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Interesting and exotic surface wave patterns have regularly been observed in the Faraday exper-
iment. Although symmetry arguments provide a qualitative explanation for the selection of some
of these patterns (e.g., superlattices), quantitative analysis is hindered by mathematical difficulties
inherent in a time-dependent, free-boundary Navier-Stokes problem. More tractable low viscosity
approximations are available, but these do not necessarily capture the moderate viscosity regime
of the most interesting experiments. Here we focus on weakly nonlinear behaviour and compare
the scaling results derived from symmetry arguments in the low viscosity limit with the computed
coefficients of appropriate amplitude equations using both the full Navier-Stokes equations and a
reduced set of partial differential equations due to Zhang and Vinãls. We find the range of viscosities
over which one can expect ‘low viscosity’ theories to hold. We also find that there is an optimal
viscosity range for locating superlattice patterns experimentally — large enough that the region of
parameters giving stable patterns is not impracticably small, yet not so large that crucial resonance
effects are washed out. These results help explain some of the discrepancies between theory and
experiment.

PACS numbers: 05.45.-a, 47.20.Ky, 47.35.+i

I. INTRODUCTION

Numerous instabilities in physics, chemistry, and biol-
ogy can trigger a transition from a homogeneous state to
a spatially patterned one. These patterned states can be
regular or irregular, steady or periodic, and much effort
has gone into understanding the factors that determine
their characteristics. In particular, there is an important
distinction between those aspects of the pattern that de-
pend on the detailed physical properties of the system,
and those that result more generally from its symme-
tries. One of the systems that has proven most fruitful
in illuminating this distinction, and pattern formation in
general, is the Faraday system [1] — in its most common
configuration, an open container of fluid shaken up and
down to provoke surface waves. This system is relatively
compact, evolves on a convenient time scale, and is con-
ducive to simple controlled experiments. At the same
time, it can produce a tremendous variety of interest-
ing patterns, depending on the applied forcing and fluid
properties.

Experiments on the Faraday system may be loosely
divided into two categories: those using low viscosity flu-
ids such as water (kinematic viscosity of about 1 cSt)
with single frequency harmonic excitation [2, 3], and
those using moderate to high viscosity fluids such as
silicone oil (typically with kinematic viscosity of 10 cSt
or greater) with multi-frequency excitation [4–8] com-
posed of several rationally related frequency components
{mω, nω, pω, . . .} with {m,n, p, . . .} ∈ Z. Low viscos-
ity experiments are characterized by a large correlation

length, making them sensitive to boundary conditions
and container shape, while more viscous fluids are less
affected by the container boundaries, and are thus more
representative of the intrinsic pattern formation proper-
ties of the infinite system. Proximity to the infinitely
extended limit, which possesses the full Euclidean sym-
metry of the plane, is an advantage theoretically due to
the simplicity of the eigenfunctions (the spatial part can
be decomposed into Fourier modes) and the constraints
that Euclidean symmetry imposes on their interactions.
Symmetry constraints are manifest in the form of the

amplitude equations describing the weakly nonlinear in-
teractions of excited (critical) modes near onset. The
fact that certain terms are prohibited in these amplitude
equations, along with the coefficient values of the allowed
terms, largely determine the observed patterns [9, 10]. It
is generally necessary to perform a lengthy calculation to
obtain these important nonlinear coefficients. In the limit
of low viscosity, however, the residual effects of weakly
broken Hamiltonian and temporal symmetries can be ex-
ploited to obtain various predictions about the scaling
and phase-dependence of these coefficients without the
need for explicit calculations [11, 12]. These predictions
suggest ways that pattern selection might be “controlled”
through judicious choice of the components in a multiple
frequency excitation [12].
Many of the conclusions of this symmetry-based the-

ory have been tested against explicit amplitude equations
calculated from a model partial differential equation de-
rived from the Navier-Stokes (hereafter NS) equations by
Zhang and Vinãls [13] (hereafter ZV), and have shown
excellent agreement. However, the derivation of the ZV
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model from the NS equations relies on the assumptions of
low viscosity and infinite depth. The experimental results
on multi-frequency forced pattern formation use fluids of
moderate to large viscosity. Consequently, even though
the theory is in good agreement with the ZV model, the
extent to which that theory and the ZV model itself can
be applied to the pattern formation experiments of inter-
est remains unclear.
Recently, a method for performing the weakly nonlin-

ear analysis for multi-frequency forced Faraday waves for
the NS equations has been developed, enabling the coeffi-
cients of the amplitude equations to be derived [14] with-
out recourse to the ZV model. The purpose of this paper
is to compare results obtained with this method from the
full NS equations, avoiding the assumption of low viscos-
ity, with the scaling laws given in [11, 12] and with the
corresponding results from the ZV model. We thus in-
vestigate the range of validity of recent symmetry-based
predictions, as well as the ZV model itself, as damping is
increased.
The paper is organized as follows. In Section II, rel-

evant background on the linear stability problem and
on the mechanisms of nonlinear pattern selection is pro-
vided. In Section III, a detailed comparison of the NS
model, the ZV model, and symmetry-based predictions
is made. This includes, for two-frequency excitation, a
comparison of cubic normal form coefficients in section
Section IIIA, a discussion of different methods for calcu-
lating the resonant angle in Section III B, and a compari-
son of quadratic normal form coefficients in Section III C.
In Section III D, the cubic normal form coefficients cor-
responding to three-frequency experiments are investi-
gated. In Section III E, the implications of the scaling
behaviour of important normal form coefficients for ex-
perimental pattern observation of superlattice and quasi-
patterns are discussed. Lastly, in Section IV we present
our conclusions.

II. MECHANISMS OF PATTERN SELECTION

A. Linear Problem

In the Faraday system, considerable insight into wave
pattern selection can be obtained directly from the linear
stability problem. Benjamin and Ursell [15] showed that
in the inviscid, infinite depth limit the linearized Fara-
day problem reduces to a Mathieu equation, meaning
that the instability boundaries organize into resonance
tongues associated with half-integer multiples of the fun-
damental forcing frequency. In the ZV model, which as-
sumes weak viscosity, the linear problem is instead de-
scribed by a damped Mathieu equation: the instability
boundaries of the flat surface solution form a series of res-
onance tongues, the lowest of which indicates the (first)
critical mode. This same basic structure for the linear
stability problem carries over to the full NS problem.
With single-frequency forcing of the form f(t) =

a cos(ωt) the first instability is nearly always to the pri-
mary subharmonic mode associated with the frequency
ω/2, but with multi-frequency forcing the situation can
be considerably more complex due to the selective exci-
tation of other resonance tongues. In this case, the first
instability is generally not to the first subharmonic mode,
but to a mode associated with the frequency mω/2,
where mω is the “dominant” component (due to the vari-
ation of damping with frequency, this does not necessar-
ily mean that it is the largest forcing component). In
this more general context, one refers to a mode as sub-
harmonic (harmonic) if m is odd (even), meaning it os-
cillates through an odd (even) number of half-periods
during one period of the forcing. This odd or even char-
acter of the modes under discrete time translation sym-
metry t → t+ 2π/ω is essential in determining the form
of the amplitude equations [10], implying, for example,
that quadratic self-interaction terms can only occur for
harmonic modes.
In general, increasing the excitation amplitude a leads

to patterns only beyond a critical value ac given by the
minimum of the lowest instability tongue, whose position
determines the critical wavenumber kc. For low viscosity
fluids, an estimate for kc can be obtained from the dis-
persion relation for gravity-capillary waves in an inviscid
fluid,

Ω2 = gk +
σ

ρ
k3, (1)

where g is the acceleration due to gravity, σ the surface
tension, and ρ the density. In this case the solution k =
k0 of Eq. (1) with Ω = mω/2 is approximately equal
to kc. We take 1/k0 as the characteristic length for the
problem and 1/(mω) as the characteristic time, meaning
that the dimensionless critical wavenumber is near unity
while the nondimensional period of the critical mode is
4π. This differs from the usual choice of 1/ω [16] for
characteristic time, but it facilitates comparison between
different multi-frequency forcing functions because it is
less sensitive to small changes in their content; patterns
induced by frequency components at 50Hz and 100Hz,
for example, do not require a drastically different scaling
from those with frequency components 51Hz and 100Hz.
In nondimensional form Eq. (1) becomes

Ω̃2 = G0k̃ + Γ0k̃
3, (2)

where G0 = gk0/ω
2
c , Γ0 = σk30/(ρω

2
c ), Ω̃ = Ω/ωc, k̃ =

k/k0, and ωc = mω is the dominant frequency (m = 1
for single frequency forcing); note that the definition of
k0 requires that G0+Γ0 = 1/4. We further introduce the
dimensionless damping parameter γ = 2νk20/ωc, where ν
is the kinematic viscosity.
As an example, consider the applied acceleration

f(t) = fm cos(mωt+ φm) + fn cos(nωt+ φn), (3)

with m:n = 6:7, and

(fm, fn) = aG0(cosχ, sinχ). (4)
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The mixing angle χ provides a convenient way of vary-
ing the proportions of fm and fn while keeping the di-
mensionless amplitude a (measured in units of g) con-
stant. The critical curves for three different values of χ,
computed from the infinite depth NS equations using the
method of [17], are shown in Fig. 1.
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FIG. 1: Linear stability curves for the NS equations for a two
frequency component forcing of the form (3) with m:n = 6:7,
φm = φn = 0 and (a) χ = 0◦, (b) χ = 55◦, (c) χ = 90◦.
Remaining parameters are ρ = 0.95 g/cm3, g = 980 cm/s2,
σ = 20.6 dyn/cm, ν = 12.89 cSt, and ω = 32.88π, which cor-
respond to G0 = 0.0396, Γ0 = 0.2104, and γ = 0.1. The black
(grey) curves represent harmonic (subharmonic) instabilities.

When χ = 0◦ (Fig. 1a), the unique forcing frequency
is 6ω, and the lowest (and largest) resonance tongue is
associated with Ω = 3ω. This is just the usual single-
frequency case, dominated by the first subharmonic in-
stability tongue. In the original two-frequency context,
however, the mode is considered harmonic because its
dominant frequency is an integer multiple of ω. When
χ = 90◦ (Fig. 1c), the unique forcing frequency is 7ω,
and the single-frequency picture applies again. Note
that, for the sake of comparison, in this particular case
we have retained the scaling associated with a dominant
6ω component: if scaling in accord with 7ω forcing had
been used the main tongue would be closely centred on
k = 1, as in Fig. 1a. This time the critical mode is sub-
harmonic even in the two-frequency context because its
dominant frequency is Ω = 3ω/2, a half-integer multiple
of ω. In both these cases there are additional tongues
for higher values of k, but these are not visible on the
scale of the plot. The most interesting parameter range
is near χ = 55◦ where the 6ω and 7ω forcing components
have roughly equal effect. Here numerous new instability
tongues corresponding to modes with dominant frequen-
cies ω/2, ω, 3ω/2, 2ω, . . . are present due to the interac-
tion of the two forcing components — it is not simply a
superposition of the two previous cases. Although none
of these new modes are parametrically forced (at leading
order in a), they can interact with the two forced modes
to influence the pattern selection process, particularly if
they are weakly damped.

B. Nonlinear Selection

As the forcing amplitude surpasses the minimum of
the first instability tongue, a transition from a flat sur-
face to a patterned state takes place. Since the infinitely
extended system has planar Euclidean symmetry (which
includes rotations), the flat state does not simply lose
stability to a single eigenfunction, but to an entire circle

of eigenfunctions of the form exp{ik ·r}, where r = (x, y)
and k is a wavevector of arbitrary orientation with mag-
nitude kc. In other words, the eigenfunctions are stripe
patterns orientated in any direction in the plane. Any
superposition from this infinite set of eigenfunctions is a
solution of the linear problem. It is only at the nonlin-
ear level that a finite set of these can be selected. Pre-
supposing such a selection allows amplitude equations
to be derived, although one is then limited to describ-
ing the competition between patterns associated with
subsets of this selection. In the simplest possible case,
where two eigenfunctions of the form A1 exp{ikcx} and
A2 exp{ikc(x cos θ + y sin θ)} are considered, the ampli-
tude equations take the form (see, e.g., [10])

Ȧ1 = λA1 +A1(s|A1|2 + b(θ)|A2|2) + . . . , (5a)

Ȧ2 = λA2 +A2(s|A2|2 + b(θ)|A1|2) + . . . (5b)

where λ is a parameter that measures the distance from
onset, s is the self-interaction coefficient and b(θ) is the
cross-coupling coefficient. Eqs. (5) contain two types of
steady solutions: stripes, (A1, A2) = (A, 0) and rectan-
gles, (A1, A2) = (A,A). The signs of s and s+b determine
whether these two states bifurcate supercritically or sub-
critically, while the sign of s− b determines their relative
stability. If s− b is positive then stripes are preferred to
rectangles; vice versa if s−b is negative. Such arguments
can be extended to amplitude equations involving more
modes to account for more complicated states, such as
superlattice patterns [9].
If the excitation is single frequency, or effectively dom-

inated by one component, then only simple patterns such
as stripes, squares and hexagons are observed in exper-
iment, and it is straightforward to obtain the form of
the appropriate amplitude equations from symmetry ar-
guments. The influence of the additional modes that
appear when multiple frequencies are important leads
to more complex patterns that, in principle, demand
more complicated equations. However, because the most
important interactions are resonant triads, i.e., inter-
actions among three waves with wavevectors satisfying
k1 ± k2 = k3, the simple cubic order amplitude equa-
tions (5) contain a surprising amount of general informa-
tion about the pattern selection process. In particular,
whenever the resonant triad involves two excited modes
and a single damped mode (as is often the case), then its
effect is manifest in the cubic cross-coupling coefficient
b(θ), which can change dramatically as the interaction
angle θ approaches the resonant value [10, 18].
Resonant triad interactions may involve damped
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modes with wavenumber kd < kc or kd > kc. Due to
the symmetry of b(θ) about θ = 90◦, however, it is con-
venient to restrict consideration to θ ∈ [0, 90◦] and to
divide resonant triads into “sum” and “difference” cases,
accordingly; both of these are illustrated in Fig. 2. Note

k1

θ

θ
k2

k3

k2

k1

k3

(b)(a)

FIG. 2: Resonant triad interactions satisfying (a) k1−k2 = k3

and (b) k1 + k2 = k3, with |k1| = |k2| = kc and |k3| = kd.

that the difference case describes triad interactions in-
volving longer wavelength modes (kd < kc) for θ < 60◦

and shorter wavelength modes (kd > kc) for θ > 60◦. The
sum case always describes triad interactions with shorter
wavelength modes (kd > kc). The positions of the insta-
bility tongues provide the values of kc and kd that can be
used to calculate the resonance angle θ. In the difference
case of Fig. 2(a),

sin
θ

2
=

kd
2kc

(6)

and in the sum case of Fig. 2(b),

cos
θ

2
=

kd
2kc

(7)

Note that, because of the discrete time translation sym-
metry, a damped mode can only interact with two critical
modes if it is harmonic.
One can use a knowledge of b(θ) to discover the im-

portant triad resonances and their effect (enhancing or
suppressing), then use this to infer the preferred pattern
angles. For example, in [5], for one set of excitation pa-
rameters, superlattice patterns with two apparent length
scales related by a factor

√
7 are reported. The spatial

Fourier spectrum of these superlattice patterns reveals
that they consist of modes from two hexagonal states ro-
tated by approximately 22◦ with respect to each other.
The presence of this particular angle can be directly re-
lated to the fact that there is a peak in the b(θ) curve at
approximately 22◦. For another set of parameter values
the same experiment yields quasipatterns. The spatial
Fourier spectrum of these quasipatterns reveals two sets
of hexagonal states rotated by approximately 30◦ with
respect to each other, a result of the peak in the b(θ)
curve shifting upward to this value [14].
Given the attention that superlattice patterns and

quasipatterns receive in experiments (likewise in the cur-
rent paper), a brief discussion is warranted here. Su-
perlattice patterns are so-named because they exhibit

a spatial periodicity that quasipatterns do not. This
distinction, however, may not be particularly helpful as
both kinds of patterns have much in common. For in-
stance, both the superlattice patterns and the quasipat-
terns mentioned above can be thought of as (nonlinear)
superpositions of hexagons rotated with respect to each
other, and in each case their presence can be understood
through the same kind of resonant triad interaction. In
principle, patterns could be formed for any angle: some
angles would give spatially periodic patterns and some
would not. For θ = 30◦ the superposition of two hexag-
onal patterns yields quasipatterns, but for an angle ar-
bitrarily close to θ = 30◦, there is a superlattice pattern
with a very long spatial periodicity that would be indis-
tinguishable from the “true” quasipattern. Both super-
lattice patterns and quasipatterns have been studied by
considering amplitude equations for a finite number of
modes [18, 19, 21]. From a mathematical point of view,
the issue of small divisors raises questions about the va-
lidity of studying quasipatterns via amplitude equations
[20]; the reduction of a spatially periodic pattern to am-
plitude equations, in contrast, can be formally justified.
Again, it might be argued that this distinction is largely
academic because, for a superlattice pattern to be visu-
ally indistinguishable (over a large spatial domain) from
a “true” quasipattern, the set of parameters over which
the amplitude equations are formally justified would be
vanishingly small. As shown in [19], in spite of the theo-
retical questions about its mathematical validity, an am-
plitude equation approach to quasipatterns remains use-
ful. In light of these considerations, the term “super-
lattice” will be used more broadly in what follows than
“quasipattern”, but it should be understood that there
are quasipatterns arbitrarily close to any given superlat-
tice pattern, and vice versa.
It is also worth remarking here that the use of multi-

frequency forcing invalidates the intuitive argument that
resonant triads involving damped modes should func-
tion as energy sinks and, therefore, that selected pat-
terns should avoid them. Such reasoning can be found in
[21], for example, where the effects of triad interactions
on the competition among regular patterns (squares,
hexagons, quasipatterns) is examined with the aid of a
Lyapunov function in the low damping limit and with
single-frequency forcing. Although this intuitive argu-
ment is compelling and likely correct for single-frequency
forcing, it does not extend to the multi-frequency forcing
case, as seen below, where certain damped modes can
actually promote the patterns they interact with [11, 18].

III. RESONANCE EFFECTS AND THE

LIMITATIONS OF LOW DAMPING THEORY

In this section we investigate the effects of resonant
triad interactions on pattern formation via the cubic
cross-coupling coefficient b(θ), or the quadratic interac-
tion coefficient α in the case of hexagons. In particular,
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by comparison with results from the NS equations, we
aim to determine how well these effects are described by
the ZV equations and by more recent symmetry-based
theory [11, 12] as damping is increased. All calculations
use ρ = 0.950g/cm3 and σ = 20.6g/s2, values appropri-
ate for certain silicone oils and, in particular, those used
by [5]. The values used for ω are also motivated by those
used in [5].

A. Resonant features with 2-frequency excitation

We first consider two-frequency forcing, focusing on
the ratio m:n = 6:7 and the mixing angle χ = 55◦ used
for the neutral stability calculation of Fig. 1(b). This
choice of forcing frequencies has received much attention
since superlattice patterns were discovered [5] with this
ratio. The most interesting patterns appear when the 6ω
component is dominant, i.e., when the dominant modes
are harmonic (primary frequency 3ω), and this will be
assumed in what follows. The value of 55◦ was chosen
so that, for experimentally relevant parameters like those
used in Fig. 1, the forcing of the odd component (the 7ω
component) was as large as possible, to promote the res-
onant triad interaction with the damped n − m mode,
without being so large that it dominates. Decreasing χ
reduces the overall height of the resonance peak in b(θ)
while increasing χ soon renders the primary instability
subharmonic rather than harmonic. In fact, for both the
NS and ZV equations, this crossover to subharmonic pri-
mary instability already occurs with χ = 55◦ for small
γ (less than about 0.05). Nonetheless, for simplicity, we
opted to retain the same value of χ throughout this and
subsequent sections. This does not generate any difficul-
ties, or have any bearing on the comparisons presented
here, because quadratic interaction with the subharmonic
modes is forbidden by symmetry and their onset does not
cause singularities in the coefficients of Eq. (5) describing
the harmonic modes.
The symmetry arguments of [11, 12, 22] predict which

resonant triad interactions should be important in the
limit of weak damping. In particular, for 6:7 excitation
one expects three different resonance values of θ to fea-
ture prominently in the graph of b(θ).
(i) At θ = 60◦ three modes on the critical circle form
a resonant triad. This resonance is associated with
hexagons, and with a singularity in b(θ) since only two
of the three critical modes are considered in Eqs. (5).
(ii) At θ ≈ 22◦ a resonant triad is formed between two
critical modes and the “n−m” (i.e., ω) mode (kd ≈ 0.35).
This interaction favours related patterns, i.e., leads to an
increase in b(θ), and scales as |fn|2/γ [22].
(iii) At θ ≈ 70◦ a resonant triad is formed between two
critical modes and the “m” (i.e., 6ω) mode (kd ≈ 1.6).
This resonance cause a dip in b(θ) and discourages re-
lated patterns. It’s magnitude is predicted to scale as
1/γ [22].
Fig. 3 shows b(θ)/|s|, computed both from the NS and

ZV equations, for four different values of the dimension-
less viscosity γ. In Fig. 3 one can see all three features

0 30 60 90

−8

−6

−4

−2

0

0 30 60 90

−2

−1.5

−1

−0.5

0

0 30 60 90

−2

−1.5

−1

−0.5

0

0 30 60 90

−2

−1.5

−1

−0.5

0

θ

θ

θ

b(θ)/|s|

b(θ)/|s|b(θ)/|s|

b(θ)/|s|

θ

(a) (b)

(c) (d)

FIG. 3: The cross-coupling coefficient b(θ)/|s| for m:n = 6:7
excitation, φm = φn = 0, χ = 55◦, G0 = 0.0396, Γ0 = 0.2104.
The solid curves are computed from the NS equations and
the dashed curves from the ZV model. (a) γ = 0.01, (b)
γ = 0.05,(c) γ = 0.1, (d) γ = 0.5.

described above. At low viscosity (a), there is a (narrow)
peak at approximately 22◦ and a large dip at approxi-
mately 70◦, as well as a singularity at 60◦ (an interval
near 60◦ is removed in subsequent plots). The NS and
ZV equations agree in this regime, as expected. At the
moderate viscosity of (c), which is representative of the
experiments of [5], the ZV equations begin to underes-
timate b(θ), although still correctly capturing its basic
behaviour including the peak near 22◦. Note that the
resonance (dip) near 70◦ is no longer important. Upon
further increase of the viscosity (d) the former peak due
to triad resonance with the n − m mode broadens and
transforms into something more like a dip followed by a
smaller maximum, signaling the failure of the low damp-
ing theory.
The height and width of the resonant feature near 22◦

and that near 70◦ were calculated by fitting a surround-
ing interval to the function

b(θ) = c+ dθ + eθ2 +
h

1 + 4[(θ − θd)/w]2
. (8)

The fit parameter h defines the height, w the width, and
θd the resonance location. Results for the width and
height for the features at approximately 22◦ and 70◦ are
shown in Fig. 4 and Fig. 5, respectively, as a function of γ
for both the NS and ZV equations. The results in Fig. 4
demonstrate that the predicted scaling of the height of
the resonant feature holds well for γ . 0.01, remains in
reasonable qualitative agreement until γ ≈ 0.1, but fails
thereafter: note, for example, how in Fig. 3(d) the former
peak is more of a dip by γ = 0.5.
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FIG. 4: Dependence on γ of the resonant feature near 22◦,
calculated from the NS (solid curves) and ZV (dashed curves)
equations: (a) height h (b) width w. The dotted lines show
the linear scaling predicted by theory. Remaining parameters
are as in Fig. 3.

In Fig. 5(a) we see that the peak at 70◦ diminishes
with increasing damping, as predicted. By γ = 0.04 the
peak has essentially disappeared. It is apparent that this
is a low damping resonance feature that is captured well,
both qualitatively and quantitatively, by the ZV equation
and by the theoretical scaling predictions.
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FIG. 5: (a) Height h and (b) width w of resonant feature
near 70◦ as a function of γ. By γ ∼ 0.02 the peak is very
broad and the fitting function (8) no longer works well. The
solid (dashed) curves show the results for the NS (ZV) equa-
tion while the dotted line shows the theoretical prediction.
Remaining parameters are as in Fig. 3.

B. Estimating resonance angles

The height of the peak in b(θ) determines the extent
to which a particular resonant triad influences pattern
selection, but the position of the peak determines which
pattern(s) it influences: the fact that superlattice pat-
terns with two apparent length scales in the ratio of

√
7

were found in [5] can be related directly to the fact that
there is a peak in the b(θ) curve at 22◦ for the relevant
parameter values. The position of the peak depends on
the damping, which is apparent from the solid curves in
Fig. 6 (a) and (b), as well as the other parameters in the

model. At issue in this Section is how, for given fluid
parameters, one can best figure out where the peak will
be and hence what patterns to expect.
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FIG. 6: The resonant angle θd calculated (parameters as in
Fig. 3) from fitting b(θ) with Eq. (8) (solid curve) compared
with predictions based on: the ratio of the wavenumber of
the critical model and the wavenumber of the harmonic mode
that is closest to critical (dashed curve); the location of the
minimum of the ω instability tongue (dot-dashed curve); the
value associated with the inviscid limit (dotted line). (a) ZV
(b) NS.

The easiest way to estimate the resonance angle is to
appeal to the inviscid problem and calculate kd from the
dispersion relation (1), which gives a value that is inde-
pendent of γ. The estimate from Eq. (6) of θd = 22.43
is indicated by a dotted line in Fig. 6 and performs sur-
prisingly well for γ ≤ 0.1.
Another obvious scheme for predicting the angle θd

relies on locating the minimum of the relevant linear sta-
bility tongues. For example, the two modes involved in
the resonant triad interaction that produces the peak
near 22◦ in the b(θ) curve onset with kc = 0.9719 and
kd = 0.2516 when γ = 0.1 (see Fig. 1(b)). Using
Eq. (6), this leads to an estimate for the resonant angle
of θd ≈ 15◦. As indicated by the dot-dashed curves in
Fig. 6, this method works well only for very small values
of γ and provides a poor estimate with moderate values
like that used to produce Fig. 1. This surprising failure
shows that the location of the minimum of the instability
tongue for the resonant mode is not always relevant —
this tongue may sit at forcing values much greater than
ac, where additional detuning is significant.
A third method is based on finding the wavenumber of

the damped mode with Floquet multiplier closest to criti-
cal at a = ac. Since the forcing is set to the critical value,
this mode ought to be more relevant than that defined
by the (higher) minimum of the instability tongue. With
the parameter values of Fig. 1 (b), the real parts of the
two most dangerous Floquet multipliers at a = ac are as
shown in Fig. 7, which compares computations from the
ZV equations (a) and the NS equations (b). These Flo-
quet multipliers rotate around the complex plane as k is
increased, reflecting the increase in “natural” frequency,
and spiral toward the origin, reflecting the increase in
effective damping. Successive crossings of the real axis
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FIG. 7: The real part of the two Floquet multipliers closest
to critical at a = ac, γ = 0.1. (a) For the ZV equation, ac =
7.9504. (b) For the NS equation, ac = 5.7846. Remaining
parameters are as in Fig. 3.

can be identified with damped subharmonic or harmonic
resonances; these are evident in Fig. 7 by successive ap-
proaches to −1 and 1, respectively. Most of the time, the
Floquet multipliers are complex conjugate pairs, which
explains why only one curve can be seen for most values
of k in Fig. 7. However, near the maxima and minima
(i.e., near resonance values) the most dangerous Floquet
multipliers split into a pair of real eigenvalues, giving the
appearance of bubbles in Fig. 7. The “bubble” is very
large near the most critical mode (k ≃ 1), but is hardly
visible on the scale of the plot for the first maximum, near
k = 0.35. For the NS equation, the critical mode (Flo-
quet multiplier equal to 1) occurs at kc = 0.9719. The
value of the Floquet multiplier for the weakly damped
mode at kd = 0.3689 is 0.64, which leads to a prediction
of θd = 21.88◦. In Fig. 6 the value of θd calculated in
this manner from the Floquet multipliers is shown as a
dashed curve.
In the case of the ZV equations, one final method sug-

gests itself. This approach is based on the fact that
the resonant interaction can only occur with real Flo-
quet multipliers, not complex ones, and bounds on the
region containing real Floquet multipliers (the bubbles
in Fig. 7) can be calculated as follows.
For the ZV equation the linear stability problem re-

duces to a Mathieu equation,

p̈k + 2γk2ṗk +
(

γ2k4 +G0k + Γ0k
3
)

pk = kf(t)pk (9)

Since f(t) is periodic, Eq. (9) has solutions of the form

pk(t) = eλt
∑

r

bre
irωt + c.c., (10)

where λ is the Floquet exponent and c.c. denotes complex
conjugate. Substitution of Eq. (10) into Eq. (9) results
in the generalised eigenvalue problem
[

(λ + irω)2 + 2(λ+ irω)γk2 + γ2k4 +Ω2
]

br = kBr.

(11)

where Ω2 = G0k+Γ0k
3 and Br is the rth Fourier coeffi-

cient of {f(t) exp(−λt)pk(t)}. In order to find harmonic

marginal stability points λ is set to 0, and Eq. (11) re-
duces to

[

(irω)2 + 2(irω)γk2 + γ2k4 +Ω2
]

br = kBr. (12)

(This is not the best way to solve the Mathieu instability
tongue problem — a computationally efficient method is
given in [23]).
Here we are interested in finding an estimate for the

position of the bubbles of real Floquet multipliers, specif-
ically those that occur on the harmonic tongues as seen
in Fig. 7. Using Floquet theory [24], the product of the
Floquet multipliers µi, i = 1, 2 for Eq. (9) is given by

µ1µ2 = exp(−2γk2T ), (13)

where T is the period of f(t). The transition from real
to complex Floquet multipliers occurs when

µ1 = µ2 = exp
(

−γk2T
)

.

The Floquet multipliers are related to the Floquet expo-
nents by µi = eλiT . Hence, for harmonic tongues, at the
transition from real to complex Floquet multipliers, both
Floquet exponents are equal to −γk2. Using λ = −γk2

Eq. (11) reduces to

[

(irω)2 +Ω2
]

br = kBr. (14)

This is exactly Eq. (12) in the case when γ = 0. Con-
sequently, a single calculation of the Mathieu instability
tongues for the inviscid case γ = 0 also gives the posi-
tion of the transition points for the harmonic tongues in
the damped problem. Although the bubble is not ex-
actly symmetric, taking the midpoint between the two
transition points at a = ac provides a decent estimate
of the wavenumber k where the real Floquet multiplier
is maximal. This method can be extended to enable the
calculation of the position of the bubbles for the subhar-
monic case, where subharmonic tongues can be computed
by setting λ = iω

2 in Eq. (11) and the corresponding con-
dition for transition from real to complex Floquet multi-
pliers is µ1 = µ2 = − exp

(

−γk2T
)

.
In Fig. 8 (a) the inviscid instability tongue correspond-

ing to the first damped harmonic mode is shown in the
(k, a) plane. This instability tongue can then be mapped
into the (θd, γ) plane in order to give a prediction of the
resonant angle, shown in Fig. 8 (b), as follows. For each
value of γ the value of ac is calculated. For this value
of ac, Fig. 8 (a) gives two values for k, one on each side
of the tongue. These values of k then correspond to two
different values of θd, as given by Eq. (6).
The same argument cannot be used for the NS equa-

tion: in [25] it is shown that the viscous NS equations lead
to a Mathieu equation with non-local terms for which
there is no result analogous to Eq. (13). However, it is
interesting to note that applying the same Mathieu equa-
tion technique via Eq. (14) still gives a good estimate for
θd in the NS case, even at high values of γ, as shown in
Fig. 9. This estimate is obtained with the same mapping
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FIG. 8: (a) The points where the Floquet multipliers change
from complex to real for the ω instability tongue with m:n =
6:7 and other parameters as in Fig. 3. The solid curves show
the edges of this tongue as calculated from Eq. (14) and the
dashed curve marks the centre of this tongue. The dots, which
lie on top of the solid curves, and the open circles in between
are from an explicit calculation of the Floquet multipliers for
the damped ZV equation, similar to those used to produce
Fig. 7 — the dots show where the Floquet multipliers change
from real to complex, and the open circles show where the
Floquet multiplier reaches its maximum value. (b) Mapping
of resonance tongue onto the (γ, θd) plane to give predictions
for θd. The solid curves (and dots) give bounds on the possible
values for θd and correspond to the boundaries of the tongue
in (a). The dashed curve is the image of the centre of this
tongue. The open circles give the estimate of θd as calculated
from the Floquet multipliers.

technique described above in connection with Fig. 8(b),
using the tongue from the inviscid approximation and the
γ versus ac relationship for the Navier-Stokes equation.
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FIG. 9: NS prediction of θd using the Mathieu tongue map-
ping technique (dotted curve) compared with the b(θ) results
(solid curve) and the results from the Floquet Multipliers for
the NS equation (dashed curve). Other parameters are as in
Fig. 3

This Mathieu tongue mapping technique gives a good
estimate of the resonant angle. It is also an easy method
to apply, requiring only one computation of ac versus γ
and one computation of the Mathieu tongue for the invis-
cid approximation. It is significantly easier than calcu-

lating b(θ) or calculating the Floquet multipliers directly.

C. Quadratic coefficient for hexagons

A great deal can be learned about the relative likeli-
hood of observing different patterns from the shape of
the b(θ) curve, which captures the influence of damped
resonant modes via triad interactions. However, Eqs. (5)
are limited by the fact that only two critical modes are
assumed to interact. This assumption fails for hexagons,
as revealed by the singularity at 60◦ in Fig. 3. To treat
hexagons, where a resonant triad is formed among three
critical modes, requires a different approach. By associ-
ating A1, A2 and A3 with the three critical eigenmodes
with eigenvectors orientated at 120◦ with respect to each
other, one arrives at the amplitude equation

Ȧ1 = µA1+αĀ2Ā3+A1

(

b1|A1|2 + b2|A2|2 + b2|A3|2
)

+. . .
(15)

Evolution equations for A2 and A3 are obtained by cyclic
permutation of indices. Of particular importance in this
equation is the magnitude of the quadratic coefficient α,
which reflects the strength of the resonant triad inter-
action (unless it is forbidden by other symmetry con-
siderations). The value of α, and of the other coeffi-
cients, depends on the fluid properties and on the form
of the forcing, including the relative phase of its differ-
ent components. The dependence of pattern selection on
the forcing phases has been seen experimentally in [4, 5].
Using symmetry arguments, [11] derived the expected
phase dependence for the quadratic (and cubic) coeffi-
cients. Namely, if the excitation is given by equation (3)
with m even, then

α =

{

c1|fn|m/2 cosΦ, n = 1
c2|fn|m/2|fm|(n−3)/2 sinΦ, n > 1

(16)

where c1 and c2 are real O(1) coefficients and

Φ =
π

4
− 1

2
(nφm −mφn). (17)

In [11] (where an oppositely signed forcing term means
that cosΦ and sinΦ switch places in Eq. (16)) these re-
sults were validated by comparing with results from the
ZV equation for specific choices of m:n. Below we com-
pare with results from the NS equations and the ZV equa-
tions for the same choices of m:n, namely 2:3 and 2:1. If
m:n = 2:1, φ2 = 0, and φ1 = φ then the scaling of the
quadratic coefficient α reduces to

α = c1|f1| cosΦ, (18)

where Φ = π
4 +φ, while if m:n = 2:3, φ2 = 0, and φ3 = φ,

then this scaling is

α = c2|f3| sinΦ. (19)

In Fig. 10 the value of α as a function of Φ is shown
for several different values of γ. It can be seen that for
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low values of γ (the solid curves), the dependence is si-
nusoidal and reaches extrema in the positions predicted
by [11], namely at Φ = 0◦,±180◦ in the case of 2:1 ex-
citation and at Φ = ±90◦ in the case of 2:3 excitation.
However, as γ is increased, the amplitude of α, the shape
of the curve, and especially the position of the extrema
all change. Theory predicts that the amplitude depends
linearly on fn and, since fn ∝ γ for small γ, that the
amplitude depends linearly on γ. The amplitude of α
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FIG. 10: Quadratic coefficient α as a function of phase Φ with
ω = 20π, ρ = 0.95 g/cm3, g = 980 cm/s2, σ = 20.6 dyn/cm.
(a) and (b) are calculated with m:n = 2:1 and χ = 5◦ using
ZV and NS equations, respectively. (c) and (d) are calculated
with m:n = 2:3 and χ = 55◦ using ZV and NS equations,
respectively. The damping values used are: γ = 0.01 (solid
curve), γ = 0.05 (dashed curve), γ = 0.1 (dot-dashed curve),
γ = 0.5 (dotted curve).

and the position of its extrema are shown as functions of
γ in Fig. 11. While the amplitude |α| agrees well with
the theoretical prediction for γ less than 0.1, the position
of the extrema depends strongly on γ beyond γ ∼ 0.01,
especially with m:n = 2:1. This dependence is not pre-
dicted in [11] since it results from the influence of higher
order (in γ) terms, and probably explains some of the
discrepancy between the theoretical results in [11] and
certain experiments [4, 5] carried out at moderate values
of γ.
We note that we have compared calculations of α from

the NS and ZV equations for a number of other frequency
combinations m:n including 2:5, 2:7, 2:9, 4:1, 4:3, 4:5,
4:7, 6:1, 6:5, 6:7, 8:3 and 8:5. In all cases there was good
agreement. The low viscosity dependence of α on γ and
Φ was also compared (using the ZV computations) with
the theoretical predictions of Eq. (16) and found to be in
agreement, with the exception of 4:3 excitation. In this
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FIG. 11: Maximum of quadratic coefficient α as a function γ.
The parameters are as in Fig. 10 with (a) and (b) calculated
using m:n = 2:1 and (c) and (d) using m:n = 2:3. (a) and (c)
shown the maximum value of the quadratic coefficient while
(b) and (d) show the angle for which this maximum value
occurs. The solid (dashed) curves are calculated from the NS
(ZV) equations, while the dotted curve shows the theoretical
prediction valid for small γ.

particular case, although the NS and ZV equations agree
with each other, the leading order term behind Eq. (16)
appears to be absent. The theoretically predicted γ2 scal-
ing with damping is not observed (a higher order γ3 de-
pendence is found instead) and the maximum of |α| does
not occur at 90◦ (a maximum near 0◦ is seen instead). It
is tempting to speculate that the absence of the predicted
term in this case is due to a hidden symmetry of some
kind, but it may simply be that the predicted term is
very small, for whatever reason, and would dominate at
still lower values of γ (where α becomes extremely small
and numerical errors disrupt the calculation).

D. Resonance features for 3-frequency excitation

Since the nature of the b(θ) curve reflects the relative
preference of the system for different patterns, one way
to control which patterns are selected is to control the
resonances that underly the features of this curve. The
easiest way to do that is by manipulating the form of the
forcing function [12]. For example, if a third frequency is
added to the excitation of Eq. (3) by taking

f(t) = fm cos(mωt+ φm) + fn cos(nωt+ φn) (20)

+ fp cos(pωt+ φp),
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with m:n:p = 6:7:2, then the added 2ω component, which
parametrically excites the damped ω mode, can be used
to enhance its resonance effect by driving it closer to on-
set, provided an appropriate phase is used. As the ω
mode becomes less and less damped, there is an increase
in the cross-coupling coefficient at approximately 22◦, as
discussed in Section IIIA. This effect can be seen in
Fig. 12, where the b(θ) curve for different values of f2
are shown: increasing f2 does indeed increase the height
of the feature at θ = θd, at least for low and moderate
values of γ (subplots (a)-(f)). If f2 is made large enough,
the ω mode becomes bi-critical with the 3ω mode and a
singularity develops in b(θd). In the case of Fig. 12 with
γ = 0.01, this happens at an amplitude f2 ≃ 0.08, so
only curves with f2 = 0, 0.04 and 0.06 are shown. In the
final case shown in Fig. 12(g,h), the viscosity parameter
γ is set to 0.5, a value for which we have already seen
in Fig. 3 that the resonant peak more resembles a dip.
Including the forcing f2 can accentuate this feature, but
since a dip in the b(θ) curve is suppressing for related pat-
terns rather than enhancing, adding the third frequency
component would not facilitate the appearance of super-
lattice patterns for these high viscosities.

Not only does the amplitude of the additional third
frequency in the excitation affect the resonant feature,
so does its phase. This can be seen in Fig. 13(a,c) where
b(θ) is obtained for f2 = 0.06 and Φ = ±90, and com-
pared with the corresponding (dashed) curve for f2 = 0
and Φ = 0. In Fig. 13(b,d) the dependence of b(θd) on
Φ is shown over the full range. These results demon-
strate that, although for most phases the inclusion of
the third frequency component enhances the resonance
feature, parametrically forcing the resonant mode does
not always magnify its effect; in this case, for Φ between
about 40◦ and 135◦, resonance suppression is observed.

According to [12], the height and width of the resonant
peak at b(θd) withm:n:p = 6:7:2 and f2 fixed should scale
with γ in the low viscosity limit (just as with f2 = 0). In
addition, the height of the peak should be maximized at
a phase Φ = φ2 + 2φ6 − 2φ7 = −90◦; this differs in sign
from [12] due to the different sign convention for the ap-
plied forcing used here. In order to examine the range of
validity of these predictions, f2 was fixed at 0.05 and the
height, width and position of the resonant feature were
calculated; see Fig. 14. A picture similar to that seen
for the 6:7 case emerges, namely that there is excellent
agreement with theory at low viscosity (γ < 0.01), qual-
itative agreement for moderate viscosity (γ < 0.1), but
that at high viscosity the theory fails and the resonant
feature is washed out. In fact, the maximum height of
the resonant feature occurs for a γ value near 0.1.

In Fig. 15(a) the value of θd (calculated with null
phases) is shown, while in Fig. 15(b) the value of Φ that
maximizes b(θd) is compared with the prediction of −90◦.
Even at moderate viscosities, Φmax deviates substantially
from this theoretical prediction and so, in this respect,
behaves similarly to the quadratic (hexagon) coefficient
α shown in Fig. 11. With increasing γ the phase de-
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FIG. 12: b(θ) curves showing impact of f2 with the forc-
ing (f6, f7, f2) = acG0(cos 55

◦, sin 55◦, f2) at various damp-
ing values: γ = 0.01 for (a) and (b), γ = 0.05 for (c) and (d),
γ = 0.1 for (e) and (f), γ = 0.5 for (g) and (h). The values
of f2 used are: f2 = 0 (dotted curve), f2 = 0.04 (dot-dashed
curve), f2 = 0.06 (solid curve), f2 = 0.08 (dashed curve).
The phases are equal, φ6 = φ7 = φ2 = 0, and the remaining
parameters are as in Fig. 3. The ZV equations are used for
(a), (c), (e), and (g) and the NS equations for (b), (d), (f),
and (h).

pendence deviates sooner from the small γ theoretical
prediction than do the remaining scaling laws.
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FIG. 13: Calculations from NS (a,b) and ZV (c,d) equations
showing the effect of varying the phase Φ = φ2 + 2φ6 − 2φ7.
At the predicted maximum, Φ = −90◦, the resonance is much
larger than at the predicted minimum, Φ = 90◦, where is it
is actually reduced with respect to the unforced (f2 = 0)
case shown as a dashed curve [12]. The expected sinusoidal
behaviour of b(θd) is evident in (b) and (d), which agree well
with each other. The parameters used (except if f2 = 0)
are: (f6, f7, f2) = acG0(cos 55

◦, sin 55◦, 0.06), φ6 = φ7 = 0,
φ2 = Φ, γ = 0.05, G0 = 0.0396, Γ0 = 0.2104.
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FIG. 14: Dependence on γ of the resonant fea-
ture near 22◦ with fixed forcing ratios (f6, f7, f2) =
acG0(cos 55

◦, sin 55◦, 0.05), calculated from the NS (solid
curves) and ZV (dashed curves) equations: (a) height h (b)
width w. The dotted lines show the linear scaling predicted
by theory. The phases are equal, φ6 = φ7 = φ2 = 0, with
remaining parameters as in Fig. 3.

E. Implications for superlattice pattern selection

In order to understand not only how the coefficients
of the amplitude equations scale with damping but also
what consequences this has for the selection of super-
lattice patterns (or quasipatterns), one needs to know
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FIG. 15: Dependence on γ of (a) resonance location θd (cal-
culated with Φ = 0), and (b) the value Φmax which maximizes
this resonance feature over Φ. Solid (dashed) curves signify
NS (ZV) calculations, while dotted lines show the theoretical
predictions. Parameters are as in Fig. 14.

exactly how the cross-coupling coefficient b(θ) and the
quadratic coefficient α relate to the (relative) stability of
the patterns.
For a finite quadratic coefficient, α 6= 0, superlattice

patterns bifurcate subcritically and are initially unsta-
ble. A necessary condition for their stabilization at finite
amplitude is [18]

b1 + 2b2 < − |b4 + b5 + b6| < 0, (21)

where b4 = b(θ), b5 = b
(

θ + 2
3π

)

, b6 = b
(

θ + 4
3π

)

, and
b1 and b2 are the cubic coefficients defined in Eq. (15).
This condition comes from considering a set of 6 complex
amplitude equations that describe pattern formation on
a hexagonal lattice and include superlattice patterns as a
solution. Examining the stability of the superlattice pat-
tern solutions within the context of these amplitude equa-
tions then gives the eigenvalues of the superlattice pat-
terns in terms of the coefficients of the amplitude equa-
tions. Condition (21) comes from determining possible
scenarios when all eigenvalues are negative (stable).
If condition (21) is satisfied then superlattice patterns

may then be stabilized for a range of parameter values,
as depicted schematically in Fig. 16. Here we see that
superlattice patterns are initially unstable. One eigen-
value changes sign at the saddle-node bifurcation SNbif ,
but it takes the switching of a second eigenvalue at the
bifurcation point labeled Hexbif to stabilize superlattice
patterns. This occurs at λhex where

λhex =
α2 [b1 + 2b2 − 3 (b4 + b5 + b6)]

4 (b1 + 2b2 − b4 − b5 − b6)
2 . (22)

Superlattice patterns are subsequently destabilised again
at the point marked Rhbif in Fig. 16. This occurs at λrh

where

λrh = −αA− (b1 + 2b2 + b4 + b5 + b6) , (23)

and A satisfies

[2 (b1 − b2)
2 − (b4 − b5)

2 − (b4 − b6)
2 − (b5 − b6)

2
]A2

− 4α (b1 − b2)A+ 2α2 = 0.
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FIG. 16: Sketch of typical bifurcation diagram for a branch
of superlattice patterns (measured by their amplitude |A|)
showing the interval of stability λhex < λ < λrh.

The results in Eq. (21), Eq. (22) and Eq. (23) can be
deduced from [9].

The dependence of b1 − b6 on θ and γ was calcu-
lated from the NS equations for m:n = 6:7, χ = 55◦,
φm = φn = 0 and the same dimensionless parameters,
G0 = 0.0396, Γ0 = 0.2104, chosen for many other results
presented in this paper. At low viscosity, the stability
criterion, Eq. (21), is met for a large range of θ values,
suggesting that numerous superlattice patterns are sta-
ble for at least some range of parameters. This is illus-
trated in Fig. 17(a), for 6:7 forcing and γ = 0.01, where
the region of stable superlattice patterns is shown as a
function of the resonant angle θ. This also demonstrates
again the fact that the ‘favoured’ superlattice pattern,
i.e., the superlattice pattern one would first expect to
see experimentally, is associated with θd, the angle of the
resonance feature in the b(θ) curve. This particular su-
perlattice pattern is the one that onsets first and persists
over the largest interval of a− ac. The amplitude equa-
tions derived in [9] that include superlattice patterns as
a solution are variational and, consequently, a Lyapunov
function can be constructed for them. This energy func-
tion is listed in table 4.2 of [14]. The superlattice pattern
with θ = θd is not only the one that onsets first, but is
also the one that is energetically the most likely, as shown
in Fig. 17(b).

For increasing but small viscosity one would expect
Eq. (21) to remain satisfied, as all the cubic coefficients
are proportional to γ. However, this scaling eventually
fails for moderate-to-large values of γ and for higher vis-
cosity the deviation from the predicted γ scaling can lead
to a change in sign of b1 + 2b2 + |b4 + b5 + b6|, as shown
in Fig. 18, prohibiting stable superlattice patterns. For
moderate values of γ Eq. (21) is only satisfied for mixing
angles χ near the bicritical point — and for superlattice
patterns with the appropriate angle. At higher values of
γ, this stability criterion cannot be satisfied at all.

At first this seems to suggest that it should be low vis-
cosity fluids rather than moderate-to-high viscosity fluids
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FIG. 17: (a) Bifurcation lines representing Hexbif (solid line)
and Rhbif (dashed line) as a function of θ for γ = 0.01 and
other parameters as in Fig. 3. Superlattice patterns are only
stable between these two lines. Those with θ = θd = 22.4◦ bi-
furcate first with increasing a−ac. (b) Energy of superlattice
patterns as a function of θ for a − ac = 5 × 10−10, γ = 0.01.
Superlattice patterns with θ = θd = 22.4◦ have lowest energy.
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FIG. 18: The value of −(b1+2b2+|b4+b5+b6|)/|b1| calculated
at θ = θd as a function of γ with parameters as in Fig. 3. This
combination of coefficients must be positive if superlattice
patterns are to be stabilized.

that would be most conducive to superlattice patterns.
However, for low viscosity fluids, the region in parameter
space in which they occur is tiny: since for low viscosity
b(θ) scales as γ and α scales as γ5, the width of the re-
gion of superlattices scales as γ9, as shown in Fig. 19. So,
on the one hand, at low viscosity, superlattice patterns
are stable but only in an tiny (experimentally unrealis-
tic) region of parameter space. On the other hand, if the
viscosity is too large (γ > 0.05), the superlattice patterns
are necessarily unstable because Eq. (21) is not satisfied.

One could question the extent to which the position of
secondary bifurcations in a weakly nonlinear analysis can
be expected to give a meaningful prediction for the sta-
bility regions of nonlinear patterns, but since α is small
and all the bifurcations approach the origin as α 7→ 0, the
distance above onset must also be small and reasonable
correspondence can be expected between the calculated
regions and those seen in the experiment.
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FIG. 19: Bifurcation sets for Hexbif (solid line) and Rhbif

(dashed line) as a function of γ with remaining parameters
as in Fig. 3. Superlattice patterns are only stable between
these two lines when Hexbif occurs first (γ . 0.025, a region
in which Eq. (21) is satisfied). Note that the vertical axis
is in terms of reduced acceleration a − ac. For each value
of γ, θ = θd has been used to evaluate the position of the
bifurcation lines, as this is the value that gives the largest
region of stable superlattice patterns; see Fig. 17.

IV. CONCLUSION

A comparison of calculations from the NS and ZV
equations with theory suggests that there are broadly
three regions of behaviour delineated by the value of the
damping parameter γ. Firstly, for γ < 0.01, there is
excellent quantitative between the NS equation, the ZV
equation and the theoretical predictions in [11, 12]. This
is the region where single frequency resonant features are
most prominent and is the region where most single fre-
quency experiments have been performed.
Secondly, there is a regime of moderate damping from

γ ≈ 0.01 to γ ≈ 0.1 where there remains a fair degree of
qualitative agreement with theory. The location of key
resonances, for example, can be predicted with reason-
able accuracy, and increasing viscosity will increase the
size of the resonant feature located there. A notable ex-
ception is the phase (Φ) dependence, which tends to de-
viate more from predicted values than the other scaling
laws over this range. Furthermore, the single frequency
1:2 resonant feature is no longer apparent in the b(θ)
curve. It is interesting to note that the ZV model con-
tinues to agree well with the NS equation in this regime.
Finally, there is a high viscosity regime for γ > 0.1

where there is generally not even qualitative agreement
between the NS equations and the theory of [12]. Increas-
ing γ in this regime, for example, could cause a decrease
in b(θd) rather than an increase. Some resonances may
switch from enhancing to suppressing or become washed
out entirely. In this regime, there is qualitative, but not
quantitative agreement between the NS and the ZV equa-
tions.
The deviation from the scaling predicted by the low

viscosity symmetry-based theory has a significant impact
on pattern selection. In section III E it was shown that

Ref. σ ρ ν m:n mω k0 γ
dyn/cm g/s3 cSt Hz 1/cm

[2] 18.3 0.892 3.4 1 27 4.89 0.010
[2] 18.3 0.892 3.4 1 45 8.32 0.017
[3] 19.4 0.920 5 1 10 0.99 0.0015
[25] 19.8 0.929 8.9 1 10 0.99 0.0028
[5] 20.6∗ 0.95∗ 20 4:5 88 14.2 0.15
[5] 20.6∗ 0.95∗ 20 6:7 98.64 15.5 0.16
[6] 20.6 0.95 23 2:3 50 9.00 0.12
[6] 20.6∗ 0.95∗ 47 2:3 50 9.00 0.24
[7] 20.6∗ 0.95∗ 20 4:5 24 4.18 0.046

TABLE I: Typical values for the physical parameters as
quoted in experimental papers and the corresponding values
for k0, as calculated from Eq. (1), and γ = 2νk2

0/mω. An
asterisk marks values that were not given explicitly in the
experimental papers, but are typical for the fluid used.

the deviation from the predicted scaling led to an optimal
range of γ for experiments that aim to find superlattice
patterns: large enough to benefit from an increase in res-
onance strength with γ and an increase in the range of
forcing values yielding stable patterns, but not so large
that the predicted behaviour is overwhelmed by new (in
this case, suppressing) effects. It is perhaps no coinci-
dence that, although some multi-frequency experiments
have been carried out for high viscosities (γ > 0.5) [6], no
superlattice patterns have been reported there. In fact,
most two frequency experiments have been carried out
for γ ≈ 0.1 − 0.3 (Typical values for the various physi-
cal parameters used in key experimental papers and the
corresponding values for γ are shown in Table I). In the
example shown in Fig. 4, this is in the region of γ where
the b(θ) curve achieves its maximum value. Figure 19
suggests that for these values of γ there is no region of
stable superlattice patterns. However, this theoretical re-
sult does not contradict the experiments of [5] because,
although the remaining fluid parameters are comparable,
the results shown in 19 are for (f6, f7) = aG0(cosχ, sinχ)
with χ = 55◦, while the experiments show a small region
of superlattice patterns only for values of χ of approxi-
mately 59◦ and above. A more detailed comparison with
the experiments of [5] is undertaken in [14].

We also found that, just as there is an optimal range
of the damping parameter γ for locating certain patterns
such as superlattices, there is an optimal phase Φ as well.
For the moderate values of γ used in the relevant exper-
iments, this optimal phase can be deduced from the NS
equation and/or from the ZV equation but it is not cap-
tured as well by the low damping symmetry-based theory
as other scaling laws. This could explain some of the dis-
crepancy between theory and experiment found in [11].

The results in this paper further underline the fact that
in the Faraday problem the nonlinear pattern selection
process depends strongly on which resonant triad inter-
actions can occur and this, in turn, can be deduced from
the linear problem, which determines the resonance angle
θd. In Section III B we derived a method for estimating
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the position of θd from the linear stability curves of the
ZV equation that also provided a good estimate of the
position of θd for the NS equation, even for the moderate
values of the viscosity that were considered.
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[13] W. Zhang and J. Viñals, Journal of Fluid Mechanics 336,

301 (1997).

[14] A. C. Skeldon and G. Guidoboni, SIAM Journal on Ap-
plied Mathematics 67, 1064 (2007).

[15] T. B. Benjamin and F. Ursell, Proceedings of the Royal
Society, London A 225, 505 (1954).

[16] J. Porter and M. Silber, Physica D 190, 93 (2004).
[17] T. Besson, W. S. Edwards, and L. S. Tuckerman,

Physcial Review E 54, 507 (1996).
[18] M. Silber, C. Topaz, and A. C. Skeldon, Physica D 143,

205 (2000).
[19] A. M. Rucklidge and M. Silber, Physical Review E 75,

055203(R) (2007).
[20] A. M. Rucklidge and W. Rucklidge, Physica D 178, 62

(2003).
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