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Abstract The results of a wavelet analysis of data from discrete element modelling (DEM) simulations of

samples under biaxial compression are presented. We show how a wavelet technique may be used to find the

strain scales on which critical events occur and to identifyregions both in space and in strain when particles in

the sample undergo significant activity. The wavelet analysis indicates that most activity occurs along a line,

and this line coincides with a localization or shear band that develops in the specimen during compression.

The location of this shear band can be visually identified by considering the cumulative particle rotation.

Furthermore, using cross-correlation we show that the principal stress ratio is correlated with the porosity

of the sample along this line. In order to investigate the robustness of the technique, the wavelet analysis is

carried out on two different size specimens that both show the same general phenomena.

Keywords Wavelet analysis· DEM simulation· biaxial compression

1 Introduction

Constructing a complete theoretical understanding of the behaviour of granular materials remains an open and

challenging question. While significant insights have beengained through the use of continuum models, such
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models have difficulty capturing the inhomogeneous behaviour that is characteristic of granular materials such

as avalanching in sand piles and the formation of slip planesin materials under compression. Consequently,

increasingly, simulation studies using techniques such asdiscrete element modelling (DEM) provide an in-

valuable method of investigating the particle-scale interactions underlying granular material response in a

range of disciplines including chemical engineering [11; 3; 24], mechanical engineering [10], soil mechanics

[23; 4; 15; 7], pharmaceuticals [13], agriculture and food processing.

DEM simulations model granular material at the particle scale. Based on classical mechanical ideas, equa-

tions detailing the forces acting on each individual particle are derived. These equations are integrated in time,

and at each timestep the position, translational and rotational velocity, forces and torques acting on each indi-

vidual particle are calculated. Since DEM simulations typically use thousands, even hundreds of thousands, of

particles there are significant questions as to how best to extract physical understanding from the data. At the

most basic level, it is often impractical to output all information at every timestep of the numerical integration,

and a decision on how frequently to output data has to be made.As a result, data from simulations is typically

presented in one of two ways. Either individual particle information is used to calculate bulk properties such

as coordination number and porosity as in [17; 24] or snapshots of the sample at a few selected times are given

showing individual particles/regions coloured accordingto their velocity, cumulative rotation, displacement

or the magnitude of the contact forces between neighbouringparticles, see for example, [7].

Post-processing of DEM data using wavelet techniques has been found to be effective in investigating

hopper flows. [18; 19; 22]. In this paper, we explore the use ofwavelet techniques to analyse data from

a different physical scenario: a relatively dense sample under planar biaxial strain. This exhibits a strain-

softening type phenomena and a distinct localization post-peak is evident [16]. As a consequence of the

localizations, the post-peak response is not homogeneous throughout the specimen and these simulations are

well-suited to assess whether the wavelet analysis method can effectively capture inhomogeneities in granular

material response.

We focus on the three quantities: the relative variation of the major and minor principal stresses, the

porosity and the coordination number. By splitting the sample into a number of sub-regions we illustrate how

wavelets enable typical scales on which “peak events” in axial stress, porosity and coordination number occur

to be identified. Furthermore, the location of the regions both in strain (time) and space where “peak events”

occur can be found. We show that the strain/space regions of “peak events” compare well with regions of

maximum cumulative rotation of the particles. We also use cross-correlation to show that changes in porosity

are correlated to changes in axial stress on some wavelet scales.

Although the results we present are for an analysis of a DEM simulation in two space dimensions, the

wavelet method can be readily extended to analysis of data from three-dimensional simulations. Since the

wavelet analysis does not require large quantities of data,the method could be used as a pre-processing tool

to identify an appropriate sampling strain and a strain/space region for more data intensive methods to focus

on.
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The paper is organised as follows. In section 2 details of theDEM biaxial compression simulations are

given and in section 3 we give a brief outline of the wavelet transform. The results of the application of wavelet

analysis to local averages for stress, porosity and coordination number are presented in section 4 along with

a comparison with plots of the cumulative particle rotations from the same simulation studies. We end with a

brief summary of the main findings to date in section 5.

2 Simulation details

Data from simulations of biaxial compression tests on densetwo dimensional assemblies of disks, as given in

[16], was considered. The simulations were from two different specimens with different numbers of particles.

Specimen A consisted of 5728 disks in a region initially of width 9 cm and height 18 cm. Specimen B

consisted of 12512 disks in a region initially of width 18cm and height 36cm. The particle radii were uniformly

distributed between 0.075 cm and 0.100 cm with an initial porosity in both cases of 0.01. The specimens

were bounded above and below by rigid walls, while the lateral boundaries were modelled using a “stress

controlled membrane” that mimics the latex membranes typically used in soil mechanics triaxial tests. This

works by identifying the exterior discs and forces are applied to these discs so that the stress applied along

the two vertical boundaries remains constant during the simulation. The specimens were compressed in a

strain controlled simulation, with the top boundary movingdownwards at a constant velocity of 0.02981

cm/s for specimen A and 0.02966 cm/s for specimen B. The simulations were carried out using the PFC 2D

code (Itasca [9]). In both the normal and shear directions the contact was modelled using linear springs with a

stiffness of 5×107 N/m, the density of the disks was assumed to be 2×109kg/m3 (scaled to reduce simulation

time), the global damping coefficient was set to 0.2, and the coefficient of interparticle friction was assumed

to be 0.3, typical of smooth dry near-spherical particles [21]. Further details of the simulation approach can

be found in [14]. We note that density scaling is often used inquasi-static simulations and does not alter

the underlying observed physical phenomena. For example, Thornton [23] scaled his particle densities by a

factor of 1012. O’Sullivan et al. [16] scaled their density values by a factor of 104 for their two dimensional

simulations and these simulations were carefully validated against physical test data. Care was taken to ensure

that the particles were in a “quasi-static” state throughout the simulations presented here (the forces along the

top and bottom boundaries were monitored to ensure that theywere approximately equal). The simulations

for specimen A/B were run to total axial strains of 12% and 15.5% respectively.

As noted above, the simulations have the capacity to producelarge amounts of data. Two different sets of

data for each simulation were recorded. In the first set, the total axial strain was divided into 25 intervals. For

each strain interval the total cumulative rotation for eachparticle in the interval was calculated and saved. The

second set of data consisted of measurements of the porosity, coordination number and principal stress ratio

averaged over specified sub domains. In order to retain some spatial information, 23 circular sub-domains or

“measurement circles” were selected, as illustrated for specimen A in Figure 1. A circular geometry for the
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sub-domains was used as it is an inbuilt function within PFC.Information was output at axial strain intervals

of 8.1152×10−6 for specimen A and axial strain intervals of 5.4374×10−6 for specimen B.

The coordination number,N was calculated using

N =
2Nc

Np
, (1)

whereNc is the number of contacts within the measurement circle andNp is the number of particles. The

average stress tensor̄σi j was calculated from

σ̄i j =
1
V

ΣNc
c=1lc

i f c
j (i, j = x,y) (2)

whereV is the area of the measurement circle,f c
j is the contact force vector at contactc, lc

i = xb
i − xa

i is the

branch vector connecting two contacting particles,a andb, with centroidsxa
i andxb

i . From the stress tensor

the principal stress ratio
σ1−σ3

σ1 +σ3
,

was constructed, whereσ1 and σ3 are the principal stresses calculated from the eigenvaluesof the stress

tensor. The data was saved at equal strain intervals and the position of the measurement circles remained fixed

during loading.

The biaxial simulations considered in this study are analogous to strain controlled triaxial tests typically

used in experimental soil mechanics to analyse soil response characteristics. In a physical test the specimen

is subject to an all round confining pressure,σr and the deviator stress,σa −σr, is measured using a load cell

placed between the specimen and the loading frame. Since thestress ratio,σa−σr
σa+σr

, versus strain is a common

way of representing laboratory data, the analogous quantity was also computed from the simulation. In the

simulation,σr is equivalent to the stress imposed along the vertical boundaries, and the axial stressσa is

determined by integrating the contact forces along the rigid horizontal boundaries.
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Fig. 1 The position of the 23 different measurement circles on Specimen A

3 Wavelet analysis

The wavelet transform is a method of converting a signal or function into another form which either makes

features of the original signal more amenable or allows the original data set to be described more succinctly.

The better known fast Fourier transform allows one to split asignal up according to the amount (weight) of the

signal at each frequency. The wavelet transform is similar,but instead of using global basis functions like sine

and cosine, considers basis functions that are localized inspace. Consequently, wavelet transform techniques,

unlike Fourier transforms, are particularly good for studying signals/time series that are non-stationary and/or

contain sudden jumps. The basis functions,ψ j,k, used by the wavelet analysis are derived from a “mother

wavelet”ψ(t) and are defined by a series ofj dilations andk translations,

ψ j,k(t) =
1
√

a j
0

ψ

(

t − kb0a j
0

a j
0

)

, (3)

wherea0 > 1 is fixed and gives the dilation factor andb = b0a j
0 is the translation step at scalej. Here, we

choosea0 = 2,b0 = 1 so that both dilation and translation are based on powers oftwo. This is known as dyadic

sampling.

The particular kind of wavelet analysis considered is knownas a multiresolution analysis (MRA). This

takes a signal/time series of the formx(tn),n = 1..N and splits it into two sets of subsignals. The first set of

subsignals is known as the detailsD j, and are defined by

D j =
N

∑
k=1

di, jψ j,k (4)

where the weights,di, j are given by

di, j =
N

∑
n=1

x(tn)ψ j,k(tn). (5)
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The details give the amount of the signal at each wavelet scale, whereD1 is the finest scale. The second set of

subsignals is known as the approximations and is defined by

A j = x−
j−1

∑
i=1

Di (6)

Each approximationA j represents the signal with all the finer structure (detail) contained in thej−1 details

filtered out.

There are several different mother wavelets that are commonly used, each has a different shape and is

localized over a different numbers of data points, that is, has different “support”. Which wavelet is appropriate

for a given time series depends on the features that one wishes to extract: if a feature has a particular shape

then a wavelet that mimics that shape will reflect most clearly the characteristics of this feature. For example,

if the signal contains sudden jumps between different levels, then a wavelet that has jumps, such as the Haar

wavelet, will show best how big and where the jumps occur. In DEM simulations of granular processes the

time series tend to be spiky and it is for this reason that the Daubechies wavelet db2 was used. Fuller discussion

of the issues relating to wavelet choice are given in [8; 6; 2].

A thorough guide to the theory underlying wavelets is given in [20]. For a survey of the application of

wavelets to different physical problems see in [2] and for a practical guide to the implementation of wavelet

analysis see [5]. The MRA contained in this paper was performed using MATLAB.

4 Results

4.1 Specimen A

We first consider the simulation results for the axial stressσa−σr
σa+σr

as a function of axial strain. As can be seen

in Figure 2, the response of the specimen is analogous to the response of a slightly dense sand, the stress ratio

increases up to a peak value of 0.376 at an axial strain of 1.2%. Post-peak, there is a decrease in the mobilised

stresses, with a residual stress ratio of about 0.25 being attained between 6% and 12% strain.

In Figure 3 the results of applying an MRA to the stress ratio are presented. In Figure 3 (a) the stress ratio

versus strain is shown whereas each of the detail coefficients,D2 through toD8 are shown in Figures 3 (b)-(h)

respectively. The maximum of the stress ratio can be identified particularly well inD2,D3 andD4 where there

is a sharp transition from a wavelet coefficient that is very small to one that is moderate at a strain value of

1.2%.

In order to investigate whether any spatial structure was visible using the MRA technique, MRA was

applied to the principal stress ratio data for each measurement circle. A typical set of results is shown in

Figure 4, in this case for circle 21. The graph in Figure 4(a) shows the principal stress ratio versus the axial

strain for circle 21. This data shows similar characteristics to the stress ratio from the bulk response (as

illustrated in Figure 2) with a relatively smooth increase to a local maximum value of 0.3435 at an axial strain

value of 1.17% before levelling off to an approximately constant level.
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Fig. 2 Specimen A: Stress ratioσa−σr
σa+σr

versus axial strain.

Detail strain scale space scale space scale
(%) (cm) (mean particle diameters)

D1 0.0008 0.000146 0.0017
D2 0.0016 0.000292 0.0033
D3 0.0032 0.000584 0.0067
D4 0.0065 0.001168 0.0134
D5 0.0130 0.002337 0.0267
D6 0.0260 0.004674 0.0534
D7 0.0519 0.009349 0.1684

Table 1 Strain and space scales related to the detail coefficients for specimen A. The space scale in mean particle diameters is
calculated by dividing the space scale measured in centimetres by the mean particle diameter, 0.0875cm.

Figure 4(b)-(h) show the wavelet detail coefficientsD2 through toD8. Note that the maximum value of

the magnitude of the coefficients for the lower detail coefficients is small suggesting that principal stress ratio

changes on scale ofD2, D3 andD4 are small. As is particularly clear inD7, there are a number of peaks events

that are localized in strain. Each detail corresponds to a different strain scale. Using the strain and the height

of the specimen one can also relate the strain to a space scale, as summarised in Table 1.

Similar peaks were seen in the wavelet analysis for the other22 circles. In order to systematically identify

if the peaks in the details correlated to a particular spatial structure/time structure, for each circle, each detail

D j, was divided into 25 equal intervals in time. For each interval, the maximum absolute value of the detail

coefficient was evaluated. Each circle was then shaded according to this value. Typical examples are shown

in Figure 5 forD3, D7 andD8 and for three different axial strain intervals.

In D3 (and similarly forD2, not shown here), the sample appears fairly homogeneous with little variation

in the shading in the main part of the specimen but significantactivity in the corners. For the strain interval of
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Fig. 3 Specimen A: MRA of the stress ratioσa−σr
σa+σr

. (a) shows the stress ratio versus the strain, (b)-(h) show the detail coefficients
D2 through toD8.

5.31% to 5.80% at scaleD7, Figure 5(d), the shading indicates that there is little spatial structure. However in

the second strain interval, Figure 5(e), the maximum value of the detail coefficientD7 is relatively large along

a line from the top left sloping down to the middle at the the right. In the third strain interval, Figure 5(f), the

sample is again much more homogeneous. At scaleD8 a similar pattern emerges, Figure 5(g)(i).

An MRA analysis of local porosity and coordination number was also carried out. Results are shown in

Figures 6 for the detailD7. Here it is particularly clear that maximum values of the detail coefficientD7

occur along a line from the top left to bottom right and also that the magnitude of the maximum value as a

function of strain: for example, in the first strain increment (5.31% to 5.80%) shown in Figure 6(a) and (d)

the specimen appears much more homogeneous than in the second strain increment (5.80%-6.28%) (Figure 6

(c) and (d)).

These results may be compared with the cumulative rotation as shown in Figure 7 for the same strain

intervals. The cumulative rotation is the net rotation experienced by each particle over the current strain

interval. The cumulative rotations indicate that there is aclear localization of rotational activity, indicative of
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Fig. 4 MRA of the principal stress ratioσ1−σ3
σ1+σ3

for circle 21. (a) shows the principal stress ratio versus the strain, (b)-(h) show
the detail coefficientsD2 through toD8.

a shear band, along a line that passes through circles 13, 21,2, 16 and 6 (see Figure 1) in a position consistent

with the results from the MRA technique.

From Figure 7 it is also clear that the cumulative rotation islarge in the corners of the specimen. This

is a result of the lateral boundary conditions: the flexible membrane condition used in the simulation allows

the particles to move more freely than if rigid boundary conditions were applied. While this means that

localisations are seen more readily it also results in less lateral constraint and the consequent large cumulative

rotation of the particles in the corners. This corner effectcan also be seen in the wavelet coefficientsD3 (see

Figure 5(1)-(c)).

4.2 Specimen B

In order to further test the wavelet technique, data from thesecond larger specimen was considered. This

larger specimen shows a similar kind of response to specimenA: in Figure 8 the stress ratio versus the strain

is shown for specimen B overlaid on the analogous graph for specimen A. The characteristic contact loading

followed by slippage is again visible.

As for specimen A, specimen B was divided into 23 circles. Since the aspect ratio is the same as for

specimen A, these have the same relative position as in specimen A but each circle contains more particles.

The data for principal stress ratio, coordination number and porosity was analysed in an identical manner

to that for specimen A: the MRA was applied and then the total strain interval was divided into 25 equal
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Fig. 5 Sub-regions of the sample shaded according to the magnitudeof the MRA detail coefficients for the principal stress ratio
(specimen A). Three different levels of detail (D3,D7 andD8) and three successive strain increments (5.31%-5.80%, 5.80%-
6.28% and 6.28%-6.77%) are shown.
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Fig. 6 Sub-regions of the sample shaded according to the magnitudeof the MRA detail coefficients for (a-c) porosity and (d-f)
coordination number atD7. The same three strain intervals as shown for the principal stress ratio in Figure 5 (Specimen A) were
used.

intervals and the circles were shaded according to the maximum absolute value of the MRA detail coefficient

for each interval. Since again most activity was at the larger details, onlyD7 is shown. The relation between

the different detail coefficients and strain/space scales is given in Table 2. Figure 9 shows shaded circles

for D7 for stress ratio, porosity and coordination number for three strain intervals. The shading shows that

D7 is not homogeneous in either strain or space, with this time most activity typically occurring (for these

strain intervals) along a line from the top right down to the middle left. These results can be compared to the

localizations shown by the cumulative rotations in Figure 10.

It can be seen that in this particular case the localization passes through a region where the measurement

circles overlap. In order to see if moving the measurement circles significantly changes the results, the 23
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Fig. 7 Particles shaded according to the absolute value of their cumulative rotation for the three successive strain intervals used
in Figures 5 and 6 (Specimen A). These cumulative rotation plots are useful for identifying visually the location of slipplanes
in the specimen.
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Fig. 8 Stress ratioσa−σr
σa+σr

versus axial strain for specimens A and B.

measurement circles for specimen B were moved down and, as shown in Figure 11 and the MRA calculations

repeated. Figure 12 shows shaded circles corresponding to their magnitude of MRA in each axial strain, where

only D7 has been shown. The localization is still visible, althoughthe shading within individual circles is, not

surprisingly, different.



13

Strain increment 0.62% to 1.24%

 

 

0 0.01

(a)

Strain increment 1.86% to 2.48%

 

 

0 0.01

(b)

Strain increment 2.48% to 3.10%

 

 

0 0.01

(c)

Strain increment 0.62% to 1.24%

 

 

0 2 4

x 10
−4

(d)

Strain increment 1.86% to 2.48%

 

 

0 2 4

x 10
−4

(e)

Strain increment 2.48% to 3.10%

 

 

0 2 4

x 10
−4

(f)

Strain increment 0.62% to 1.24%

 

 

0 0.02 0.04

(g)

Strain increment 1.86% to 2.48%

 

 

0 0.02 0.04

(h)

Strain increment 2.48% to 3.10%

 

 

0 0.02 0.04

(i)

Fig. 9 Sub-regions of the sample shaded according to the magnitudeof the MRA detail coefficientD7 for specimen B. Three
different strain intervals, 0.62%-1.24%, 1.86%-2.48% and2.48%-3.10%, are shown. (a-c) stress; (d-f) porosity; (g-i) and coor-
dination number.
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Fig. 10 Particles shaded according to the absolute value of their cumulative rotation for the three different axial strain intervals
used in Figure 9 (Specimen B). The position of the sub-regions are also shown.

Fig. 11 New position of the sub-regions once the measurement circles have been moved down. The cumulative rotations for the
same strain intervals as those shown in Figure 10 are also plotted.
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Fig. 12 Sub-regions shaded according to the maximum absolute valueof the MRA detail coefficientD7 for (a-c) stress; (d-f)
porosity; (e-h) coordination number (Specimen B). The samethree strain intervals used for Figure 9 are shown
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Detail strain scale space scale space scale
(%) (cm) (mean particle diameters)

D1 0.0005 0.000196 0.0022
D2 0.0011 0.000391 0.0045
D3 0.0022 0.000783 0.0089
D4 0.0043 0.001566 0.0179
D5 0.0087 0.003132 0.0358
D6 0.0171 0.006264 0.0716
D7 0.0348 0.012528 0.1432

Table 2 Space and strain scales related to detail coefficients for specimen B. The space scale in mean particle diameters is
calculated by dividing the space scale in centimetres by themean particle diameter, 0.0875cm.

5 Cross Correlations

The wavelet transform picks up local fluctuations in stress ratio, porosity and coordination number at different

scales of strain. In order for a slip plane to form in densely packed materials it is believed that not only should

there be a local increase in the stress but local dilation of the specimen must occur: in the extreme case of

hexagonally packed identical circular disks, the disks cannot roll relative to each other without sliding to a

face-centred cubic configuration first. Since hexagonal packed circles have a packing fraction of 0.907 and

face-centred cubic packed circles have a packing fraction of 0.785 this means that a local dilation of 13%

must occur [1; 12]. Along a slip plane, one might therefore expect to see a correlation between peak events in

the stress ratio and significant changes in the porosity. There is some evidence that this might be the case in

Figure 5 and Figure 6 for specimen A and in Figure 9 for specimen B. In order to investigate further if such

a correlation exists, the cross-correlation of the waveletcoefficients for the porosity and the stress ratio was

carried out. Specifically, for each circlei, the detail coefficientD j consists of a series ofk values. IfSi j(k)

represents the detail coefficients for the stress ratio for circle i and detail levelj andPi j(k) represents the detail

coefficient for the porosity for circlei and detail levelj then the cross-correlationr0 is defined by

r0 =
∑k(Si j(k) − S̄i j)(Pi j(k) − P̄i j)

√

(

∑k Si j(k)2 − nS̄i j
2
)(

∑Pi j(k)2 − nP̄i j
2
)

, (7)

whereS̄i j is the mean value ofSi j(k) andP̄i j is the mean value ofPi j(k).

It might also be that a change in porosity occurs as a result of, but at a later time, than a change to the

stress ratio. This can be investigated by considering the cross-correlation of one series lagged with respect to

the other, specifically for lagd one calculates

rd =
∑k(Si j(k) − S̄i j)(Pi j(k +d) − P̄i j)

√

(

∑k Si j(k)2 − nS̄i j
2
)(

∑Pi j(k +d)2 − nP̄i j
2
)

, (8)

Cross-correlation calculations between the absolute values of the detail coefficients for the stress ratio and

porosity for each circle and for all reasonable lags were carried out. Each circle was then shaded according to

the magnitude of the cross-correlation coefficient, as shown for D5 for specimen A in Figure 13. This Figure

shows that there is moderate cross-correlation between thestress ratio and the porosity along a diagonal line

through circles 13,21,2 and 16, the same line along which theincremental rotation is largest. The values of the



17

Cross correlation between absolute coefficient 
of Sress ratio and Porosity at lag 0, scale D5 
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Fig. 13 Sub-regions shaded according to the absolute value of the cross correlation of stress ratio with porosity forD5 for each
circle. There is no lag.

cross-correlation coefficients were investigated to confirm whether or not they were statistically significant.

In order to do this, a student t-test was applied to the hypothesis that there was no cross-correlation. In order

to apply this test we consider the value of

t =
r(d)

√
n−2

√

1− r(d)2
,

wheren is the number of data points in the time series. For specimenA and detailD7 the n = 117. If, for

example,r(d) = 0.422, then this gives a value oft = 4.99 and we can reject the hypothesis that there is

no cross-correlation with a certainly of more than 99%. Consequently even though the values of the cross-

correlation along the slip plane are not greater than 0.5, the cross-correlation is still significant.

Interestingly, only small values of the cross-correlationcoefficients were found for the lagged details,

indicating that changes of stress ratio and porosity occur effectively simultaneously. Cross-correlation calcu-

lations for specimen B were inconclusive: for specimen B thecircles have a diameter of approximately 60

particle diameters (as compared with 30 particle diametersfor specimen A). Consequently, it may be that

although peak events in a circle are identifiable, some of thedetail required for cross-correlation is averaged

out.
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6 Conclusion

We have shown how an MRA analysis of data from a DEM simulationof two different specimens subject

to a planar biaxial strain can aid in finding the time/strain scales on which significant events occur. This

information could be used to determine how frequently to output data. For example, for Specimen A, key

scales for cross-correlation and for peak events were on thedetail scale ofD5 and above, suggesting that data

could have been reduced by a factor of 32 without losing significant information. Furthermore, by dividing

the specimen down into regions in space and considering intervals in strain we were able to find both when

and where peak events occur. These matched well with resultsfrom a study of the incremental rotation. Using

cross-correlation we were able to show that the geometric property of porosity correlates with the principal

stress ratio along the slip plane for specimen A. The technique can readily be applied to data from simulations

in three space dimensions as well as two space dimensions.
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