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Abstract. When a layer of fluid is oscillated up and down with a sufficiently large amplitude,
patterns form on the surface, a phenomenon first observed by Faraday. A wide variety of such patterns
have been observed from regular squares and hexagons to superlattice and quasipatterns and more
exotic patterns such as oscillons. Previous work has investigated the mechanisms of pattern selection
using the tools of symmetry and bifurcation theory. The hypotheses produced by these generic
arguments have been tested against an equation derived by Zhang and Viñals in the weakly viscous
and large depth limit. However, in contrast, many of the experiments use shallow viscous layers of
fluid to counteract the presence of high frequency weakly damped modes that can make patterns
hard to observe. Here we develop a weakly nonlinear analysis of the full Navier–Stokes equations
for the two-frequency excitation Faraday experiment. The problem is formulated for general depth,
although results are presented only for the infinite depth limit. We focus on a few particular cases
where detailed experimental results exist and compare our analytical results with the experimental
observations. Good agreement with the experimental results is found.
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1. Introduction. Waves on the surface of a fluid excited by a vertical oscillation
were first observed by Faraday [1]. Subsequently, in the 1980’s, the so-called Faraday
crispation experiment became one of the first fluid experiments where mode interac-
tions and chaos were observed [2]. Over the last decade, this experiment has become
a testbed for ideas of pattern selection in systems under parametric excitation, and
a large variety of patterns have been observed including not just regular patterns of
squares and hexagons but many more exotic patterns such as superlattice patterns,
quasipatterns, and oscillons. These more recent studies were initiated by the results
of Edwards and Fauve [3], who used a two-frequency, rather than a single-frequency,
excitation, thereby increasing the number of parameters in the problem and break-
ing the subharmonic time symmetry. Further two-frequency experiments have been
performed by Kudrolli, Pier, and Gollub [4] and Arbell and Fineberg [5, 6, 7]. Subse-
quently, many of the patterns have been observed in experiments with only a single
frequency of excitation [8]. Meanwhile, in practical applications of Faraday waves,
the phenomenon has been investigated as a tool to produce patterns on films [9, 10],
investigated as a mechanism for transporting gas across an air/water boundary [11],
and seen as oscillations on the surface of bubbles [12].

In a container, if the amplitude of the vertical excitation is not too large, then no
waves form on the surface of the fluid and the fluid is merely translated up and down.
As the amplitude of the excitation is increased, waves appear at a critical amplitude
of excitation. This onset of waves was first described theoretically by Benjamin and
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Ursell [13], who showed that for an inviscid infinite layer of fluid the problem reduces
to a Mathieu equation. Kumar and Tuckerman [14] developed a method for solving
the linear stability problem for the viscous, finite depth fluid problem for a single
frequency of excitation. This work was extended to two-frequency excitation [15] and
gives excellent agreement with experimental measurements of the onset of patterns.

Understanding not just the onset of patterns but the type of patterns is challeng-
ing. The full mathematical description of the fluid problem involves the Navier–Stokes
equations in a domain with a free surface, and the excitation makes the problem
nonautonomous. Symmetry arguments along with the notion of resonant trial inter-
actions have been used to uncover some of the pattern selection mechanisms [18]. This
showed that weakly damped harmonic modes play a key role, with the wavenumber
of the weakly damped mode relative to the critical wavenumber being an indicator of
what patterns are likely to be seen. Since the wavenumbers of weakly damped modes
are determined by the particular forcing function, this in turn has led to theoretical
work in the nearly Hamiltonian limit on controlling pattern selection [19, 20]. In this
work, they showed how multiple frequency components in the forcing can be used to
enhance particular resonant triad interactions that in turn promote the stability of
particular superlattice patterns. The theoretical ideas in [18, 19, 20] were all tested
by calculating the coefficients of the relevant amplitude equations for a two-coupled
scalar partial differential equation model derived and analyzed by Zhang and Viñals
describing the Faraday problem in a weakly viscous and large depth limit [16, 17].
While the theory and the results calculated from the Zhang–Viñals equation agree
well, it is harder to establish to what degree these pattern selection mechanisms can
be used to explain experimental findings. This is because many of the experimental
studies use a fluid that is either moderately viscous or a container that is shallow,
neither of which is within the range of validity of the Zhang–Viñals model. The reason
that experiments tend to focus on these cases is because of the presence of long wave-
length modes that can make it difficult to observe regular patterns: these modes can
be damped either by increasing the viscosity or by increasing the dissipation from the
lower boundary by making the container shallower [21]. The large viscosity also min-
imizes the impact of the lateral boundaries on the patterns and the effect of patterns
formed by meniscus waves emitted from the sidewalls.

Weakly nonlinear analysis from the full fluid equations for single-frequency exci-
tation in an infinite fluid layer has been carried out by Chen and Viñals [22]. In this
paper, we extend the formulation of the weakly nonlinear problem to two-frequency
excitation and to finite fluid depth. The former involves a significantly different ap-
proach to the derivation of a solvability condition: for a single frequency of excitation,
the form of the linear problem may be written as a recursion relation, and an adjoint
to this recursion relation may be defined. This works because, in the linear Faraday
problem, modes with different frequencies are coupled only through the excitation.
Specifically, a frequency component cosωt in the excitation couples the nth Fourier
mode to the n − 1 and the n + 1 mode. When an N mode truncation is taken, then
the equation for the Nth mode is coupled only to the (N − 1)th mode. Consequently,
one can solve for the Nth mode in terms of the (N − 1)th mode. In turn, this then
allows one to solve for the (N − 1)th mode and, recursively, for all modes. If instead
multiple frequency forcing, for example, cosχ cosM1ωt+sinχ cosM2ωt, is used, then
the nth Fourier mode is coupled to four other modes, n−M1, n−M2, n+M1, n+M2.
Truncating at N modes leaves the Nth mode coupled to both N − M1 and N − M2,
and so a recursion relation cannot readily be defined.

In the future, we will investigate the effect of depth on the coefficients of the
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amplitude equations; however, for the purposes of this paper, we have focused on
carrying out the calculations and detailed results for infinite depth only.

The pattern selection problem is further complicated by several issues. First,
above onset not just a single wavenumber but a band of wavenumbers is unsta-
ble. Allowing for variation of the spatial scale to account for this typically leads
to Ginzburg–Landau-type amplitude equations. Second, in the viscous Faraday prob-
lem, there are weakly damped long wavelength modes. These are coupled to the free
surface deformation so that the larger the amplitude of the Faraday waves the more
significant the effect. Both of these effects are discussed in [23] for Faraday waves in
two space dimensions, but as yet there has been no attempt to include these effects in
three space dimensions. Note that since the weakly damped long wavelength modes
are coupled to the surface deformation, they do not effect the pattern selection at
onset but could have an effect thereafter. Finally, at onset the wavenumber specifies
the magnitude but not the direction of the associated wavevector. The spatial scale
is therefore determined but not the particular pattern. Typically, a finite number
of wavevectors are considered and amplitude equations derived for the amplitude as-
sociated with each wavevector. Two approaches are taken. In the first, an integer
number of eigenvectors corresponding to modes that are equispaced around a circle
are considered. Depending on the number of modes used, this leads to an amplitude
equation describing squares, hexagons, or quasipatterns. The amplitude equations are
of gradient form, and a Lyapunov function can be written down. The relative stability
of the different patterns is then inferred from the relative value of the energy for the
different states. A clear discussion of some of the issues involved in using amplitude
equations to describe quasipatterns is given in [24]. Alternatively, eigenvectors that
generate different spatially periodic lattices are considered. Amplitude equations may
again be derived, but this time the eigenvalues indicating the relative stability for dif-
ferent patterns that are supported by the same lattice are considered. The methods
are closely related, as discussed further in sections 4 and 6. In their single-frequency
study, Chen and Vinãls [22] focus on squares, hexagons, and quasipatterns. Here in
our two-frequency approach we, at least initially, consider spatially periodic patterns
on a lattice. We apply our results to the particular two-frequency experimental results
of Kudrolli, Pier, and Gollub [4] and find good agreement with their observations.

The layout of this paper is as follows. In section 2, we set up the mathematical
problem. In section 3, a weakly nonlinear expansion about the critical wavenumber
is carried out and the weakly nonlinear equations at each order derived. In section 4,
we briefly discuss the pattern formation context within which we work and specify
the general form of the solutions in the horizontal direction. This leads to a sequence
of problems for the surface height and the vertical dependence of the velocity. These
equations are solved in section 5, leading to the evaluation of the coefficients for the
amplitude equations describing the weakly nonlinear pattern formation. The problem
contains a number of physical parameters, and the coefficients are calculated for a
range of values relevant to the experimental results in [4]. The calculations in section 5
are performed only in the case of infinite depth, although all early sections are not
restricted in this way. The justification for this and the implications of the values of
the coefficients for the pattern selection are discussed in section 6. Our conclusions
are drawn in section 7.

2. Mathematical model. We consider an infinite horizontal layer of viscous
incompressible fluid of finite depth that is subjected to gravity g and to a vertical
periodic acceleration of amplitude a. At the lower boundary the fluid is in contact
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Fig. 2.1. Sketch of a cross-section through the layer of fluid.

with a rigid plane, while at the upper boundary the surface is open to the external
ambient conditions. This means that the upper surface is a free boundary whose
shape and evolution is an unknown of the problem.

We consider a frame of reference which is moving with the periodic excitation
whose z-axis is perpendicular to the rigid plane at the bottom at z = −h/l, where
h/l is the nondimensional depth of the layer. A sketch of the geometry is shown
in Figure 2.1. We suppose the free surface is regular enough to be written in the
Cartesian representation z = ζ(x, y; t); then the fluid motion is described by the
dimensionless Navier–Stokes equations

∇ · u = 0,

∂tu + u · ∇u = −∇P + C∆u − (1 + af(t))e3,(2.1)

where u = (u, v, w) is the velocity field, P the pressure, and

(2.2) f(t) ≡ f1(t) = cos(ωt)

for single-frequency excitation and

(2.3) f(t) = f2(t) = cos(χ) cos(M1ωt) + sin(χ) cos(M2ωt + φ)

for two-frequency excitation, where M1 and M2 are integers and χ and φ are real.
The units of length, time, velocity, and pressure have been taken as l,

√

l/g,
√

gl,
and ̺gl, respectively. The amplitude of the acceleration due to the excitation, a, is
measured in units of g. Here l is taken as k−1

c , where kc is the wavenumber of the
pattern at onset. The parameter C = ν/(gl3)1/2 is the square of the inverse of the
Galileo number, where ν is the kinematic viscosity of the fluid. We have used the
notation ∇ = (∇H , ∂z), with ∇H = (∂x, ∂y). Equations (2.1) apply in a domain
Ω = Σ × (−h/l, ζ(x, y; t)), where Σ is the horizontal periodicity cell. The bottom of
the container, at z = −h/l, is rigid, and therefore we take no-slip boundary conditions
here:

(2.4) u = v = w = 0.

At the free surface z = ζ(x, y; t) we have the kinematic condition, which says that the
surface is advected by the fluid, and two further conditions, one for the balance of
the tangential stresses and one for the balance of normal stresses. This leads to three
conditions at z = ζ(x, y; t), namely

∂tζ + u∂xζ + v∂yζ = w,

t1 ·Tn = t2 · Tn = 0,(2.5)

−P + 2CnD(u)n = BH− pe,
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where T = −PI+ 2CD(u) is the stress tensor, D(u) = (∇u +∇Tu)/2 is the rate-of-
strain tensor, H = ∇H · (∇Hζ/

√

1 + |∇Hζ|2) is the double mean curvature, and the
unit normal and tangent vectors are defined as

n(x, y; t) =

(

− ∂xζ
√

1 + |∇Hζ|2
,− ∂yζ
√

1 + |∇Hζ|2
,

1
√

1 + |∇Hζ|2

)

,

t1(x, y; t) =

(

1
√

1 + |∂xζ|2
, 0,

∂xζ
√

1 + |∂xζ|2

)

,

t2(x, y; t) =

(

0,
1

√

1 + |∂yζ|2
,

∂yζ
√

1 + |∂yζ|2

)

.

Here pe is the dimensionless pressure of the external ambient fluid and is assumed
known. The parameter B = σ/̺gl2, where σ is the surface tension and ̺ the density of
the fluid, is the inverse Bond number and is a nondimensional measure of the relative
importance of surface tension and gravity.

It is convenient to define a new pressure,

(2.6) p = P + (1 + af(t))z,

and this has the effect of shifting the acceleration term from the momentum equation
to the normal stress condition. In addition, we eliminate the pressure from the mo-
mentum equation by taking −(∇×∇×). Using the relation ∇×∇×u = ∇(∇·u)−∆u
and the fact that ∇ · u = 0, the problem then becomes

∇ · u = 0,

∂t∆u− C∆∆u = ∇×∇× (u · ∇u),(2.7)

with boundary conditions on z = −h/l,

(2.8) u = v = w = 0,

and on z = ζ,

∂tζ + u∂xζ + v∂yζ = w,

t1 · Tn = t2 ·Tn = 0,(2.9)

2CnD(u)n = BH + p − pe − (1 + af(t))ζ.

Equations (2.7) with boundary conditions (2.8) and (2.9) have a trivial solution,

(2.10) u = 0, p = pe, ζ = 0.

This solution corresponds to a flat-surface state where there is no relative motion of
the fluid with respect to the moving frame.

3. Weakly nonlinear analysis. The flat-surface state loses stability at a crit-
ical amplitude of the excitation frequency to regular patterns of standing waves. We
use a multiple timescale approach to derive equations describing the amplitude of
these standing waves near threshold. In order to do this, the governing equations and
the boundary conditions are expanded in a power series of the dimensionless distance
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away from the threshold, ε, and solved order by order in ε. So for the driving di-
mensionless amplitude a, we let a = a0 + εa1 + ε2a2 and expand the flow variables
as

u = εu1 + ε2u2 + ε3u3 + · · · ,

p = pe + εp1 + ε2p2 + ε3p3 + · · · ,

ζ = εζ1 + ε2ζ2 + ε3ζ3 + · · · .

At each order in ε the solution is defined in a different domain since each ζi is different.
In order to overcome this difficulty, Chen and Vinãls [22] take a Taylor expansion of
the boundary conditions at the free surface around the flat surface state z = 0, so that
they consider the solution in Σ× [−h/l, 0] at each order. We follow the same approach
here. Near threshold, ε ≪ 1, we separate fast and slow timescales: t = τ+T1/ε+T2/ε2

such that ∂t = ∂τ +ε∂T1
+ε2∂T2

. The fast timescale is the timescale of the excitation,
while the slower timescales describe the evolution of the amplitude of the patterns
over many periods of the excitation. In sections 3.1, 3.2, and 3.3, we list the problem
for each of the first three orders in ε. These agree with those used in the computations
of [22], although note that there is a typographical error in their paper for the normal
stress boundary condition at third order. In section 3.4, we derive the linear adjoint
problem that is needed in order to find the solvability conditions that lead to the
amplitude equations. The general form for the solvability conditions themselves are
given in section 3.5. As found in [14] for the linear problem, the linear operator on the
left-hand side of the hierarchy of problems for different ε depends only on the vertical
velocity w and on the height of surface ζ. The horizontal components of the velocity,
u and v, and the pressure, p, are needed to evaluate the nonlinear terms that appear
on the right-hand side. These may be computed from w and ζ: details are given in
the appendices.

3.1. Linear problem (first order problem).

(3.1) ∂τ∆w1 − C∆∆w1 = 0,

with boundary conditions on z = −h/l,

(3.2) w1 = ∂zw1 = 0,

and on z = 0,

∂τζ1 − w1 = 0,

∆Hw1 − ∂2
zw1 = 0,

−∂τ∂zw1 + C∂3
zw1 + 3C∆H∂zw1

−B∆H∆Hζ1 + (1 + a0f(τ))∆Hζ1 = 0.

Here ∆H = ∂2
x + ∂2

y .

3.2. Second order problem.

(3.3) ∂τ∆w2 − C∆∆w2 = N (2)
eq ,

with boundary conditions on z = −h/l,

(3.4) w2 = ∂zw2 = 0,
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and on z = 0,

∂τζ2 − w2 = N
(2)
kc ,

∆Hw2 − ∂2
zw2 = N

(2)
ts ,

−∂τ∂zw2 + C∂3
zw2 + 3C∆H∂zw2

−B∆H∆Hζ2 + (1 + a0f(τ))∆Hζ2 = N (2)
ns .

Here

N (2)
eq = [∇×∇× (u1 · ∇)u1] · e3 − ∂T1

∆w1,

N
(2)
kc = −∂T1

ζ1 − u1∂xζ1 − v1∂yζ1 + ∂zw1ζ1,

N
(2)
ts = ∂x

[

−∂zzu1ζ1 − ∂xzw1ζ1 + 2(∂xu1 − ∂zw1)∂xζ1 + (∂yu1 + ∂xv1)∂yζ1

]

+∂y

[

−∂zzv1ζ1 − ∂yzw1ζ1 + 2(∂yv1 − ∂zw1)∂yζ1 + (∂yu1 + ∂xv1)∂xζ1

]

,

N (2)
ns = ∂T1

∂zw1 −∇H · (u1 · ∇)u1 + ∆H(−2C∂zzw1ζ1 + ∂zp1ζ1) − a1f(τ)∆Hζ1.

3.3. Third order problem.

(3.5) ∂τ∆w3 − C∆∆w3 = N (3)
eq ,

with boundary conditions on z = −h/l,

(3.6) w3 = ∂zw3 = 0,

and on z = 0,

∂τ ζ3 − w3 = N
(3)
kc ,

∆Hw3 − ∂2
zw3 = N

(3)
ts ,

−∂τ∂zw3 + C∂3
zw3 + 3C∆H∂zw3

−B∆H∆Hζ3 + (1 + a0f(τ))∆Hζ3 = N (3)
ns .

Here

N (3)
eq = [∇×∇× (u1 · ∇)u2] · e3 + [∇×∇× (u2 · ∇)u1] · e3 − ∂T2

∆w1 − ∂T1
∆w2,

N
(3)
kc = −∂T2

ζ1 − ∂T1
ζ2 + ∂zw1ζ2 + ∂zw2ζ1 +

1

2
∂zzw1ζ

2
1

−u1∂xζ2 − u2∂xζ1 − ∂zu1ζ1∂xζ1 − v1∂yζ2 − v2∂yζ1 − ∂zv1ζ1∂yζ1,

N
(3)
ts = ∂x

[

−∂zzu2ζ1 − ∂zzu1ζ2 −
1

2
∂zzzu1ζ

2
1 − ∂xzw2ζ1 − ∂xzw1ζ2 −

1

2
∂xzzw1ζ

2
1

−2(∂zw2 − ∂xu2)∂xζ1 − 2(∂zw1 − ∂xu1)∂xζ2 − 2∂z(∂zw1 − ∂xu1)ζ1∂xζ1

+(∂yu2 + ∂xv2)∂yζ1 + (∂yu1 + ∂xv1)∂yζ2 + ∂z(∂yu1 + ∂xv1)ζ1∂yζ1

]

+∂y

[

−∂zzv2ζ1 − ∂zzv1ζ2 −
1

2
∂zzzv1ζ

2
1 − ∂yzw2ζ1 − ∂yzw1ζ2 −

1

2
∂yzzw1ζ

2
1

−2(∂zw2 − ∂yv2)∂yζ1 − 2(∂zw1 − ∂yv1)∂yζ2 − 2∂z(∂zw1 − ∂yv1)ζ1∂yζ1

+(∂yu2 + ∂xv2)∂xζ1 + (∂yu1 + ∂xv1)∂xζ2 + ∂z(∂yu1 + ∂xv1)ζ1∂xζ1

]

,
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N (3)
ns = ∂T2

∂zw1 + ∂T1
∂zw2 − a2f(τ)∆Hζ1 − a1f(τ)∆Hζ2 −∇H · [u1 · ∇u2 + u2 · ∇u1]

+∆H

[

∂zp2ζ1 + ∂zp1ζ2 +
1

2
∂zzp1ζ

2
1 − 2C∂zzw1ζ2 − 2C∂zzw2ζ1 − C∂zzzw1ζ

2
1

+2C(∂zu2 + ∂xw2)∂xζ1 + 2C(∂zw1 − ∂xu1)(∂xζ1)
2 + 2C(∂zv2 + ∂yw2)∂yζ1

+2C∂z(∂xw1 + ∂zu1)∂xζ1ζ1 + 2C∂z(∂yw1 + ∂zv1)∂yζ1ζ1

+2C(∂zw1 − ∂yv1)(∂yζ1)
2 − 2C(∂yu1 + ∂xv1)∂xζ1∂yζ1 −

3

2
B∂xxζ1(∂xζ1)

2

−3

2
B∂yyζ1(∂yζ1)

2 − 1

2
B∂xxζ1(∂yζ1)

2 − 1

2
B∂yyζ1(∂xζ1)

2 − 2B∂xζ1∂yζ1∂xyζ1

]

.

3.4. Linear adjoint problem. In order to use the Fredholm alternative and
derive a solvability condition, the solution to the linear adjoint problem is needed.
We suppose that S1 = (w1, ζ1) is the solution of the linear problem and denote by
S∗ = (w∗, ζ∗) the solution of the linear adjoint problem. Then S1 and S∗ satisfy

(3.7) (S∗,LS1) = 0 = (L∗S∗, S1),

where L and L∗ are the linear and the linear adjoint operators, respectively, and (·, ·)
means the following scalar product:

(3.8)

∫ 2π/ω

0

∫

Ω

w∗
(

∂τ∆w1 −C∆∆w1

)

dΩdτ +

∫ 2π/ω

0

∫

Σ

ζ∗

[

∂τζ1 −w1

]

z=0
dΣdτ = 0,

where Ω = Σ × (−h/l, 0) and Σ is the horizontal periodicity cell.

3.5. Solvability conditions. From the Fredholm alternative theorem it follows
that at second order the solvability condition takes the form of

∫ 2π/ω

0

∫

Ω

w∗(∂τ∆w2 − C∆∆w2 − N (2)
eq )dΩdτ

+

∫ 2π/ω

0

∫

Σ

[ζ∗(∂τζ2 − w2 − N
(2)
kc )]z=0dΣdτ = 0.(3.9)

This implies that

∫ 2π/ω

0

∫

Ω

w∗N (2)
eq dΩdτ +

∫ 2π/ω

0

∫

Σ

[ζ∗N
(2)
kc ]z=0dΣdτ

+

∫ 2π/ω

0

∫

Σ

[w∗N (2)
ns ]z=0dΣdτ + C

∫ 2π/ω

0

∫

Σ

[∂zw
∗N

(2)
ts ]z=0dΣdτ = 0.

Similarly at third order, we have
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∫ 2π/ω

0

∫

Ω

w∗N (3)
eq dΩdτ +

∫ 2π/ω

0

∫

Σ

[ζ∗N
(3)
kc ]z=0dΣdτ

+

∫ 2π/ω

0

∫

Σ

[w∗N (3)
ns ]z=0dΣdτ + C

∫ 2π/ω

0

∫

Σ

[∂zw
∗N

(3)
ts ]z=0dΣdτ = 0.

4. Patterns. In order to proceed further, we need to first solve the linear prob-
lem set out in section 3.1. However, in an unbounded horizontal domain, while the
linear problem predicts the onset of spatially periodic patterns at a given excita-
tion frequency and excitation amplitude with a wavenumber kc, it does not uniquely
determine the pattern that is produced. This is related to the fact that, in an un-
bounded horizontal domain, the Faraday problem is isotropic so that no particular
direction is preferred: any wavevector with wavenumber kc would give an allowable
solution; for example, stripes with any orientation would be possible. Furthermore,
within the linear problem, linear superposition of different wavevectors with the crit-
ical wavenumber also give solutions. In this way, solutions such as squares, hexagons,
superlattice patterns, and quasipatterns may be constructed by adding together stripe
solutions of the appropriate orientation. However, the fact that these are solutions
to the linear problem does not guarantee their existence or stability for the nonlinear
problem. Indeed, only particular combinations of patterns are observed in experi-
ments. Here we consider patterns that are spatially periodic, and this is implicit in
our choice of domain in sections 2 and 3.

For patterns that are spatially periodic in two space dimensions, previous work has
used equivariant bifurcation theory to find the generic types of solutions that exist [25],
the generic amplitude equations that these patterns satisfy, and the stability of each
pattern in terms of the coefficients of these amplitude equations [26]. For example,
on the family of lattices with hexagonal symmetry, the generic amplitude equations
are

ż1 = λz1 + ǫz̄2z̄3

+(b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2)z1 + O(|z|4),
ż2 = λz2 + ǫz̄3z̄1

+(b2|z1|2 + b1|z2|2 + b2|z3|2 + b6|z4|2 + b4|z5|2 + b5|z6|2)z2 + O(|z|4),
ż3 = λz3 + ǫz̄1z̄2

+(b2|z1|2 + b2|z2|2 + b1|z3|2 + b5|z4|2 + b6|z5|2 + b4|z6|2)z3 + O(|z|4),
ż4 = λz4 + ǫz̄6z̄5(4.1)

+(b4|z1|2 + b6|z2|2 + b5|z3|2 + b1|z4|2 + b2|z5|2 + b2|z6|2)z4 + O(|z|4),
ż5 = λz5 + ǫz̄4z̄6

+(b5|z1|2 + b4|z2|2 + b6|z3|2 + b2|z4|2 + b1|z5|2 + b2|z6|2)z5 + O(|z|4),
ż6 = λz6 + ǫz̄5z̄4

+(b6|z1|2 + b5|z2|2 + b4|z3|2 + b2|z4|2 + b2|z5|2 + b1|z6|2)z6 + O(|z|4),

where the zi are complex amplitudes and λ, ǫ, and bi are real. An example of one
of the family of such lattices is shown in Figure 4.1, where Kih

is the mode with
amplitude zi. Different lattices correspond to different choices for θ. In terms of the
Faraday problem considered in this paper, these equations arise by representing the
horizontal spatial dependence of the linear problem for the surface height ζ1 and the
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K1h

K2h

K3h

K5h

K4h

K6h

θ

Fig. 4.1. Hexagonal lattice generated by 12 wavevectors on the critical circle.

vertical velocity w1 as a sum of six modes where the ith mode has amplitude zi and
wavevector Kih .

For each hexagonal lattice, the equivariant branching lemma gives six patterns
that bifurcate from the trivial state, and these are listed in Table 4.1 along with their
branching equations and stability assignments. A further pattern has been found
to exist and bifurcate from the trivial solution as discussed in [27]. We have not
included this in Table 4.1 since its eigenvalues are indistinguishable from those for
superhexagons at cubic order. We refer to both the superhexagons and the patterns
discussed in [27] as superlattice patterns.

Similar results exist for families of square lattices.
Previously, the coefficients of the amplitude equations have been calculated for

a long wavelength scalar partial differential equation describing a range of convec-
tion problems [28], for Turing patterns [29], and more recently for the Zhang–Viñals
model of the Faraday problem [18]. These calculations allow inferences on the relative
stability of different spatially periodic patterns to be made.

The cubic truncation of the amplitude equations (4.1) can be written in gradient
form:

(4.2) żi = −∂F
∂z̄i

,

where the Lyapunov function is given by

F = −
∑

i=1..6

[

λ|zi|2 −
1

2
b1|zi|4

]

−ǫ(z1z2z3 + z4z5z6 + z̄1z̄2z̄3 + z̄4z̄5z̄6)

−b2

(

|z1|2|z2|2 + |z1|2|z3|2 + |z4|2|z5|2 + |z4|2|z6|2 + |z5|2|z6|2
)

−b4

(

|z1|2|z4|2 + |z2|2|z5|2 + |z3|2|z6|2
)

− b5

(

|z1|2|z5|2 + |z2|2|z6|2 + |z3|2|z4|2
)

−b6

(

|z1|2|z6|2 + |z2|2|z4|2 + |z3|2|z5|2
)

.(4.3)
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Table 4.1

Branching equations and signs of eigenvalues for primary bifurcation branches on the hexagonal
lattice; ǫ, b1, . . . , b6 are coefficients in the bifurcation equation (4.1).

Branching equation Signs of nonzero eigenvalues

Stripes (S) sgn(b1), sgn(ǫ̃AS + (b2 − b1)A2
S
),

z = (AS , 0, 0, 0, 0, 0) sgn(−ǫ̃AS + (b2 − b1)A2
S
),

0 = λAS + b1A3
S + O(A5

S) sgn(b4 − b1), sgn(b5 − b1), sgn(b6 − b1).

Simple hexagons (H±) sgn(ǫ̃AH + 2(b1 + 2b2)A2
H),

z = (AH , AH , AH , 0, 0, 0) sgn(−ǫ̃AH + (b1 − b2)A2
H

),

0 = λAH + ǫ̃A2
H

sgn(−ǫ̃AH + (b4 + b5 + b6 − b1 − 2b2)A2
H

),

+(b1 + 2b2)A3
H + O(A4

H) sgn(−ǫ̃AH + O(A3
H)).

Rectangles (Rh1,m,n) sgn(b1 + b4), sgn(b1 − b4),

z = (AR, 0, 0, AR, 0, 0) sgn(µ1), sgn(µ2), where

0 = λAR + (b1 + b4)A3
R + O(A5

R) µ1 + µ2 = (−2b1 − 2b4 + 2b2 + b5 + b6)A2
R,

µ1µ2 = −ǫ̃2A2
R + (b1 + b4 − b2 − b5)

(b1 + b4 − b2 − b6)A4
R
.

Rectangles (Rh2,m,n) sgn(b1 + b5), sgn(b1 − b5),

z = (AR, 0, 0, 0, AR, 0) sgn(µ1), sgn(µ2), where

0 = λAR + (b1 + b5)A3
R

+ O(A5
R

) µ1 + µ2 = (−2b1 − 2b5 + 2b2 + b4 + b6)A2
R
,

µ1µ2 = −ǫ̃2A2
R

+ (b1 + b5 − b2 − b4)

(b1 + b5 − b2 − b6)A4
R.

Rectangles (Rh3,m,n) sgn(b1 + b6), sgn(b1 − b6),

z = (AR, 0, 0, 0, 0, AR) sgn(µ1), sgn(µ2), where

0 = λAR + (b1 + b6)A3
R

+ O(A5
R

) µ1 + µ2 = (−2b1 − 2b6 + 2b2 + b4 + b5)A2
R
,

µ1µ2 = −ǫ̃2A2
R + (b1 + b6 − b2 − b4)

(b1 + b6 − b2 − b5)A4
R
.

sgn(ǫ̃ASH + 2(b1 + 2b2 + b4 + b5 + b6)A2
SH

),

Superhexagons (SH±
m,n) sgn(ǫ̃ASH + 2(b1 + 2b2 − b4 − b5 − b6)A2

SH),

z = (ASH , ASH , ASH , sgn(−ǫ̃ASH + O(A3
SH

)),

ASH , ASH , ASH) sgn(−ǫ̃ASH + O(A3
SH

)),∗

0 = λASH + ǫ̃A2
SH + (b1 + 2b2)A3

SH sgn(µ1), sgn(µ2), where

+(b4 + b5 + b6)A3
SH

+ O(A4
SH

) µ1 + µ2 = −4ǫ̃ASH + 4(b1 − b2)A2
SH

,

µ1µ2 = 4(ǫ̃ASH − (b1 − b2)A2
SH)2

−2((b4 − b5)2 + (b4 − b6)2

+(b5 − b6)2))A4
SH ,

sgn(µ0), where µ0 = O(A
2(m−1)
SH

).
∗These two eigenvalues differ at O(A3

SH).

The different planforms then correspond to minima of the Lyapunov functional, and an
“energy” for each state may be computed. In Table 4.2, we list the different planforms
and the corresponding value of the Lyapunov function (4.3). The information given
by the eigenvalues of the amplitude equations given in Table 4.1 and that given by
the energy of the different states as given in Table 4.2 is complementary. Below we
calculate the coefficients for the amplitude equations (4.1) from the full Navier–Stokes
equation formulation of the Faraday problem. We then calculate the eigenvalues to
examine relative stability. For those states that are relatively stable, we calculate the
value of the Lyapunov function to find which have the lowest energy.

The coefficients of the amplitude equations are found by focusing on three calcula-
tions: one for stripes, one for rectangular patterns, and one for hexagons; these corre-
spond to considering the three subspaces, z = (AS , 0, 0, 0, 0, 0), z = (AR, 0, 0, AR, 0, 0),
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Table 4.2

Value of the Lyapunov function F for each of the primary bifurcation branches on the hexagonal
lattice; ǫ, b1, . . . , b6 are coefficients in the bifurcation equation (4.1). Only one of the rectangular
states has been included: the other two may be obtained by cyclic permutation.

Planform F

Stripes (S) λ2

b1

z = (AS , 0, 0, 0, 0, 0)

Simple hexagons (H±) −
`

3λA2
H

+ 2ǫA3
H

+ 3
2
(b1 + 2b2)A4

H

´

,

z = (AH , AH , AH , 0, 0, 0) where 0 = λ+ ǫAH + (b1 + 2b2)A2
H

Rectangles (Rh1,m,n) λ2

(b1+b4)

z = (AR, 0, 0, AR, 0, 0)

Superhexagons (SH±
m,n) −

`

6λA2
SH

+ 4ǫA3
SH

+ 3(b1 + 2b2 + b4 + b5 + b6)A4
SH

´

,

z = (ASH , ASH , ASH , ASH , ASH , ASH) where 0 = λ+ ǫ̃ASH + (b1 + 2b2 + b4 + b5 + b6)A2
SH

and z = (AH , AH , AH , 0, 0, 0), respectively. Focusing on a particular pattern means
that we make an assumption about the particular form of the horizontal behavior of
the fluid variables. We can use this to reformulate the weakly nonlinear analysis in
section 3 that is in terms of functions of x, y, and z to a simpler set of problems for
sets of functions that depend only on z. It is this reformulation of the problem that
is carried out in this section for each of the stripes, rectangles, and hexagons. Since
stripes and rectangles arise through a symmetry-breaking bifurcation, there are no
quadratic terms in the amplitude equations for these patterns. A result of this is that
the solvability condition at second order necessarily leads to a1 = 0. This fact can
be included from the beginning of the analysis, and then we need only scale on two
timescales; that is, we let t = τ + T/ε2 so that ∂t = ∂τ + ε2∂T . (The more general
formulation on three timescales is needed for hexagons.)

For stripes, we consider a solution to the first order problem given in section 3.1
of the form

w1(x, z, τ, T ) = AS(T )(eikx + e−ikx)
∑

n

W1,n(z)ei(nω+α)τ ,

ζ1(x, τ, T ) = AS(T )(eikx + e−ikx)
∑

n

Z1,ne
i(nω+α)τ ,

and for rectangular patterns, we consider

w1(x, y, z, τ, T ) = AR(T )[eikx + eik(cx+sy) + c.c.]
∑

n

W1,n(z)ei(nω+α)τ ,

ζ1(x, y, τ, T ) = AR(T )[eikx + eik(cx+sy) + c.c.]
∑

n

Z1,ne
i(nω+α)τ ,(4.4)

where s = sin θ and c = cos θ and θ is the angle between the wavevectors that make
up the rectangular pattern. Here k is the wavenumber of the pattern, and a Floquet
expansion in the basic frequency ω has been used as in [14]. When α = 0, the expan-
sion gives a harmonic solution, and when α = ω/2, the expansion gives a subharmonic
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solution. Here and below we sum from n = −∞ to n = +∞. Consequently, since
both the w1 and ζ1 are real, we have in addition

W1,n = W̄1,−n, α = 0,

W1,n = W̄1,−n−1, α = ω/2.(4.5)

Although we do not list them, there are analogous reality conditions for the velocity
components and surface height at each order. Similar choices for the expansion are
made for the behavior of the horizontal velocity components u1 and v1, and these are
listed in Appendix A. Since the results for stripes can be obtained by setting θ = 0
and careful consideration of some factors of two, in what follows we include stripes as
a special case in our formulation of the problem for rectangles. In order to proceed,
the general form (4.4) for the pattern is substituted into the first order problem given
in section 3.1. The result is a homogeneous fourth order linear differential equation
for the vertical dependence of the vertical velocity component W1,n(z) along with the
appropriate boundary conditions at z = 0 and z = −h/l. This is given in section 4.1.

At second order, as for the first order problem, assuming that we are interested
in particular patterns means that we know the form for the horizontal behavior of the
fluid. Specifically, we take the general form of the second order solution for rectangles
as

w2(x, y, z, τ, T ) = A2
R(T )[e2ikx + e2ik(cx+sy) + c.c.]

∑

n

W2,1,n(z)ei(nω+2α)τ

+A2
R(T )[eik[(1+c)x+sy] + c.c.]

∑

n

W2,2,n(z)ei(nω+2α)τ

+A2
R(T )[eik[(1−c)x−sy] + c.c.]

∑

n

W2,3,n(z)ei(nω+2α)τ ,

ζ2(x, y, τ, T ) = A2
R(T )[e2ikx + e2ik(cx+sy) + c.c.]

∑

n

Z2,1,ne
i(nω+2α)τ

+A2
R(T )[eik[(1+c)x+sy] + c.c.]

∑

n

Z2,2,ne
i(nω+2α)τ

+A2
R(T )[eik[(1−c)x−sy] + c.c.]

∑

n

Z2,3,ne
i(nω+2α)τ .(4.6)

The forms that are taken for the velocity components u2 and v2 are given in Appen-
dix A. The expressions for the velocity components are substituted into the equations
and boundary conditions at second order given in section 3.2, and this leads to an
inhomogeneous fourth order ordinary differential equation for W2,i,n(z) along with
boundary conditions. These are given in section 4.2.

As discussed above, if we take a1 = 0, then there is no solvability condition at
second order for rectangles. However, at third order there is a solvability condition. In
order to derive this, the general form for the adjoint problem is needed. In section 4.3,
we give the formulation for the adjoint problem, derived from the adjoint problem
given in (3.8) along with the assumption that patterns to the adjoint problem take
the general form

w∗(x, z, τ, T ) = A∗(T )(eikx + e−ikx)
∑

n

W ∗
n (z)ei(nω+α)τ ,

ζ∗(x, τ, T ) = A∗(T )(eikx + e−ikx)
∑

n

Z∗
ne
i(nω+α)τ .
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This then allows us to formulate the solvability condition at third order in section 4.4.
The result is an amplitude equation for rectangles whose coefficients may be deter-
mined from W1,n(z), Z1,n, W2,i,n(z), Z2,i,n and their derivatives along with the adjoint
eigenfunctions W ∗

1,n(z) and Z∗
1,n and their derivatives.

In the case of hexagons, we consider a first order solution of the form

w1(x, y, z, τ, T1, T2)

= AH(T1, T2)[e
ikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑

n

W1,n(z)ei(nω+α)τ ,

ζ1(x, y, z, τ, T1, T2)
(4.7)

= AH(T1, T2)[e
ikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑

n

Z1,ne
i(nω+α)τ

with similar choices for u1 and v1 that are listed in Appendix A. This leads to the
same first order problem as for stripes and rectangles, as given in section 4.1 below.

At second order hexagons differ from rectangles. Generically, in problems that
have E(2) symmetry, hexagons arise in a transcritical bifurcation and are necessar-
ily locally unstable. In the weakly nonlinear analysis, this appears as a quadratic
amplitude equation that results from the solvability condition for the second order
problem. Two cases of interest arise that can result in stable hexagonal solutions:
first, when there is an extra symmetry in the problem that removes the quadratic
term, and second, when the coefficient of the quadratic term is sufficiently small so
that the quadratic terms may formally be included at cubic order [30]. The Faraday
problem is an example of a system that has E(2) symmetry. As we shall see below,
for some values of the parameter χ in the drive (2.3), the response is subharmonic,
and for some values it is harmonic. When the response is subharmonic, then there
is an extra time symmetry in the problem and there are no quadratic terms in the
amplitude equations. When χ = 0, the response is harmonic, but since there is no M2

component in the drive, there is again an extra symmetry in the problem, and again
there are no quadratic terms in the amplitude equations. However, as the parameter
χ is increased from 0, this extra symmetry is broken, and there is a gradual increase
from zero in the size of the coefficient of the quadratic term. There is therefore at
least some range in parameter space where it is reasonable to include the quadratic
terms at cubic order. The way we proceed with the hexagon calculation is therefore
as follows. First, we consider three timescales and formulate the solvability condition
at second order. This is done using the solvability condition given in (3.9) and the
specific form for the hexagonal pattern at first order (4.7); the result is given in sec-
tion 4.5. This gives us a quadratic amplitude equation and enables us to compute the
size of the quadratic term.

Next, we make the assumption that the coefficient of the quadratic term is either
zero or sufficiently small (O(ε)) so that we may formally include the terms at cubic
order. We therefore set a1 = 0, rescale the problem on two timescales, and formulate
the problem for the solution at second order by taking as a general form for the second
order problem

w2(x, y, z, τ, T ) = A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑

n

W2,1,n(z)ei(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑

n

W2,2,n(z)ei(nω+2α)τ ,
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ζ2(x, y, τ, T ) = A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑

n

Z2,1,ne
i(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑

n

Z2,2,ne
i(nω+2α)τ .(4.8)

Expressions for u2 and v2 are listed in Appendix A. Substitution of these expressions
into the second order equation and boundary conditions given in section 3.2 leads to
an inhomogeneous fourth order ordinary differential equation for W2,i,n along with
boundary conditions. These are given in section 4.6. Finally, including the quadratic
terms at cubic order, we formulate the solvability condition for the third order hexag-
onal problem in section 4.7.

4.1. The linear problem. The linear problem is the same for all periodic pat-
terns and is given by

(4.9) [i(nω + α) − C(D2 − k2)](D2 − k2)W1,n(z) = 0,

where D indicates the derivative with respect to z, with boundary conditions

(4.10) W1,n = DW1,n = 0,

on z = −h/l, and on z = 0,

i(nω + α)Z1,n − W1,n = 0,(4.11)

(D2 + k2)W1,n = 0,(4.12)
(

i(nω + α) + 3Ck2
)

DW1,n − CD3W1,n + k2(Bk2 + 1)Z1,n = −1

2
a0k

2Z1,f,n.(4.13)

For a single frequency of excitation,

(4.14) Z1,f,n = Z1,n−1 + Z1,n+1,

and for two frequencies,

(4.15) Z1,f,n = cos(χ)(Z1,n−M1
+ Z1,n+M1

) + sin(χ)(eiφZ1,n−M2
+ e−iφZ1,n+M2

).

These equations are supplemented by the reality conditions

W1,−n(0) = W̄1,n(0), Z1,−n = Z̄1,n

for harmonic modes and

W1,−n(0) = W̄1,n−1(0), Z1,−n = Z̄1,n−1

for subharmonic modes, where the bar indicates complex conjugation.

4.2. Second order problem for rectangles and stripes. The functions
W2,i,n and Z2,i,n, i = 1, 2, 3, can all be found from the same system of equations
with different choices made for the parameters θ and d. For i = 1, we take θ = 0 and
d = 1/2: this would be the same as solving for stripes. For i = 2, we take θ = θ̃ and
d = 1. For i = 3, we take θ = π + θ̃ and d = 1, where θ̃ ∈ (0, π/2]. The solutions
W2,i,n satisfy

[i(nω + 2α) − C(D2 − 2k2(1 + c))](D2 − 2k2(1 + c))W2,i,n(z)

= d
∑

l+m=n

[

4k2s2DW1,l(z)W1,m(z) − 2(1 + c)D3W1,l(z)W1,m(z)

+2(−1 + c + 2c2)D2W1,l(z)DW1,m(z)
]

(4.16)
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at z = −h/l,

(4.17) W2,i,n = DW2,i,n = 0,

while at z = 0 we have the kinematic condition and the tangential stress condition,

i(nω + 2α)Z2,i,n − W2,i,n = 2d(1 + c)
∑

l+m=n

DW1,lZ1,m,(4.18)

(D2 + 2k2(1 + c))W2,i,n = −d
∑

l+m=n

[

2(1 + c)Z1,lD
3W1,m

+2(3 + 2c)(1 + c)k2Z1,lDW1,m

]

,(4.19)

and the normal stress condition,
[

i(nω + 2α) + 6(1 + c)Ck2
]

DW2,i,n − CD3W2,i,n

+2k2(1 + c)(2B(1 + c)k2 + 1)Z2,i,n = S1,i,n − a0k
2(1 + c)Z2,f,i,n,(4.20)

where

S1,i,n = d
∑

l+m=n

[

2c(1 + c)DW1,lDW1,m

+4(1 + c)k2Z1,lDP1,m − 8(1 + c)Ck2Z1,lD
2W1,m − 2(1 + c)W1,lD

2W1,m

]

.

For a single frequency,

Z2,f,i,n = Z2,i,n−1 + Z2,i,n+1,

and for two frequencies,
(4.21)

Z2,f,i,n = cos(χ)(Z2,i,n−M1
+ Z2,i,n+M1

) + sin(χ)(eiφZ2,i,n−M2
+ e−iφZ2,i,n+M2

).

Note that if there is no extra symmetry that suppresses it, then the resonant triad
interaction at second order causes this calculation to blow up at θ = π/3.

4.3. Linear adjoint problem. The adjoint problem is

(4.22)
[

i(nω + α) + C(D2 − k2)
]

(D2 − k2)W ∗
n(z) = 0,

with boundary conditions

W ∗
n = DW ∗

n = 0,

on z = −h/l, and on z = 0,
[

i(nω + α) − 3Ck2
]

DW ∗
n + CD3W ∗

n = Z∗
n,(4.23)

(D2 + k2)W ∗
n = 0,(4.24)

i(nω + α)Z∗
n + k2(Bk2 + 1)W ∗

n = −1

2
a0k

2W ∗
f,n.(4.25)

For a single frequency,

W ∗
f,n = W ∗

n−1 + W ∗
n+1,

and for two frequencies,

W ∗
f,n = cos(χ)(W ∗

n−M1
+ W ∗

n+M1
) + sin(χ)(eiφW ∗

n−M2
+ e−iφW ∗

n+M2
).
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4.4. Solvability condition for rectangles and stripes. The solvability con-
dition is

(4.26) δ
dA

dT
= a2βA + γA3,

where A ≡ AS in Table 4.1 for stripes and A ≡ AR in Table 4.1 for rectangles and

δ =
∑(1)

l,m

[

−2Z∗
l Z1,m + 2W ∗

l (0)DW1,m(0)

+2

∫ 0

−h/l

W ∗
l (z)

(

−D2W1,m(z) + k2W1,m(z)
)

dz

]

.(4.27)

For one frequency,

(4.28) β = −k2

[

∑(4)

l,m

W ∗
l (0)Z1,m +

∑(5)

l,m

W ∗
l (0)Z1,m

]

,

and for two frequencies,

β = −k2

[

cos(χ)

(

∑(6)

l,m

W ∗
l (0)Z1,m +

∑(7)

l,m

W ∗
l (0)Z1,m

)

+ sin(χ)

(

∑(8)

l,m

W ∗
l (0)eiψZ1,m +

∑(9)

l,m

W ∗
l (0)e−iψZ1,m

)]

.(4.29)

The coefficient γ is given by the sum of three separate components corresponding to
contributions from each of W2,i,n and Z2,i,n. They may each be calculated from a
single function γi(θs, d) by taking each of the three functions in turn and different θs
and d. Specifically,

γ(θs, d) = γ1

(

0,
1

2

)

+ γ2(θs, 1) + γ3(π + θs, 1).

The function γi is given in Appendix B.

4.5. Second order solvability condition for hexagons. The second order
solvability condition for hexagons leads to the amplitude equation

(4.30) δ
dAH

dT1
= a1βAH + γ2A

2
H ,

and γ2 is given by

γ2 = −2

(2)
∑

l,m,n

Z∗
l Z1,mDW1,n(0)

−
(2)
∑

l,m,n

W ∗
l (0)

[

DW1,m(0)DW1,n(0) + 8Ck2Z1,mD2W1,n(0)
]

+

(2)
∑

l,m,n

W ∗
l (0)

[

4k2Z1,mDP1,n(0) − 2W1,m(0)D2W1,n(0)
]



18 A. C. SKELDON AND G. GUIDOBONI

−C

(2)
∑

l,m,n

DW ∗
l (0)Z1,m

[

2D3W1,n(0) + 4k2DW1,n(0)
]

−
(2)
∑

l,m,n

∫ 0

−h/l

W ∗
l (z)

[

W1,m(z)(6k2DW1,n(z) − 2D3W1,n(z))

−4DW1,m(z)D2W1,n(z)
]

dz.(4.31)

4.6. Second order problem for hexagons. The second order problem for
hexagons consists of W2,1,n(z) = W2,n(z), which solves the same problem as that
obtained for stripes, and W2,2,n, which satisfies

[i(nω + 2α) − C(D2 − 3k2)](D2 − 3k2)W2,2,n(z)

=
∑

l+m=n

(3k2W1,l(z)DW1,m(z) − 3D3W1,l(z)W1,m(z)).

At z = −h/l we have W2,2,n = DW2,2,n = 0, while at z = 0 we have the kinematic
condition and the tangential stress conditions, namely,

i(nω + 2α)Z2,2,n − W2,2,n = 3
∑

l+m=n

Z1,lDW1,m,

(3k2 + D2)W2,2,n = −
∑

l+m=n

[

3Z1,lD
3W1,m + 12k2Z1,lDW1,m

]

,

and the normal stress condition,

(i(nω + 2α) + 9Ck2)DW2,2,n − CD3W2,2,n + 3k2(3Bk2 + 1)Z2,2,n

= S1,h,n −
3

2
a0k

2Z2,f,n,

where

S1,h,n =
∑

l+m=n

(

3

2
DW1,lDW1,m − 12Ck2Z1,lD

2W1,m

+6k2Z1,lDP1,m − 3W1,lD
2W1,m

)

.

For a single frequency of excitation,

Z2,f,n = Z2,2,n−1 + Z2,2,n+1,

and for two frequencies,

Z2,f,n = cos(χ)(Z2,2,n−M1
+ Z2,2,n+M1

) + sin(χ)(eiφZ2,2,n−M2
+ e−iφZ2,2,n+M2

).

4.7. Solvability condition for hexagons at third order. The solvability
condition at third order problem takes the form

(4.32) δ
dAH

dT
= a2βAH + γ2A

2
H + (γ1 + γ3)A

3
H ,

where δ, β, and γ1 are the same as for stripes, γ2 is given by (4.31), and γ3 is given
in Appendix C.
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5. Calculation of the coefficients of the amplitude equations. In sec-
tion 4, we formulated a hierarchy of problems for the z dependence of the fluid pa-
rameters. In this section, we outline how we solve this sequence of problems and
calculate the coefficients of the amplitude equations. We focus on the harmonic case,
α = 0, but the calculations for the subharmonic case are similar. We also note that
using the transformation ω → ω/2, M1 → 2M1, M2 → 2M2, the subharmonic case
can be incorporated into the formulation for the harmonic problem. As explained
in section 5.1, the calculations are substantially simpler in the specific case of an
infinite layer, and while we have solved the linear problem for both the finite and
infinite cases, we have calculated the coefficients of the amplitude equations only for
infinite depth. We justify why this is a reasonable approximation for the specific fluid
parameter choices we use when we discuss the results in section 6.

5.1. Linear problem. The general solution for W1,n(z) that satisfies (4.9) is

W1,0(z) = (a1,0 + zc1,0)e
kz + (b1,0 + zd1,0)e

−kz,

W1,n(z) = a1,ne
kz + b1,ne

−kz + c1,ne
q1,nz + d1,ne

−q1,nz, n 6= 0,(5.1)

where

q2
1,n =

inω

C
+ k2.

Applying the boundary conditions allows values for the coefficients a1,n, b1,n, c1,n,
and d1,n to be found. However, the subsequent analysis is substantially easier in the
particular case of an infinite layer, where the lower boundary conditions are replaced
with the requirement that the solution be bounded as z → −∞. In this case, b1,n =
d1,n = 0, and it is this case we discuss below.

In order to find a1,n and c1,n, they are expressed first in terms of Z1,n using the
kinematic condition (4.11) and the tangential stress condition (4.12) to give

a1,0 = 0,

a1,n = (inω + 2Ck2)Z1,n, n 6= 0,

c1,0 = 0,(5.2)

c1,n = −2Ck2Z1,n, n 6= 0.

Then the normal stress condition (4.13) is used to eliminate W1,n to give

k2
(

Bk2 + 1
)

Z1,0 = −1

2
a0k

2Z1,f,0, n = 0,(5.3)

[

k(2Ck2 + inω)2 − 4C2k4q1,n + k2
(

Bk2 + 1
)]

Z1,n = −1

2
a0k

2Z1,f,n, n 6= 0.

This is a generalized eigenvalue problem for a0 of the form

AZ = a0BZ,

where Z = (Z1,0, Z1,1, . . . , Z1,N)T . This generalized eigenvalue problem is the same
as that solved in [15]. The minimum real positive eigenvalue a0 gives the critical
amplitude of onset of patterns, and the corresponding eigenvector gives the values
for Z1,n. Hence W1,n can be found from (5.2) and (5.1). These calculations and
those that follow were carried out using MATLAB. For the majority of the harmonic
calculations, we take N = 20, and for the subharmonic calculations, we take N = 40.
Doubling the number of modes typically changed the results by less than 0.2%.



20 A. C. SKELDON AND G. GUIDOBONI

5.2. Linear adjoint problem. The general solution for the linear adjoint prob-
lem (4.22) for a fluid of infinite depth is

W ∗
0 (z) = (a∗

0 + zc∗0)e
kz ,

W ∗
n(z) = a∗

ne
kz + c∗ne

q∗nz, n 6= 0,

where

q∗n
2 = − inω

C
+ k2.

Note that q∗n is the complex conjugate of q1,n. This can be solved analytically in
terms of Z∗

n using the adjoint equivalents to the kinematic condition (4.23) and the
tangential stress condition (4.24), and after some manipulation we find

Z∗
0 = −2Ck3W ∗

0 (0),

Z∗
n =

1

indnω
W ∗
n(0), n 6= 0,(5.4)

where

dn =
(

k(2Ck2 − inω)2 − 4C2k4q∗n
)−1

.

Substitution of these expressions for Z∗
n into the normal stress condition (4.25) gives

k2(Bk2 + 1)W ∗
0 (0) = −1

2
a∗
0k

2W ∗
f,0(0),(5.5)

[

k(2Ck2 − inω)2 − 4C2k4q∗n + k2(Bk2 + 1)
]

W ∗
n(0) = −1

2
a∗
0k

2W ∗
f,n(0), n 6= 0.

This results in a second generalized eigenvalue problem of the form

A∗W∗ = a∗
0B

∗W∗.

As expected, when we solve this, we find a0 = a∗
0, and W ∗

n(0) is the complex conjugate
of Z1,n. Once W ∗

n has been found, then Z∗
n follows from (5.4).

5.3. Second order problem for stripes and rectangles. Next, we consider
the problem for W2,i,n(z), (4.16). The homogeneous equation has the solution

W2,i,0(z) = (a2,i,0 + zc2,i,0)e
k̃z,

W2,i,n(z) = a2,i,ne
k̃z + c2,i,ne

q2,i,nz, n 6= 0,

where

k̃2 = 2(1 + c)k2,

q2
2,i,n =

inω

C
+ k̃2.

In the inhomogeneous equation (4.16), the right-hand side generates terms of the form
αl,meQl,mz . Each of these contributes to the solution a term δl,meQl,mz , where

δl,m =
αl,m

(

inω − C
(

Q2
l,m − k̃2

))

(Q2
l,m − k̃2)

.
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The general solution to (4.16) is therefore

W2,i,0(z) = (a2,i,0 + c2,i,0z)ek̃z +
∑

l+m=0

δl,meQl,mz,

W2,i,n(z) = a2,i,ne
k̃z + c2,i,ne

q2,i,nz +
∑

l+m=n

δl,meQl,mz, n 6= 0.(5.6)

The coefficients a2,i,n and c2,i,n can be found in terms of Z2,i,n, using the tangen-
tial stress condition (4.19) and the kinematic condition (4.18), to give

a2,i,n = γ1,i,nZ2,i,n + v1,i,n,

c2,i,n = γ2,i,nZ2,i,n + v2,i,n,(5.7)

where

γ1,i,0 = 0,

γ1,i,n = (inω + 2Ck̃2), n 6= 0,

γ2,i,0 = 0,

γ2,i,n = −2Ck̃2, n 6= 0,

and

v1,i,0 = S2,i,0,

v1,i,n =
C

inω

((

inω

C
+ 2k̃2

)

S2,i,n − S3,i,n

)

, n 6= 0,

v2,i,0 =
1

2k̃

(

S3,i,0 − 2k̃2S2,i,0

)

,

v2,i,n =
C

inω

(

−2k̃2S2,i,n + S3,i,n

)

, n 6= 0,

and

S2,i,n = −2(1 + c)d
∑

l+m=n

Z1,lDW1,m −
∑

l+m=n

δl,m,

S3,i,n = −d
∑

l+m=n

(

2(1 + c)Z1,lD
3W1,m + (3 + 2c)k̃2Z1,lDW1,m

)

−
∑

l+m=n

Q2
l,mδl,m − k̃2

∑

l+m=n

δl,m.

Substitution of the general solution (5.6) into the normal stress condition, (4.20),
gives

k̃2
(

Bk̃2 + 1
)

Z2,i,0 +
1

2
a0k̃

2Z2,f,i,0 = −2Ck̃3S2,i,0 + S1,i,0

−3Ck̃2
∑

l+m=0

Ql,mδl,m + C
∑

l+m=0

Q3
l,mδl,m,
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(

k̃(inω + 2Ck̃2)γ1,i,n + 2Ck̃2q2,i,nγ2,i,n

+k̃2
(

Bk̃2 + 1
))

Z2,i,n +
1

2
a0k̃

2Z2,f,i,n = −k̃(inω + 2Ck̃2)v1,i,n − 2Ck̃2q2,i,nv2,i,n

+S1,i,n − (inω + 3Ck̃2)
∑

l+m=n

Ql,mδl,m

+C
∑

l+m=n

Q3
l,mδl,m, n 6= 0.

This is of the form

AZ2 = b,

where Z2 = (Z2,i,0, Z2,i,1, . . . , Z2,i,N). This can be solved for Z2,i,n, and hence W2,i,n

can be found from (5.7) and (5.6).

5.4. Solvability condition for stripes and rectangles. Once the calculations
for the linear, linear adjoint, and second order problem have been completed, the
coefficients for the solvability condition are calculated from (4.27), (4.28), (4.29), and
(B.1).

5.5. Second order problem and solvability condition for hexagons. The
linear and linear adjoint problems for hexagons are the same as for stripes and rect-
angles. Once Z1, W1, Z∗, and W ∗ are known, the size of the quadratic coefficient in
the amplitude equation for hexagons may be computed from (4.31). The calculations
of the second order solution and solvability condition at third order then follow in a
very similar fashion to the calculation for rectangles: the same products appear but
with different coefficients.

5.6. Evaluating the coefficients of the amplitude equations. In order to
compute the stability of the patterns as given in Table 4.1, we need to calculate each
of the cubic coefficients bi that appear in the generic amplitude equations (4.1) along
with the value of the quadratic coefficient ǫ̃. From the calculations for rectangles,
stripes, and hexagons this may be done as follows. The solvability condition for
rectangles and stripes takes the form given in (4.26), that is,

(5.8) δ
dA

dT
= a2βA + γA3.

The values of δ and β are independent of the type of pattern considered, but the value
of γ is not. By comparing the amplitude equations with the equations given for each
state given in Table 4.1, we see that when γ is computed in the case of stripes, it
gives us the value for b1. If the solvability condition is calculated for rectangles, then
γ gives us b1 + b4, and hence the value of b4 (and similarly b5 and b6) may be found.
In the case of hexagons, the solvability condition takes the form

(5.9) δ
∂AH

∂T
= a2βAH + γ2A

2
H + (γ1 + γ3)A

3
H ,

where δ, β, and γ1 are the same as for stripes and γ2 is given by (4.31) and γ3

comes from (C.1). By comparing with the amplitude equation for hexagons given in
Table 4.1, we see that γ3 gives the value of 2b2. Note that while b1 and b2 are fixed for a
given set of fluid parameters, the values of b4, b5, and b6 depend on the lattice angle θ.

In the results we present in the next section, we rescale the amplitude equations
by letting A 7→

√

|β/b1|A, AH 7→
√

|β/b1|AH , and T 7→ |δ/β| so that the cubic
coefficient for stripes b1 in the rescaled equations is always ±1.
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Fig. 6.1. Linear stability curves for different values of χ. ρ = 0.95cm−3, ν = 20.9cS, σ =
20.6dyn/cm. Excitation is a(cos χ cosM1ωt + sinχ cosM2ωt) with (M1,M2) = (4, 5), ω = 44π.
Harmonic tongues are marked with solid lines and subharmonic tongues with dashed lines.

6. Results. Here we present the results of our calculations for the particular
fluid parameters used in the experimental results given in [4].

6.1. Linear stability results. First, the generalized eigenvalue problem (5.3)
is solved, and this gives the critical amplitude as a function of k. Typical curves are
shown in Figure 6.1. These are analogous to those computed by Besson, Edwards, and
Tuckerman [15] but focus on the particular parameter values that are used by Kudrolli,
Pier, and Gollub [4], namely ρ = 0.95cm−3, ν = 20.9cS, and σ = 20.6dyn/cm. Curves
that have a subharmonic response with the excitation are indicated with dotted lines,
and those that are harmonic are marked with a solid line. The critical onset occurs
at the minimum value of a, and this occurs at a critical wavenumber kc. For ease of
comparison with the experimental results, the curves are plotted in dimensional rather
than nondimensional units: with our choice of nondimensionalization, the value of kc
is always 1. The minimum value point is indicated by a dot. The richness of the
dynamics that is seen with two-frequency forcing is partly due to the fact that the
parameter χ allows one to tune between the critical value for a occurring for either
a harmonic tongue, as is the case for 0◦ < χ < 60◦, or a subharmonic tongue, as
is the case for 60◦ < χ < 90◦. There is a bicritical point that occurs when χ is
approximately 60◦. The phase φ has little impact on the position of the minimum
value of the lowest tongue and therefore in the position of the bicritical point (changes
in the position of the mimima are typically less than 0.001%). The phase does,
however, alter the position of the tongues for some of the other harmonics.

Experimentally, it is the onset of patterns as a function of χ that is observed rather
than the linear stability curves directly. In Figure 6.2, we show how the minimum
of the linear stability curves varies with the relative importance of the amplitude of
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Fig. 6.2. Path of a0 as a function of χ. (a) (M1,M2) = (4, 5), φ = 16◦, and ω = 44π;
(b) (M1,M2) = (6, 7), φ = 20◦, and ω = 32.88π.

the two components of the excitation as given by a cosχ and a sinχ. Two cases are
shown: Figure 6.2(a) is for the same parameter values as for Figure 6.1. Figure 6.2(b)
is for the same fluid parameters but different excitation parameters. These two cases
correspond to the two cases considered in detail in Kudrolli, Pier, and Gollub, and the
linear stability boundaries compare well with the corresponding experimental results
shown in Figures 1 and 6 of their paper [4]. The bicritical point occurs for χ = 63.4
in the case (M1, M2) = (4, 5) and χ = 61.8 when (M1, M2) = (6, 7). These compare
well with the value quoted by Kudrolli, Pier, and Gollub of χ = 61.5.

As discussed in the introduction, high viscosity or shallow depth are used to damp
modes with a small wavenumber that can make regular patterns hard to observe. The
fluid used by Kudrolli, Pier, and Gollub was of moderate viscosity (C ≈ 0.4 rather
than C ≪ 1). How “shallow” a container is depends on the product kch, in particular
whether e−kch is negligible when compared with ekch. For the Kudrolli–Pier–Gollub
experiments, h = 0.3cm, giving kc ≈ 14 and e−kch/ekch ≈ 0.0002. In the weakly
nonlinear calculations, we shall see that it is not just the main harmonic tongue that
is of importance but the weakly damped harmonic tongue that has a minimum at
k ≈ 6cm−1. For this tongue, e−kch/ekch ≈ 0.03. Since this is also small, we believe
that an infinite depth approximation is reasonable. Consequently, in the nonlinear
results that we present below, the calculations are performed only for infinite depth.

6.2. Single-frequency results (χ = 0◦ and χ = 90◦). The two-frequency
excitation term we are interested in is of the form

f(t) = f2(t) = cos(χ) cos(M1ωt) + sin(χ) cos(M2ωt + φ).

When χ = 0◦ or 90◦, this reduces to a single-frequency excitation. When χ = 0◦, this
corresponds to a pure M1 excitation, and when χ = 90◦, this is a pure M2 excitation.
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Fig. 6.3. For (M1,M2) = (4, 5) and χ = 0◦ the value of the coefficient b4 as a function of the
lattice angle θ.

Since the two cases we consider have M1 even and M2 odd, the pure M1 response is
harmonic and the pure M2 response is subharmonic. In each case, the overall picture
is similar. The quadratic term in the amplitude equations is zero and we find the
following:

• All the eigenvalues for hexagons given in Table 4.1 are negative for all values
of the lattice angle θ. This suggests that hexagons are a stable state.

• Stripes and superlattice patterns have at least one unstable eigenvalue.
• Rectangular patterns are stable, on the lattice on which they occur, if they

are “sufficiently square.”
This last point may be seen by considering the eigenvalues of the family of rectangles
Rh1,m,n listed in Table 4.1. The eigenvalues b1 + b4, µ1, and µ2 are all negative. The
remaining eigenvalue, b1−b4, is negative only if the lattice angle θ is sufficiently large.
In the case (M1, M2) = (4, 5) and χ = 0◦ in Figure 6.3, we plot the scaled value of b4

as a function of the lattice angle θ. Since in the scaled units b1 = −1, b1− b4 < 0 only
if θ > 52◦. The aspect ratio of the rectangles is given by

√

(1 − cos θ)/(1 + cos θ) so
that stability for rectangles with θ > 52◦ means that rectangles with an aspect ratio
between 0.48 and 1 are stable (on the lattice on which they occur).

By considering the eigenvalues on spatially periodic lattices alone, we find that
both hexagons and rectangles are possible stable states. If we find the values of the
Lyapunov function F (see Table 4.2) for hexagons and rectangles, then we find that
those rectangles with an aspect ratio closest to 1 have the lowest value.

The results are similar for the three other single frequency cases that are relevant
to the bifurcation sets shown in Figure 6.2, namely (M1, M2) = (4, 5) and χ = 90◦

and (M1, M2) = (6, 7) and χ = 0◦ or χ = 90◦. The conclusion is that the calculations
for solutions on periodic lattices show that stripe patterns are unstable. Hexagons
and “sufficiently square” rectangular patterns are relatively stable states with square
patterns having the lowest value of the Lyapunov function. This suggests that square
patterns will be observed at the points where χ = 0◦ and χ = 90◦. These square
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Fig. 6.4. (M1,M2) = (4, 5) and χ = 60◦, φ = 20◦: (a) The value of the coefficient b4 as a
function of the lattice angle θ. At θ = 60◦ quadratic resonance occurs, and the calculation for b4 is
not valid. For this reason, this point has been excluded from the calculation. (b) The value of the
coefficient b4 + b5 + b6 compared with b1 + 2b2 as a function of the lattice angle θ. Just as b4 has a
singularity at 60◦, b5 has a singularity at 0◦, and so the region around 0◦ has been excluded.

patterns will be harmonic when χ = 0◦ and subharmonic when χ = 90◦. This agrees
with the experimental findings of Kudrolli, Pier, and Gollub.

Note that if we use the same parameter values as used by Chen and Viñals in [22]
in their single-frequency study, then we get excellent agreement with their work.

6.3. Two-frequency results (0 < χ < 90◦). For two-frequency excitation,
we have performed a systematic study of the coefficients ǫ̃, b1, b2, b3, b4, b5, and b6

as a function of χ and the lattice angle θ for the same fluid parameters as used above
and for the two cases (M1, M2) = (4, 5) and (M1, M2) = (6, 7). In the first case, most
results are presented for φ = 16◦ and in the second case for φ = 20◦: these are the
values for which the majority of the results in [4] are presented. We focus on the onset
of harmonic patterns since along the subharmonic branch squares the absence of the
quadratic term means that hexagons and rectangles remain the only stable states,
with squares having the lowest energy.

From the values of the coefficients we have computed the stability of the different
planforms based on the eigenvalues for each state given in Table 4.1 as a function of
the lattice angle. If the eigenvalues indicate that the state is relatively stable, then
we compute the value of the Lyapunov function, as given in Table 4.2.

When χ is zero, b4 increases monotonically with θ, as shown in Figure 6.3. How-
ever, this changes as χ is increased and peaks develop. In Figure 6.4(a), we plot b4(θ)
for (M1, M2) = (4, 5) and for χ = 60◦, φ = 16◦. The angle θ = 60◦ has been ex-
cluded because this corresponds to the quadratic resonance point, and the calculation
for rectangles breaks down here. From Table 4.1 it can be seen that for superlattice
patterns to become stable, one needs b4 + b5 + b6 − b1 − 2b2 > 0. This same quantity
causes the destabilization of hexagons. In Figure 6.4(b), we plot b4 + b5 + b6 along
with b1 +2b2. For most values of θ, and so on most lattices, b4 +b5 +b6−b1−2b2 < 0,
and superlattice patterns are unstable. However, the peak in b4(θ) at 31.8◦ leads to
a small region centered at 30◦ for which b4 + b5 + b6 − b1 − 2b2 > 0, and it is possible
for superlattice patterns to be stable.

The corresponding graphs of b4 and b4 + b5 + b6 for (M1, M2) = (6, 7) are
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Fig. 6.5. (M1,M2) = (6, 7) and χ = 60◦: (a) The value of the coefficient b4 as a function of
the lattice angle θ; (b) the value of the coefficient b4 + b5 + b6 compared with b1 + 2b2 as a function
of the lattice angle θ.

shown in Figure 6.5. In this case, there is a peak in b4 at 21.2◦, and this leads
to a peak in b4 + b5 + b6 with a maximum at 21.2◦. Note that even at χ = 60◦,
b4 + b5 + b6 − b1 − 2b2 < 0, and all superlattice patterns are unstable. It is only once,
χ > 61◦, that stable superlattice patterns occur, the first to stabilize being those that
occur on a lattice with lattice angle θ = 21.2◦.

We have shown for χ = 0◦ that both hexagons and rectangles may be stable with
rectangles having the lowest value of the Lyapunov function. Figure 6.4 suggests that
in the case (M1, M2) = (4, 5), stable superlattice patterns may occur for χ = 60◦. In
Figure 6.6(a), we show a bifurcation set that summarizes the regions where different
states are stable for the λ, χ plane. Note that hexagons are a planform that exists on
all the hexagonal lattices and so that where hexagons are shown as stable they are
stable to perturbations on all hexagonal lattices. Where they are unstable, there is
at least one lattice on which they are unstable. The peak in b4(θ) at 30◦ means that
the maximal region of instability for hexagons occurs as θh → 30◦. For rectangles
and superlattices, the story is more complicated. Different lattices support different
superlattice patterns and different rectangles. Since it is on lattices with θ → 30◦ that
hexagons become unstable first (and superlattices onset first), we plot the regions for
the stability of rectangles and superlattice patterns for the specific case θ = 30◦.

At the actual value of θ = 30◦ the center manifold reduction that leads to the
amplitude equations is not formally valid, as discussed in [24], and the “superlattice
patterns” are in fact quasipatterns. However, in practical terms, there is little real
difference between taking a periodic lattice that has a lattice angle close to 30◦ and
taking 30◦ itself: although on the periodic lattice the amplitude equations may be
formally justified, the spectral gap between critical and noncritical eigenvalues will
be small, and thus the formal region of validity for the center manifold is likely
to be small. Visually, it is impossible to distinguish between a quasipattern and a
superlattice pattern with a very large lengthscale. Similarly, the regions of stability
would be indistinguishable whether we took θ = 30◦ or a value of θ close to 30◦ that
results in a spatially periodic lattice.

As shown in Figure 6.6(a), for most values of λ and χ, there is bistability where
more than one pattern is stable. In Figure 6.6(b), we show which of the stable
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Fig. 6.6. Results in the λ, χ plane for (M1,M2) = (4, 5) and φ = 16◦. (a) Eigenvalue results.
The regions correspond to 1. trivial state stable, 2. stable rectangles and hexagons, 3. stable hexagons
and superlattice patterns, 4. stable rectangles, hexagons, and superlattice patterns, 5. stable super-
lattice patterns, 6. stable superlattice patterns and rectangles, 7. stable rectangles. (b) Patterns with
the lowest energy as computed from the Lyapunov function. Black: superlattice patterns. Dark grey:
hexagons. Light grey: rectangles.

patterns has the lowest value of the Lyapunov function. What we find is that, for
small values of χ, rectangles and hexagons are both stable, with rectangles being
the most stable state. Note that it is the Rh3,m,n rectangles that are stable, and as
θ → 30◦, the aspect ratio of these particular rectangles tends to 1. As χ increases, the
value of ǫ̃ increases from zero, and this results in the destabilization of the rectangles
so that hexagons become the preferred state at onset. Near the bicritical point,
hexagons are themselves destabilized to superlattice patterns, and there are regions
where superlattice patterns are the only stable state. A typical bifurcation diagram
for (M1, M2) = (4, 5) at χ = 60◦ is shown in Figure 6.7. Note that the values of
ǫ̃ are small so that higher order correction terms for the position of the secondary
bifurcation points are unlikely to affect the overall qualitative bifurcation sequence.

The analogous bifurcation set and energy diagram for the case (M1, M2) = (6, 7)
are shown in Figure 6.8. In this case, the lattice angle θ = 21.2◦ has been used since in
the case (6, 7), it is on this lattice that hexagons are destabilized first. On this lattice,
the stable rectangles have aspect ratio 0.86. The overall picture is similar to that for
(4, 5) but with the transitions from rectangle to hexagon and hexagon to superlattice
pattern occurring for larger values of χ.

Figures 6.6 and 6.8 compare well with the experimental results of Kudrolli, Pier,
and Gollub. As is suggested by our results, they find that rectangles are stable for low
values of χ giving way to hexagons as χ is increased. As for our theoretical results,
the transition from rectangles to hexagons occurs for higher values of χ in the (6, 7)
case than in the (4, 5) case. In both cases, there are superlattice/quasipatterns near
the bicritical point.

Kudrolli, Pier, and Gollub also investigated the dependence of their results on the
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Fig. 6.7. Bifurcation diagram for (M1,M2) = (4, 5) and χ = 60◦, φ = 16◦. Stable branches are
shown by a solid line and unstable lines by a dotted line. Only branches where some part is stable
are shown.
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Fig. 6.8. Results in the λ, χ plane for (M1,M2) = (6, 7). (a) The regions correspond to 1. trivial
state stable, 2. stable rectangles and hexagons, 3. hexagons, 4. stable hexagons and superlattice
patterns, 5. stable superlattice patterns. (b) Patterns with the lowest energy as computed from the
Lyapunov function. Black: superlattice patterns; dark grey: hexagons; light grey: rectangles.

phase φ for χ = 61◦. In the (6, 7) case, they found relatively little phase dependence.
In the (4, 5) case, they found that the largest region of superlattice patterns was for
angles of φ close to 16◦, but they also found that for some values of φ there were
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Fig. 6.9. (M1,M2) = (4, 5), χ = 61◦, θ = 30◦: (a) Dependence of b1+2b2 and b4+b5+b6 on φ.
(b) Bifurcation set: 1. trivial state stable, 2. stable rectangles and hexagons, 3. stable hexagons and
superlattice patterns, 5. stable superlattice patterns, 6. stable superlattice patterns and rectangles,
7. stable rectangles, 8. no state stable. (c) Planforms with lowest energy as a function of φ and λ.
Black: superlattice; dark grey: hexagons; light grey: rectangles; white (for λ > 0): no stable state
found.

no stable states near onset and for others the hexagons bifurcated to a pattern they
called superlattice II. We cannot hope to capture this latter transition in our study
since these patterns are time periodic and our amplitude equations have a gradient
structure. A theoretical explanation for these patterns was given in [31]. Nevertheless,
we illustrate how the phase does effect our results in Figure 6.9 for (4, 5) and χ = 61◦.
First, in Figure 6.9(a), the quantities b1 + 2b2 and b4 + b5 + b6 are shown. These
are π/2 periodic functions of φ. The consequence is that the regions of stability
of different patterns depend on φ, as shown by the bifurcation set in Figure 6.9(b)
and the corresponding plot of the Lyapunov function in Figure 6.9(c) for the angle
θ = 30◦. These show that it is for phases close to 16◦ that stable superlattice patterns
occur closest to onset. We also find values of the phase for which there are no stable
spatially periodic pattern near onset (the white wedge region in Figure 6.9).

Overall, the results of Figures 6.4 through 6.8 show that the cases (M1, M2) =
(4, 5) and (M1, M2) = (6, 7) are broadly similar. The experimental results show sim-
ilar bifurcation sequences in both cases but very different forms for the planforms:
in the case (6, 7), superlattice patterns are observed with an easily visible regular
periodic structure with two wavelengths. In [4], these are referred to as superlattice-I
patterns. In the (4, 5) case, quasipatterns are observed. The key difference in the two
cases is the lattice angle for which stable superlattice patterns are possible. In [18], it
was argued that the stabilization of the superlattice-I patterns followed from a reso-
nant triad formed by the harmonic tongue with one of the weakly damped harmonic
tongues. This was supported by a peak in the value of the rhombic coefficient (b4

here) at around 22◦ for the Zhang–Vinãls model. In Figures 6.5 and 6.8, we have seen
that the same mechanism operates in the full Navier–Stokes equations. Furthermore,
it is the same fundamental mechanism that is at play in the (4, 5) case, as shown in
Figures 6.4 and 6.6, where now it is a peak in b4 at 32.8◦ which is significant. This
peak can again be traced to a resonant triad between the main harmonic mode and
the first (that is, smallest k) weakly damped harmonic mode. The consequence is
that while the analysis for the (6, 7) case suggests that a superlattice pattern with
angle close to 21.2◦, such as that shown in Figure 6.10(a), will occur, for the (4, 5)
case a superlattice pattern/quasipattern with angle close to 30◦, such as that shown
in Figure 6.10(b), will occur.
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Fig. 6.10. Typical superlattice patterns. Superlattice patterns have the form z =
(ASH , ASH , ASH , ASH , ASH , ASH); the associated planform has the form ASH(cos(K1h

· r+ψ) +
cos(K2h

· r+ψ) + cos(K3h
· r+ψ) + cos(K4h

· r+ψ) + cos(K5h
· r+ψ) + cos(K6h

· r+ψ)), where
r = (x, y). (a) For θ ≈ 21.2◦, ψ = 2π/3. (b) For θ ≈ 30◦, ψ = 0. The superlattice pattern for ψ = 0
has a hexagonal rather than a triangular symmetry. Of these two states, only one is stable, but which
one is not determined at cubic order. The experimental patterns for the (6, 7) case clearly show a
triangular structure, and it was this that motivated the theoretical work of [27] on the ψ = 2π/3
superlattice pattern.

Note that there is a peak in the value of the coefficient b4 for values of χ far
from the bicritical point. For example, there is still a distinct peak in b4 at approx-
imately 21◦ for χ = 30◦ in the (4, 5) case. This can be related to the fact that
the weakly damped harmonic tongue involved in the triad resonance is still promi-
nent, as seen in Figure 6.1(c). However, it is only near the bicritical point that
b4 + b5 + b6 − b1 − 2b2 becomes positive, allowing superlattice patterns to stabilize.

7. Conclusion. In this paper, we have derived the form of the weakly nonlinear
problem for a finite depth of fluid that is subject to a vertical oscillation from the full
Navier–Stokes equations. Using the ideas of symmetry for patterns that tessellate the
plane, we have found the coefficients of the amplitude equations and calculated the
consequences for stability of different spatially periodic patterns in the infinite depth
case. We have focused on the particular parameters that were used in experimental
results presented in [4]. Good agreement has been found between the predictions of
the weakly nonlinear analysis and the experimental results, without the use of any
fitted parameters.

In the future, there are many interesting questions relating to regular patterns in
the Faraday problem that we plan to use our method to explore. Our current code will
allow us to perform a careful comparison between the Zhang–Viñals equations and the
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full Navier–Stokes equations for varying viscosity. We will also be able to investigate
how the coefficients of the amplitude equations scale with the different parameters and
compare with the scaling arguments given in [20] for multiple frequency forcing. This
will enable us to see the degree to which the arguments for the control of patterns
through multiple frequency in the weak viscosity case carry over to moderate and
large viscosity. (With our formulation, it is straightforward to include more than two
frequency components.)

The solvability condition is valid for both finite and infinite depth, although our
subsequent calculations were carried out only for infinite depth. Our future plans also
include coding up the finite depth case. This will allow us to explore how the coef-
ficients vary with depth and enable comparison with experimental results in shallow
containers to be made.

Meanwhile, the Faraday wave experiment continues to be a rich source for striking
and intriguing patterns, as shown by the recent results of Epstein and Fineberg [32].

Appendix A. Form for the horizontal components of the velocity. The
form of the horizontal velocity components can be derived from the form of the vertical
velocity and equations (2.1). Hence, the horizontal velocity components for rectangles
at first order are

u1 =
iAR

k
[eikx + ceik(cx+sy) − c.c.]

∑

n

DW1,n(z)ei(nω+α)τ ,

v1 =
isAR

k
[eik(cx+sy) − c.c.]

∑

n

DW1,n(z)ei(nω+α)τ .

Horizontal velocity components for rectangles at second order are

u2 =
i

2k
A2
R[e2ikx + ce2ik(cx+sy) − c.c.]

∑

n

DW2,1,n(z)ei(nω+2α)τ

+
i

2k
A2
R[eik[(1+c)x+sy] − c.c.]

∑

n

DW2,2,n(z)ei(nω+2α)τ

+
i

2k
A2
R[eik[(1−c)x−sy] − c.c.]

∑

n

DW2,3,n(z)ei(nω+2α)τ ,

v2 =
is

2k
A2
R[e2ik(cx+sy) − c.c.]

∑

n

DW2,1,n(z)ei(nω+2α)τ

+
is

2k(1 + c)
A2
R[eik[(1+c)x+sy] − c.c.]

∑

n

DW2,2,n(z)ei(nω+2α)τ

− is

2k(1 − c)
A2
R[eik[(1−c)x−sy] − c.c.]

∑

n

DW2,3,n(z)ei(nω+2α)τ .

Horizontal velocity components for hexagons at first order are

u1 =
iAH

k

[

eikx − 1

2
eik(−x+

√
3y)/2 − 1

2
eik(−x−

√
3y)/2 − c.c.

]

∑

n

DW1,n(z)ei(nω+α)τ ,

v1 =
i
√

3AH

2k
[eik(−x+

√
3y)/2 − eik(−x−

√
3y)/2 − c.c.]

∑

n

DW1,n(z)ei(nω+α)τ .
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Horizontal velocity components for hexagons at second order are

u2 =
iA2

H

2k

[

e2ikx − 1

2
eik(−x+

√
3y) − 1

2
eik(−x−

√
3y) − c.c.

]

∑

n

DW2,1,n(z)ei(nω+2α)τ

+
iA2

H

2k
[eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 − c.c.]

∑

n

DW2,2,n(z)ei(nω+2α)τ ,

v2 =
i
√

3A2
H

4k
[eik(−x+

√
3y) − eik(−x−

√
3y) − c.c.]

∑

n

DW2,1,n(z)ei(nω+2α)τ

+
iA2

H√
3k

[

eik
√

3y +
1

2
eik(3x+

√
3y)/2 − 1

2
eik(3x−

√
3y)/2 − c.c.

]

∑

n

DW2,2,n(z)ei(nω+2α)τ .

Appendix B. Cubic coefficient for rectangles and stripes.

γi = −
∑(2)

l,m,n

Z∗
l [Z1,mDW2,i,n(0) − 2cDW1,m(0)Z2,i,n]

−
∑(2)

l,m,n

W ∗
l (0)

[

W1,m(0)D2W2,i,n(0) − 2cD2W1,m(0)W2,i,n(0)
]

+2k2
∑(2)

l,m,n

W ∗
l (0)

[

Z1,mDP2,i,n(0) +
1

4d
Z1,mDP2,4,n(0) + DP1,m(0)Z2,i,n

]

−2Ck2
∑(2)

l,m,n

W ∗
l (0)

[

Z1,mD2W2,i,n(0) + 2D2W1,m(0)Z2,i,n

]

−
∑(2)

l,m,n

W ∗
l (0)

[

DW1,m(0)DW2,i,n(0) − 4(1 + c)Ck4Z1,mW2,i,n(0)
]

−C
∑(2)

l,m,n

DW ∗
l (0)

[

Z1,mD3W2,i,n(0) − 2cD3W1,m(0)Z2,i,n

]

−2Ck2
∑(2)

l,m,n

DW ∗
l (0)

[

(3 + 3c + c2 − s2)DW1,m(0)Z2,i,n − 2cZ1,mDW2,i,n(0)
]

−
∑(3)

l,m,n,j

Z∗
l Z1,mZ1,nD

2W1,j(0)

+
∑(3)

l,m,n,j

W ∗
l (0)Z1,mZ1,n

[

Bk6(3 − 2s2)Z1,j + 4Ck4(2 + c2)DW1,j(0)

−2Ck2D3W1,j(0) + 3k2D2P1,j(0)
]

−C
∑(3)

l,m,n,j

DW ∗
l (0)Z1,mZ1,n

[

(9 − 4s2)k2D2W1,j(0) + D4W1,j(0)
]

−
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[

2k2(2 + c)DW1,m(z)W2,i,n(z) + 3k2W1,m(z)DW2,i,n(z)
]

dz

−
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[

(2c − 1)D2W1,m(z)DW2,i,n(z) − 2DW1,m(z)D2W2,i,n(z)
]

dz

+
∑(2)

l,m,n

∫ 0

−h/l

W ∗
l (z)

[

W1,m(z)D3W2,i,n(z) − 2cD3W1,m(z)W2,i,n(z))
]

dz.(B.1)
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The following notation has been used for the sums in (4.27), (4.28), (4.29), and (B.1):

∑(1)

l,m

=

{

l + m = 0 (α = 0),
l + m + 1 = 0 (α = ω/2),

∑(2)

l,m,n

=

{

l + m + n = 0 (α = 0),
l + m + n + 2 = 0 (α = ω/2),

∑(3)

l,m,n,j

=

{

l + m + n + j = 0 (α = 0),
l + m + n + j + 2 = 0 (α = ω/2),

∑(4)

l,m

=

{

l + m + 1 = 0 (α = 0),
l + m + 2 = 0 (α = ω/2),

∑(5)

l,m

=

{

l + m − 1 = 0 (α = 0),
l + m = 0 (α = ω/2),

∑(6)

l,m

=

{

l + m + M1 = 0 (α = 0),
l + m + M1 + 1 = 0 (α = ω/2),

∑(7)

l,m

=

{

l + m − M1 = 0 (α = 0),
l + m − M1 + 1 = 0 (α = ω/2),

∑(8)

l,m

=

{

l + m + M2 = 0 (α = 0),
l + m + M2 + 1 = 0 (α = ω/2),

∑(9)

l,m

=

{

l + m − M2 = 0 (α = 0),
l + m − M2 + 1 = 0 (α = ω/2).

Note that terms involving the derivative of the pressure with respect to z appear
in the solvability condition. These may be computed from the flow variables, as
discussed in Appendix D.

Appendix C. Cubic coefficient for hexagons.

γ3 =

(2)
∑

l,m,n

Z∗
l (2DW1,m(0)Z2,2,n − 2Z1,mDW2,2,n(0))

+

(2)
∑

l,m,n

W ∗
l (0)

(

2D2W1,m(0)W2,2,n(0) − 2W1,m(0)D2W2,2,n(0)
)

+4k2

(2)
∑

l,m,n

W ∗
l (0)

(

DP1,m(0)Z2,2,n(0) + Z1,mDP2,2,n(0) + Z1,mDP2,0,n(0)

+
1

3
Z1,mDP2,3,n(0)

)

−Ck2

(2)
∑

l,m,n

W ∗
l (0)

(

4Z1,mD2W2,2,n(0) + 8D2W1,m(0)Z2,2,n

)

−
(2)
∑

l,m,n

W ∗
l (0)

(

−12Ck4Z1,mW2,2,n(0) + 2DW1,m(0)DW2,2,n(0)
)
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+C

(2)
∑

l,m,n

DW ∗
l (0)

(

2D3W1,m(0)Z2,2,n − 2Z1,mD3W2,2,n(0)
)

+C

(2)
∑

l,m,n

DW ∗
l (0)

(

4k2Z1,mDW2,2,n(0) − 16k2DW1,m(0)Z2,2,n

)

−4

(3)
∑

l,m,n,j

Z∗
l Z1,mZ1,nD

2W1,j(0)

+k2

(3)
∑

l,m,n,j

W ∗
l (0)Z1,mZ1,n

(

12D2P1,j(0) + 36Ck2DW1,j(0) − 8CD3W1,j(0)

+6Bk4Z1,j

)

−C

(3)
∑

l,m,n,j

DW ∗
l (0)Z1,mZ1,n

(

24k2D2W1,j(0) + 4D4W1,j(0)
)

−
(2)
∑

l,m,n

∫ 0

−h/l

W ∗
l (z)

(

10k2DW1,m(z)W2,2,n(z) + 6k2W1,m(z)DW2,2,n(z)
)

+4

(2)
∑

l,m,n

∫ 0

−h/l

W ∗
l (z)DW1,m(z)D2W2,2,n(z)

+

(2)
∑

l,m,n

∫ 0

−h/l

W ∗
l (z)

(

2W1,m(z)D3W2,2,n(z) − 2D3W1,m(0)W2,2,n(z)
)

.(C.1)

Appendix D. A posteriori computation of the pressure. We compute
the pressure from the Navier–Stokes equations. As we need only the derivative of
the pressure with respect to z, we need only consider the third component of the
Navier–Stokes equations:

(D.1) ∂zp = −∂tw + C∆w − u · ∇w.

At the first order this reduces to

(D.2) ∂zp1 = −∂τw1 + C∆w1,

and then we can take ∂zp1 in the form

(D.3) ∂zp1 = AS(eikx + e−ikx)
∑

n

DP1,n(z)ei(nω+α)τ ,

or the equivalent form for rectangles and hexagons, where DP1,n(z) solves

(D.4) DP1,n(z) = [−i(nω + α) + C(D2 − k2)]W1,n(z).

At the second order we have

(D.5) ∂zp2 = −∂τw2 + C∆w2 − u1 · ∇w1 − ∂T1
w1.
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The solution for the rectangular pattern does not depend on T1. Here we take ∂zp2

in the form

∂zp2 = A2
R[e2ikx + e2ik(cx+sy) + c.c.]

∑

n

DP2,1,n(z)ei(nω+2α)τ

+A2
R[eik[(1+c)x+sy] + c.c.]

∑

n

DP2,2,n(z)ei(nω+2α)τ

+A2
R[eik[(1−c)x−sy] + c.c.]

∑

n

DP2,3,n(z)ei(nω+2α)τ

+A2
R

∑

n

DP2,4,n(z)ei(nω+2α)τ ,

where

DP2,1,n(z) = [−i(nω + 2α) + C(D2 − 4k2)]W2,1,n(z),

DP2,2,n(z) = [−i(nω + 2α) + C(D2 − 2(1 + c)k2)]W2,2,n(z)

−2(1 − c)
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,3,n(z) = [−i(nω + 2α) + C(D2 − 2(1 − c)k2)]W2,3,n(z)

−2(1 + c)
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,4,n(z) = −8
∑

(l+m=n)

W1,l(z)DW1,m(z).

In the hexagonal pattern, the solution depends on both T1 and T2. We take the
pressure as the sum of two terms:

∂zp2 = ∂z p̂2 + ∂z p̃2,

where p̂z solves

(D.6) ∂z p̂2 = −∂τw2 + C∆w2 − u1 · ∇w1,

while p̃z = −∂T1
w1. We take p̂z in the form of a hexagonal pattern:

∂z p̂2 = A2
H [eikx + eik(−x+

√
3y)/2 + eik(−x−

√
3y)/2 + c.c.]

∑

n

DP2,0,n(z)ei(nω+2α)τ

+A2
H [e2ikx + eik(−x+

√
3y) + eik(−x−

√
3y) + c.c.]

∑

n

DP2,1,n(z)ei(nω+2α)τ

+A2
H [eik

√
3y + eik(3x+

√
3y)/2 + eik(3x−

√
3y)/2 + c.c.]

∑

n

DP2,2,n(z)ei(nω+2α)τ

+A2
H

∑

n

DP2,3,n(z)ei(nω+2α)τ ,
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where

DP2,0,n(z) = −3
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,1,n(z) = [−i(nω + 2α) + C(D2 − 4k2)]W2,1,n(z),

DP2,2,n(z) = [−i(nω + 2α) + C(D2 − 3k2)]W2,2,n(z)

−
∑

(l+m=n)

W1,l(z)DW1,m(z),

DP2,3,n(z) = −12
∑

(l+m=n)

W1,l(z)DW1,m(z).
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