7
4

and γ = 0. This lies

within the region where squares are preferred to rolls in Knobloch’s analysis.

In contrast, we find that one of the following scenarios occurs:

0 < θs < 15.79o : Bistability of Rhs2,m,n and squares. e.g. (m,n)=(6,5).

15.79 < θs < 18.34o : Rhs2,m,n stable. e.g. (m,n)=(11,8).

18.34 < θs < 39.26o : Everything unstable, e.g. (m,n)=(2,1).

39.26 < θs < 43.71o : Rhs2,m,n stable. e.g. (m,n)=(9,4).

43.71 < θs < 44.67o : Super squares or anti-squares are stable. e.g. (m,n)=(19,8).

44.67 < θs < 45.0o : Squares stable. e.g. (m,n)=(29,12).

The results for 450 < θs < 900 are essentially the same with Rhs1 and Rhs2

interchanged. Recall that the size of the periodic box for which these results

apply is given by
√

m2+n2

kc
and that the aspect ratio of the rhombs (rectangles)

is given by m−n
m+n

for Rhs1,m,n and by n
m

for Rhs2,m,n. In figure 4 we show an

example of the bifurcation diagram close to onset for the case (m, n) = (19, 8).

We know that either super squares or anti-squares are stable and have drawn

the super square case. We have not calculated which of these two planforms

is preferred at onset since this is determined at an O(2(m + n) − 1) = O(53)

truncation of the bifurcation equations!

4.2 Case II: The degenerate case γ
k2

c
= δ − β, κ = +1

In the degenerate case γ
k2

c
= δ−β the quadratic coefficient, ǫ, is zero in equation

(5) and both square and hexagonal lattices can give locally stable planforms.

We have therefore evaluated the signs of the eigenvalues listed in both table 1

and table 2 which are determined at a cubic truncation of the bifurcation

equations.
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4.2.1 The stability of rolls, hexagons and squares

Our results are presented in the form of a bifurcation set in the (β, δ)-plane

shown in figure 5.

We first recap the relative stability results given in [1] for the subspaces z4 =

z5 = z6 = 0 of equation (5) and z3 = z4 = 0 of equation (4) before discussing

the results of our extended analysis. First, in the subspace of the hexagonal

bifurcation problem it is found:

• Hexagons are stable in region 1.

• Rolls are stable in regions 2,3 and 4.

In contrast, for the subspace of the square lattice bifurcation problem:

• Squares are stable in region 1, 2 and 3.

• Rolls are stable only in region 4.

Together the results for the two lattices suggest that in regions 2 and 3, for

an unbounded domain, that hexagons are unstable to rolls but that rolls are

unstable to squares. However, there is no formal way of directly studying if

hexagons are unstable to squares.

In our analysis of the finer lattices the results given above are modified. For

a given hexagonal lattice we find hexagons and rhombs (Rhh3,m,n) are stable

in region 1. Rhombs (Rhh3,m,n) are stable in region 2 and rolls are stable

only in regions 3 and 4. All other planforms are unstable. The position of

the line dividing regions 2 and 3 is dependent on the choice of lattice. As the

lattice angle approaches π
6
, this line approaches the line a1 = a2. The rhombs

(rectangles) have aspect ratio depending on the lattice angle but lying between
1√
3

and 1.

For a given finer square lattice we find the stability results are unchanged

for squares and rolls, however rhombs can be stable in regions 1 and 2. In

particular, for the rhombs, we find that rhombs, Rhs2,m,n are stable if 0 <

θs < π
6

and the rhombs, Rhs1,m,n are stable if π
3

< θs < π
2
. These have aspect

ratio dependent on θs, but again lying between 1√
3

and 1. In addition, there are
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regions of stable rhombs within region 1 which exist for π
6

< θ < sin−1 1√
3
≈

35.30 and for π
3

> θ > cos−1 1√
3
≈ 54.70 (aspect ratios between 1√

3
and

√
3−1√
2

).

In summary, although the regions of stability of the hexagons and squares are

unchanged by the extended bifurcation analysis, the inclusion of the rhombic

states allows for bistability of hexagons and rhombs of aspect ratio close to

one.

4.2.2 Unfolding the degenerate problem

When ǫ 6= 0 the bifurcation equations for the hexagonal lattices contain a

quadratic term and all planforms are necessarily locally unstable. However, if

the quadratic term is sufficiently small compared with the cubic term, stable

states may result through secondary bifurcations. For example, in the con-

ventional analysis of hexagons using six critical wavevectors (figure 1(b)), for

the degenerate bifurcation problem in regions 2,3 and 4 of figure 5, rolls and

hexagons both bifurcate as pitchforks and rolls are stable. If a small quadratic

term is added, then local to the trivial solution at µc there are no stable

bifurcating branches and the hexagons bifurcate transcritically creating two

distinct branches, H+ and H−. An example bifurcation diagram of such a sce-

nario is shown in figure 6(a). In this figure it can be seen that as µ is increased,

there is a hysteretic transition to hexagons from the trivial solution. On fur-

ther increase in µ there is a second hysteretic transition, this time between

hexagons and rolls.

In our extended bifurcation analysis, again all planforms arise at pitchfork

bifurcations in the degenerate case. When ǫ 6= 0 both super hexagons and

hexagons now bifurcate as transcritical bifurcations and all states are locally

unstable. Secondary bifurcations can, however, again stabilise some of the

branches. If we consider β and δ with values corresponding to region 2 of

figure 5 and if ǫ
(1−cos2 θh)

is sufficiently small, then the bifurcation diagram

of figure 6(a) is replaced by that shown in figure 6(b). The hexagons now

undergo a hysteretic transition to rhombs rather than to rolls. Remember

that the aspect ratio of the rhombs is dependent on the lattice: those shown

in figure 6(b) are for the lattice (m, n) = (3, 2) which results in rhombs of
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aspect ratio
√

3
2

≈ 0.87.

The criterion that ǫ
(1−cos2 θh)

is sufficiently small comes from requiring that the

ǫ corrections to the cubic coefficients are small enough to be neglected. If this

is not the case, which is inevitable for fixed |ǫ| ≪ 1 if the full range in θh is

considered, then a sequence of more complicated transitions can occur. We

illustrate this by once again considering the case of Marangoni convection.

4.2.3 Unfolding the degenerate problem: the example of Marangoni convec-

tion

Although the Marangoni problem is nondegenerate, previous studies [13] have

assumed that the quadratic term is sufficiently small and that it can legiti-

mately be compared with the cubic terms. Specifically, the Marangoni prob-

lem has β = −√
7/8, δ = −3

√
7/4, ǫ = 5

√
7

8
and although ǫ does not appear

to be small, the cubic coefficients themselves are relatively large. For exam-

ple, a1 = −1615
144

and a2 = −1707
128

resulting in a saddle-node bifurcation on

the hexagonal branch occurring at µ = −0.018. We have calculated all the

eigenvalues that are determined at cubic order for the Marangoni case for the

family of hexagonal lattices and found the corresponding bifurcation lines. The

results are summarised in figure 7. The horizontal axis gives the lattice angle,

θh. For the eigenvalues shown, this diagram is reflection symmetric about the

line θh = π
6

and we have therefore only shown 0 < θh < π
6
. For simplicity,

we have only shown bifurcation lines which separate stable from unstable re-

gions of the different planforms. For θh approximately between 15o and 45o a

transition from hexagons to rhombs occurs in a similar manner to that shown

in figure 6(b). However, for θh outside this range the ǫ corrections to the cu-

bic coefficients result in many further secondary transitions of significance.

Five main shaded regions are shown indicating different combinations of sta-

ble planforms, including regions of stable super hexagons with rhombs and/or

hexagons for a cubic truncation of the bifurcation equations (note that the rel-

ative stability of super hexagons and triangles is only determined at O(2m−1)

[8]). There is, in addition, a very narrow region to the left of the black region

where super hexagons are the only stable planform. This region is too small

to be readily discernible from figure 7, but is apparent in the bifurcation di-
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agram shown in figure 8. This bifurcation diagram was computed from the

bifurcation equation (5) for the lattice (m, n) = (12, 7), i.e. θh = 10.99o. Only

branches which are stable for µ close to critical are drawn. In this particular

case there is a region of bistability between hexagons and super hexagons.

A hysteretic transition between hexagons and super hexagons can occur. An

illustration of the super hexagon state for the case (m, n) = (12, 7) is also

shown. Although such complex patterns have not yet been seen in convection

problems, recent experimental results of the Faraday crispation experiments

do show such “superlattice patterns” [7].

Note that, if all lattices (all θh) are considered, then hexagons are necessarily

unstable (see 0 < θh < 8o in figure 7). However, in this case where we have

fixed ǫ 6= 0, it is unclear whether this local problem is still valid for the

amplitudes where secondary bifurcations arise. Nevertheless, it demonstrates

some of the intriguing possibilities associated with this bifurcation problem.

5 Conclusions

Standard low-dimensional bifurcation analyses of squares and hexagons give

only a restricted stability analysis of these planforms. We have shown that,

with one additional perturbation calculation, i.e. the calculation of CRh, all

the additional coefficients required to apply the extended stability analysis

of [11] are determined. We have performed this calculation for the case of

the long-wavelength convection equation (1) and analysed the results in two

main cases. In Case I we found that extending the stability results significantly

increased the known region of instability for squares in an unbounded domain.

In particular, we find that squares are only stable at onset if ǫ ≈ 0. This is

interesting given that it is already known that all solutions which are periodic

on a hexagonal lattice are unstable at onset unless the degeneracy condition,

ǫ = 0, is met. For a given box with periodic boundary conditions we found

that the predicted planform at onset was strongly dependent on the size of the

box: some of the more exotic planforms such as super squares and anti-squares

could be stable. In Case II we showed that regions of bistability of rhombs and

hexagons exist. This gave a formal setting for studying the transition between

hexagons and rhombs of aspect ratio close to 1 (although not squares).
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Fig. 1. (a) Square lattice generated by four wavevectors on the critical circle oriented
at π

2 to each other. (b) Hexagonal lattice generated by six wavevectors on the critical
circle oriented at π

3 to each other.
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Fig. 2. (a) Square lattice generated by eight wavevectors on the critical circle. This
case shows (m,n) = (2, 1). (b) Hexagonal lattice generated by twelve wavevectors
on the critical circle. This case shows (m,n) = (3, 2).
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Fig. 3. Bifurcation sets in case I for (m,n) = (2, 1). The lines indicate transitions
in the number of negative eigenvalues. (a) Bifurcation set for rolls. The shaded
region shows the region where rolls are preferred. (b) Bifurcation set for squares.
The shaded region shows the region where squares are preferred.
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SS19,8 and AS19,8

Rhs1,19,8

S
Rhs2,19,8

R
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(or anti-squares)

•
µc

Fig. 4. Bifurcation diagram for the square lattice (m,n) = (19, 8) for the Marangoni

problem, β = −
√

7
8 , δ = −3

√
7

4 . The stable branch is marked with a solid line and
the unstable branches with dashed lines. An example of the super square planform
is shown: this is spatially periodic, i.e. not a quasipattern. The planform is obtained
by superimposing the appropriate critical Fourier modes as indicated in Table 1.
Only one period of the pattern is shown.
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Fig. 5. Bifurcation set in the case ǫ = 0. Only critical eigenvalues which divide stable
from unstable planforms are shown. The different regions are discussed in the text.
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Fig. 6. Unfoldings of the bifurcation diagrams relevant to region 2 in figure 5 for ǫ

sufficiently small. (a) The bifurcation diagram obtained by considering the subspace
z4 = z5 = z6 = 0 of equation (5). (b) The new bifurcation diagram when the
additional branches in our extended analysis is considered. Note that the rhombic
(rectangular) pattern has an aspect ratio close to 1.
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8 as

a function of the lattice angle θh.
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Fig. 8. Example bifurcation diagram for the Marangoni problem in a box with
periodic boundary conditions. This case is for (m,n) = (12, 7). Only branches which
can be stable are shown.
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