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Abstract

Equivariant bifurcation theory has been used extensively to study pattern formation via
symmetry–breaking steady state bifurcation in various physical systems modeled by E(2)–
equivariant partial differential equations. Much attention has focussed on solutions that are
doubly–periodic with respect to a square or hexagonal lattice, for which the bifurcation prob-
lem can be restricted to a finite–dimensional center manifold. Previous studies have used
four– and six–dimensional representations for the square and hexagonal lattice symmetry
groups respectively, which in turn allows the relative stability of squares and rolls or hexagons
and roll to be determined. Here we consider the countably infinite set of eight– and twelve–
dimensional irreducible representations for the square and hexagonal cases, respectively. This
extends earlier relative stability results to include a greater variety of bifurcating planforms,
and also allows the stability of rolls, squares and hexagons to be established to a countably
infinite set of perturbations. In each case we derive the Taylor expansion of the equivari-
ant bifurcation problem and compute the linear, orbital stability of those solution branches
guaranteed to exist by the equivariant branching lemma. In both cases we find that many
of the stability results are established at cubic order in the Taylor expansion, although to
completely determine the stability of certain states, higher order terms are required. For the
hexagonal lattice, all of the solution branches guaranteed by the equivariant branching lemma
are, generically, unstable due to the presence of a quadratic term in the Taylor expansion. For
this reason we consider two special cases: the degenerate bifurcation problem that is obtained
by setting the coefficient of the quadratic term to zero, and the bifurcation problem when an
extra reflection symmetry is present.
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1 Introduction.

Equivariant bifurcation theory [12] is a powerful tool for investigating pattern-forming instabil-
ities in physical systems. This approach distinguishes between those aspects of the bifurcation
problem that are a consequence of symmetry and those aspects that depend on the specifics of
the mathematical model. For example, the general form of the bifurcation equations is derived
using symmetry considerations alone, with details of the mathematical model appearing only in
the numerical values of the coefficients. Consequently, disparate physical systems, that nonethe-
less share the same symmetries, can exhibit strikingly similar behavior. In this paper we extend
previous work on the evolution of symmetry-breaking, steady state bifurcations in parameterized
families of E(2)-equivariant partial differential equations (PDEs), where E(2) is the Euclidean
group of rotations, reflections and translations in a plane. The results, which apply to spatially-
periodic patterns, are based solely on the symmetries of the PDEs and certain features of the
linear instability. They apply to a wide variety of pattern forming systems, e.g., Rayleigh-Bénard
convection [3], models of steady cellular patterns in combustion [26] and solidification [5], and
chemical reaction-diffusion systems in the Turing instability regime [28].

The non-compactness of the Euclidean group presents a fundamental difficulty in applying
standard methods of equivariant bifurcation theory, as described in [12], to bifurcation problems
with E(2) symmetry. (See recent work by Melbourne [20] for a classification and treatment of
bifurcation problems with Euclidean symmetry.) The approach used both here and previously is
to restrict the solutions of the PDEs to those that are spatially doubly-periodic. This restriction
reduces the relevant symmetry group to one that is compact – the translation symmetry of
the problem is reduced from R2 to a torus T2. In this vein, Buzano and Golubitsky [4], and
Golubitsky, Swift and Knobloch [13], considered steady state bifurcation of a spatially uniform
equilibrium state to steady planforms periodic on a hexagonal lattice. Buzano and Golubitsky
used singularity theory to derive the normal form of a degenerate D6+̇T2-equivariant bifurcation
problem on C3; one in which the coefficient of the quadratic term is zero. (In the non-degenerate
problem, all of the primary solution branches bifurcate unstably.) They analyzed a universal
unfolding of this degenerate bifurcation problem to determine all steady state solution branches,
and their stability properties, in a neighborhood of the bifurcation point. Their approach enabled
a rigorous analysis of the relative stability of the primary branches, namely hexagons and rolls
and, in particular, the study of the well-know hysteretic transition between these two states.
Golubitsky, Swift and Knobloch contrasted the degenerate problem investigated by Buzano and
Golubitsky with the case where there is an additional reflection symmetry that kills all even terms
in the bifurcation equations. They also determined stability and branching of steady states by
analyzing an equivariant bifurcation problem posed on C3. The additional symmetry introduces
two more primary branches, called regular triangles and patchwork quilt solutions in [13]; the
latter are shown to be unstable. Both the degenerate problem and the problem with additional
reflection symmetry arise naturally in, and are motivated by, Rayleigh-Bénard convection; the
degenerate bifurcation problem arises when the linearized operator is self-adjoint [23]; and the
Z2 symmetry corresponds to a reflection in the midplane of the fluid layer that is present in the
Boussinesq approximation when the boundary conditions at the top and bottom of the fluid layer
are identical [13].

Bifurcation to steady planforms periodic on a square lattice are considered in [27], where the
general form of the D4+̇T2-equivariant bifurcation problem on C2 is derived. This bifurcation
problem reduces to one with D4 symmetry on R2, which has been studied extensively in the
context of O(2)-equivariant Hopf bifurcation [12]. The primary branches for this bifurcation
problem are squares and rolls, and again the relative stability of these two states can be found in
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terms of the coefficients of the leading terms in the Taylor expansion of the bifurcation equations.
Subsequently, Dionne [7] used entirely group theoretic methods to classify, by symmetry and

spatial periodicity, all spatially-periodic planforms that are guaranteed to exist by the equivariant
branching lemma [12, 29]. (Also see Dionne and Golubitsky [8].) This classification applies to
a broad class of E(2)-equivariant steady state bifurcation problems. In addition to the rolls,
squares and hexagons discussed above, there is a continuum of rectangles, and a countably infinite
set of “super squares”, “anti-squares” and “super hexagons”. All of these planforms bifurcate
simultaneously from the fully symmetric equilibrium state. The branching of super hexagons in
Rayleigh-Bénard convection was investigated by Kirchgässner [16].

In this paper, we re-visit the issue of relative stability of solutions which are doubly-periodic
on hexagonal and square lattices by now considering the remaining irreducible representations of
D6+̇T2 and D4+̇T2, which are on C6 and C4, respectively. This enables us to study the relative
stability of rolls, squares and hexagons to some of the new states shown to exist in [7, 8]. In all
cases, the bifurcation problems associated with the lower-dimensional representations, analyzed
in [4], [13] and [27], are regained by restricting the bifurcation equations to an appropriate
subspace. There are a countably infinite number of representations of D6+̇T2 and D4+̇T2 on C6

and C4, respectively. For each representation there are six planforms guaranteed to exist by the
equivariant branching lemma. In the case of the square lattice these are: rolls (stripes), simple
squares, two different types of rhombs (rectangles), super squares, and anti-squares. In the case of
the hexagonal lattice, the planforms are rolls, simple hexagons, three different rhombs, and super
hexagons. The precise form of the rhombs, super squares, anti-squares and super hexagons differs
from representation to representation. (Some examples of the different planforms are shown in
figures 3 and 4 below.)

Following a similar rationale to Golubitsky, Swift and Knobloch, we proceed by first restricting
the space of solutions of the PDEs to those that are periodic with respect to a square or hexagonal
lattice. Then, within this subspace of solutions, we invoke the center manifold theorem to reduce
the bifurcation problem to a finite-dimensional one

ż = g(z, λ), g : Cs × R → Cs, (1.1)

where s = 4 for the square lattice problem, s = 6 for the hexagonal one, and λ is the bifurcation
parameter.

We treat the square and hexagonal lattice bifurcation problems separately. In each case we
determine the Taylor expansion of the equivariant bifurcation problem to sufficiently high order
so that we can determine the linear (orbital) stability of the planforms to perturbations that lie on
the same lattice. In the case of the hexagonal lattice the Taylor expansion of g contains quadratic
terms that force the solution branches to bifurcate unstably [15]. Thus, as in [13], we consider
the following two problems: (1) the degenerate bifurcation problem in which the coefficient of the
quadratic term is zero, and (2) the bifurcation problem for PDEs that are E(2)⊕Z2-equivariant,
where the extra Z2 reflection symmetry kills the even terms in the Taylor expansion of g. When
the PDEs are E(2)⊕Z2-equivariant, we use the equivariant branching lemma to show that there
are five additional solution branches to those given above. These are: simple triangles (called
“regular triangles” in [13]), rhombs (called the “patchwork quilt” in [13]), anti-hexagons, super
triangles, and anti-triangles. (See figure 5 below for examples of these planforms.) The countable
set of anti-hexagons, super triangles and anti-triangles solution branches is new; all are periodic on
some hexagonal lattice. The presence of the extra Z2 symmetry does not change the bifurcation
problems on square lattices. For each problem, we exploit the symmetry of the solution branch
to determine the eigenvalues of the Jacobian matrix Dg and their multiplicities.
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This study enables us to achieve two ends. Firstly, for a particular irreducible representation,
it allows us to determine the relative stability of the primary branches enumerated above in terms
of the coefficients of the leading terms in the Taylor expansion of (1.1). For example, we determine
the relative stability of the six primary branches known to exist for each representation of D4+̇T2

on C4. Our analysis also allows us to make a number of general statements about (bi)stability
and branching of solutions. These results are especially pertinent to E(2) equivariant PDEs
posed on square or hexagonal domains with periodic boundary conditions. Secondly, since rolls,
simple squares, simple hexagons and simple triangles are primary branches for all of the countably
infinite set of representations, our analysis presents a framework for determining the stability of
these primary branches to a countable set of perturbations in E(2)-equivariant problems. We
find that the perturbation calculations necessary for determining these stability results in specific
applications are no more involved than those executed to determine the relative stability of
squares and rolls. (See [17] for a similar stability computation of simple hexagons in the Bénard
problem.)

Our paper is organized as follows. In section 2 we give a mathematical formulation of the
bifurcation problem, by stating our assumptions about the linear instability and giving the action
of the symmetry group on the space of spatially-periodic solutions on the square and hexagonal
lattices. In section 3 we characterize the solutions guaranteed by the equivariant branching lemma
in terms of their symmetries. The role of “hidden” Euclidean symmetries is described. We also
present some examples of the planforms associated with these primary solution branches. Sec-
tion 4 contains our analysis of the square lattice bifurcation problem. We compute the eigenvalues
of the solution branches in terms of the coefficients of the leading terms in the Taylor expansion of
the general bifurcation problem. From this information we draw a number of conclusions about
the branching and (bi)stability of the solutions. In section 5 we consider two bifurcation problems
associated with the hexagonal lattices. We compute stability of the solutions for the degenerate
bifurcation problem in which the coefficient of the quadratic term is zero. We also briefly dis-
cuss the unfolding of this bifurcation problem and present an example bifurcation diagram that
indicates the secondary bifurcation points on the primary solution branches. We then consider
the bifurcation problem in the case that there is an extra Z2 symmetry. Section 6 contains our
conclusions.

2 Problem Formulation.

2.1 Symmetries of the PDEs.

We consider parameterized families of partial differential equations which we write in evolutionary
form,

∂

∂t
u(x, y, t) = F(u(x, y, t), λ) , (2.1)

where F : X × R → Y is a nonlinear operator between suitably chosen function spaces, X and
Y, and λ ∈ R is the bifurcation parameter. Here u : R2 × Ω × R → Rn is a function in X of a
spatial variable x ∈ R2, (possibly) a bounded spatial variable y ∈ Ω, and time t.

We assume that (2.1) has Euclidean symmetry. The Euclidean group E(2) is the group of
motions in R2 that preserve distances, i.e. rotations, reflections and translations. We denote
elements of E(2) by (h,d) where h ∈ O(2) is an orthogonal transformation (a reflection or
rotation) and d ∈ R2 is a translation. The action of (h,d) ∈ E(2) on x ∈ R2 is defined by

(h,d)x = hx + d . (2.2)
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This action forces the product of (h1,d1) and (h2,d2) to be defined by

(h1,d1)(h2,d2) = (h1h2,d1 + h1d2) . (2.3)

Hence E(2) is the semi-direct product (denoted by +̇) of the groups of orthogonal transformations
and translations; specifically, E(2)=O(2)+̇R2, where R2 is a normal subgroup of E(2).

We assume that the Euclidean group acts on the vector-valued function u : R2×Ω×R → Rn

as follows
γ.u(x, y, t) = Ahu(γ−1x, y, t) (2.4)

for all γ = (h,d) ∈ E(2). Here Ah is an n × n orthogonal matrix; the collection of all Ah is a
representation of O(2) on Rn. Our assumption that (2.1) has Euclidean symmetry means that
F is E(2)–equivariant, i.e.,

γ.F(u(x, y, t), λ) = F(γ.u(x, y, t), λ) . (2.5)

In the remainder of the paper we suppress any possible dependence of u on the bounded spatial
variable y.

The symmetry of the problem is enlarged from E(2) to E(2)⊕Z2 for some of the motivating
applications. For example, in certain Rayleigh-Bénard convection problems Z2 is a reflection in
the mid-plane of the fluid layer [13].

2.2 Linear analysis and the symmetry-breaking bifurcation.

We assume that there is a Euclidean-invariant time-independent solution of (2.1) for all values
of λ. This corresponds to a spatially uniform equilibrium, which, without loss of generality, we
take to be u = 0. We assume that this trivial solution is linearly stable for λ < 0, unstable for
λ > 0, and that λ = 0 corresponds to a symmetry–breaking steady state bifurcation point. At
this bifurcation point, the zero solution is neutrally stable to perturbations in the form of spatial
Fourier modes e2πik·x with k ∈ R2, |k| = kc, where we assume that kc is nonzero. We refer to the
equilibrium solutions {uke2πik·x, |k| = kc}, of the linearized problem at λ = 0, as the critical or
neutral modes, and the circle |k| = kc in the two–dimensional k–space as the critical circle. Here
uk is a constant n-dimensional vector, which we take to be unique, up to scalar multiplication.

Melbourne [20] has recently shown that, generically, there are two distinct classes of symmetry–
breaking, steady state bifurcation problems for systems of E(2)–equivariant PDEs, each of which
can be reduced (locally) to a single PDE. Following [1], Melbourne refers to the two types as
scalar and pseudoscalar, where the scalar action of E(2) on v : R2 → R is v(x) 7→ v(γ−1x),
and the pseudoscalar action is v(x) 7→ det(h)v(γ−1x), for all γ = (h,d) ∈ R2. In this paper,
we consider the scalar case only, i.e., we assume that the kernel of the linearized PDEs trans-
forms under the scalar action of E(2). This is the case for all of the applications mentioned
in the introduction. (See [1] for examples of “pseudo-scalar” PDEs, and a classification of the
spatially–periodic planforms guaranteed by the equivariant branching lemma in this case.)

2.3 Spatially doubly-periodic solutions.

We restrict our bifurcation analysis to solutions u(x, t) of (2.1) that are doubly-periodic with
respect to some square or hexagonal lattice L. Specifically, the planar lattice L is generated by
two linearly independent vectors ℓ1, ℓ2 ∈ R2, i.e.,

L = {n1ℓ1 + n2ℓ2 ∈ R2 : n1, n2 ∈ Z}. (2.6)
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We say that a function u(x, t) is L − periodic if

u(x + ℓ, t) = u(x, t) for all ℓ ∈ L. (2.7)

We assume that L-periodic solutions of (2.1) can be expressed in a Fourier series

uj(x, t) =
∑

k∈L∗

(
ûj,k(t) e2πik·x + c.c.

)
, j = 1, . . . , n , (2.8)

where ûj,k ∈ C is the time-dependent amplitude of the kth Fourier mode. The wave vectors k
lie in the dual lattice to L, denoted L∗. Specifically, L∗ is generated by two linearly independent
vectors k1,k2 ∈ R2, where ki · ℓj = δi,j (the Kronecker delta):

L∗ = {n1k1 + n2k2 ∈ R2 : n1, n2 ∈ Z}. (2.9)

In this paper we consider two cases that satisfy |ℓ1| = |ℓ2|: (1) the square lattice, where the
spatial variable x is scaled so that

ℓ1 = (1, 0), ℓ2 = (0, 1), (2.10)

and (2) the hexagonal lattice, with x scaled so that

ℓ1 =
( 1√

3
, 1

)
, ℓ2 =

( 2√
3
, 0

)
. (2.11)

An important consequence of restricting the solution space of (2.1) to L-periodic functions
is that the spectrum of the linear operator Lλ is rendered discrete. Hence, we expect the center
manifold theorem [19] to apply at the bifurcation point. Specifically, for the problems of interest,
this restriction ensures that there are only a finite number of zero eigenvalues at the bifurcation
point, with all other eigenvalues bounded away from the imaginary axis. The dimension of the
bifurcation problem depends on the number of points k ∈ L∗ that lie on the critical circle of
radius kc. For the square and hexagonal lattices we consider the cases where the critical circle
intersects 8 and 12 points points in L∗ respectively (see Figure 1).

In what follows we identify the kernel of the linear operator L0,

ker(L0) = {u =
s∑

j=1

zje
2πiKj ·xuj + c.c. : zj ∈ C, |Kj | = kc} , (2.12)

with the vector space

V = {v =
s∑

j=1

zje
2πiKj ·x + c.c. : zj ∈ C, |Kj | = kc} ∼= Cs , (2.13)

where the isomorphism between V and Cs is defined by

v 7→ z = (z1, z1, . . . , zs) . (2.14)

As a vector space over the reals, dim(V ) = 2s. As mentioned above, this paper focuses on the
case s = 4 for the square lattice and s = 6 for the hexagonal lattice.

The PDEs, restricted to the center manifold, lead to a system of ordinary differential equations

ż = g(z, λ), g : Cs × R → Cs. (2.15)

Here g(0, λ) = 0 and the Jacobian matrix at the bifurcation point, Dg(0, 0), is the zero matrix.
In the next section we describe the symmetries inherited by the bifurcation problem from the
PDEs. In particular, if Γ is the symmetry group of the bifurcation problem (2.15), then g(z, λ)
satisfies the usual equivariance condition

γg(z, λ) = g(γz, λ), for all γ ∈ Γ . (2.16)
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2.4 Symmetry of the restricted bifurcation problem.

The symmetry of the PDEs (2.1), reformulated in the space XL of L-periodic functions, is a
compact group Γ. Specifically, Γ is the largest group, constructed from E(2), that preserves XL,
i.e., γ.XL ⊂ XL for all γ ∈ Γ. As with E(2), Γ has a semi-direct product structure, namely
Γ = H+̇T2, where H ⊂O(2) is the finite group of rotations and reflections that preserve the
lattice and T2 ≃ R2/L is the torus of translations. The discrete group H is called the holohedry

of the lattice; in the case of the square lattice, H = D4, while H = D6 for the hexagonal lattice.
(Recall that Dn, the dihedral group of order 2n, is the group of symmetries of a regular n-gon.)
In this paper we also consider the case where Γ is enlarged to Γ ⊕ Z2. In the remainder of the
paper, let Γs ≡ D4+̇T2 and Γh ≡ D6+̇T2, while Γ, without a subscript, refers to Γs(⊕Z2) and/or
Γh(⊕Z2).

Square lattice case.

For doubly-periodic solutions on a square lattice we take the generators of the dual lattice L∗ to
be

k1 = (1, 0) and k2 = (0, 1) . (2.17)

Thus the wave vectors k ∈ L∗ in (2.8) have the form (n1, n2), where n1 and n2 are integers.
Moreover, we assume that lengths in the original PDEs have been scaled so that kc =

√
α2 + β2

for some integers α and β. Alternatively, we could have held kc fixed and scaled the lattice L.
The relevant representation of the symmetry group Γs = D4+̇T2 is determined by considering

its action on the complex amplitudes zj of the critical Fourier modes in (2.13). The irreducible
representations of Γs are either 4-dimensional or 8-dimensional, in which case there are two or
four complex Fourier amplitudes, respectively. Examples of these two different cases are depicted
in Figure 1a for kc = 1 and kc =

√
3, i.e., for (α, β) = (1, 0) and (α, β) = (2, 1). Note that

it is also possible for the critical circle to intersect more than eight points in the dual lattice,
e.g., if kc = 5 then there are four (real) Fourier modes associated with (α, β) = (5, 0) and eight
associated with (α, β) = (4, 3). We do not consider these special cases here. (See Crawford [6]
for an application of these higher-dimensional reducible representations.)

Following Dionne and Golubitsky [8] we require the representation of Γs to be not only
irreducible, but also translation free. A representation is translation free if there are no (non-
trivial) translations in Γs that act trivially on (2.13). This requirement ensures that we have found
the finest lattice L that supports the neutral modes (2.13) [8]. Table 1 gives the values of the
critical wave vectors for the translation free (absolutely) irreducible representations, henceforth
simply called representations. Note that there is just one four-dimensional representation. It is
the one that applies when the periodicity of functions in XL coincides with the wavelength of the
instability, i.e. kc = |k1| = |k2|. We focus on the eight-dimensional representations associated
with the integer pairs (α, β) where α > β > 0 (see Figure 2a). The additional requirements in
Table 1, namely that α and β are relatively prime and not both odd, ensure that the representation
is translation free, and hence that the set of all critical modes (2.13) cannot be supported by a
finer lattice L [8].

D4 ⊂ Γs is generated by a counterclockwise rotation Rπ/2 by π/2 about the origin and a
reflection τx1

through the x1-axis. The elements of T2 ⊂ Γs are denoted by Θ = (θ1, θ2), where
θ1, θ2 ∈ [0, 1). The action of Γs on V for s = 4 in Table 1 induces an action of Γs on C4 generated
by (cf. Figure 2a)

Rπ/2(z) = (z2, z1, z4, z3) , (2.18)

τx1
(z) = (z4, z3, z2, z1) , (2.19)
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Table 1: Translation Free (absolutely) Irreducible Representations for the Square Lattice.

dim(V ) K′s
4 K1 = k1 = (1, 0)

(s=2) K2 = k2 = (0, 1)

8 K1 = αk1 + βk2 = (α, β)
(s=4) K2 = −βk1 + αk2 = (−β, α)

K3 = βk1 + αk2 = (β, α)
K4 = −αk1 + βk2 = (−α, β)
α, β ∈ Z, α > β > 0,
α and β are relatively prime and not both odd.

and

Θ(z) = (e−2πiK1·Θz1, e
−2πiK2·Θz2, e

−2πiK3·Θz3, e
−2πiK4·Θz4) (2.20)

= (e−2πi(αθ1+βθ2)z1, e
−2πi(−βθ1+αθ2)z2, e

−2πi(βθ1+αθ2)z3, e
−2πi(−αθ1+βθ2)z4) .

Hexagonal lattice case.

For doubly-periodic solutions on a hexagonal lattice the generators of the dual lattice L∗ are

k1 = (0, 1) and k2 = (
√

3/2,−1/2) . (2.21)

We assume that lengths in the original PDEs have been scaled so that kc =
√

α2 + β2 − αβ for
some integers α and β.

The relevant representation of the symmetry group Γh = D6+̇T2 is determined by considering
its action on the complex amplitudes of the critical Fourier modes at the bifurcation point. The
irreducible representations of Γh are either 6-dimensional or 12-dimensional. Examples of these
two different cases are depicted in Figure 1b for kc = 1 and kc =

√
7, i.e., for (α, β) = (1, 0)

and (α, β) = (3, 2). The values of the critical wave vectors for the translation free (absolutely)
irreducible representations are summarized in Table 2. Note that there is just one six-dimensional
representation which is associated with the case where the periodicity of functions in XL coincides
with the wavelength of the instability, i.e. kc = |k1| = |k2|. The bifurcation problem associated
with this representation of Γh has been studied extensively [4, 13]. In this paper we focus on
the twelve-dimensional representations associated with the integer pairs (α, β), α > β > α/2 > 0
(see Figure 2b). The restrictions that α and β be relatively prime and that α+β not be divisible
by 3 ensure that the representations are translation free [8].

D6 ⊂ Γh is generated by a counterclockwise rotation Rπ/3 by π/3 and a reflection τx1
through

the x1-axis. The elements of T2 ⊂ Γh are denoted by Θ = θ1ℓ1 + θ2ℓ2, where ℓ1 = (1/
√

3, 1),
ℓ2 = (2/

√
3, 0), and θ1, θ2 ∈ [0, 1). The action of Γh on V for s = 6 in Table 2 induces an action

of Γh on C6 generated by (cf. Figure 2b)

Rπ/3(z) = (z2, z3, z1, z5, z6, z4) , (2.22)

τx1
(z) = (z6, z5, z4, z3, z2, z1) (2.23)

and

Θ(z) = (e−2πi(αθ1+βθ2)z1, e
−2πi((−α+β)θ1−αθ2)z2, e

−2πi(−βθ1+(α−β)θ2)z3,

e−2πi(αθ1+(α−β)θ2)z4, e
−2πi(−βθ1−αθ2)z5, e

−2πi((−α+β)θ1+βθ2)z6) . (2.24)
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Table 2: Translation Free (absolutely) Irreducible Representations for the Hexagonal Lattice.

dim(V ) K′s
6 K1 = k1 = (0, 1)

s=3 K2 = k2 = (
√

3/2,−1/2)

K3 = −k1 − k2 = (−
√

3/2,−1/2)

12 K1 = αk1 + βk2

s=6 K2 = (−α + β)k1 − αk2

K3 = −βk1 + (α − β)k2

K4 = αk1 + (α − β)k2

K5 = −βk1 − αk2

K6 = (−α + β)k1 + βk2

α, β ∈ Z, α > β > α/2 > 0,
α and β are relatvely prime and α + β is not a multiple of 3.

Additional Z2 symmetry.

In this paper we consider the possibility that there is an additional Z2 symmetry so that the
bifurcation problems are equivariant with respect to (H+̇T2) ⊕ Z2, where H = D4 or H = D6.
We assume that κ ∈ Z2 takes v to −v, where v ∈ V is given by (2.13). This induces the following
action on z ∈ Cs:

κ(z) = −z . (2.25)

The additional reflection symmetry has no effect on the bifurcation problems associated with
the square lattice. This observation, for the four-dimensional representation of (D4+̇T2)⊕Z2, is
made in [25]. The case of the eight-dimensional representations in Table 1 is the same. Specifically,
we note that the translation (1

2 , 1
2 ) ∈ T2 in (2.20) acts on z in the same way as the reflection κ

in (2.25). Hence, we need only consider the effect of the additional reflection for the hexagonal
lattice bifurcation problems.

3 Group Theoretic Results.

3.1 Axial subgroups.

In this paper, we consider solution branches that are guaranteed to exist by the equivariant
branching lemma [12, 29]. This lemma provides an algebraic criterion for existence of solution
branches associated with particular subgroups of Γ. Specifically, we specify the symmetry of an
equilibrium solution z ∈ Cs by the isotropy subgroup Σz ⊂ Γ, where

Σz = {σ ∈ Γ : σz = z} . (3.1)

A subgroup Σ ⊂ Γ is an isotropy subgroup if there exists a z ∈ Cs for which Σz = Σ. Associated
with each isotropy subgroup Σ ⊂ Γ is a vector subspace of Cs, called the fixed point subspace
and denoted Fix(Σ), where

Fix(Σ) = {z ∈ Cs : σz = z, for all σ ∈ Σ} . (3.2)

The equivariant branching lemma states that provided certain (generic) conditions are satisfied
by the bifurcation, there exists a branch of equilibrium solutions, bifurcating from the origin
at λ = 0, with symmetry Σ for each isotropy subgroup Σ ⊂ Γ that satisfies dim(Fix(Σ))=1.
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Table 3: Axial subgroups Σ (up to conjugacy) of Γs. The generators of Γs are given in (2.22)-
(2.24).

Nomenclature Σ Generators of Σ Fix(Σ)

Super Squares (SuSα,β) D4 Rπ/2, τx1
z1 = z2 = z3 = z4 ∈ R

Anti-squares (ASα,β) D̃4 Rπ/2, (τx1
, (1

2 , 1
2 )) z1 = z2 = −z3 = −z4 ∈ R

Rolls (R) Zc
2+̇S1 Rπ, S1 (a) z1 ∈ R, z2 = z3 = z4 = 0

Simple Squares (SiS) Z4+̇S1,2 Rπ/2, S1,2
(b) z1 = z2 ∈ R, z3 = z4 = 0

Rhombs (Rhs1,α,β) Dd
2+̇S1,3 Rπ, τx1

R3
π/2, S1,3

(c) z1 = z3 ∈ R, z2 = z4 = 0

Rhombs (Rhs2,α,β) Dx
2+̇S1,4 Rπ, τx1

, S1,4
(d) z1 = z4 ∈ R, z2 = z3 = 0

(a) S1 = {(βs,−αs) ∈ T2 : s ∈ R} .
(b) S1,2 is generated by ( α

α2+β2 , β
α2+β2 ), ( −β

α2+β2 , α
α2+β2 ) ∈ T2.

(c) S1,3 is generated by ( α
α2−β2 , −β

α2−β2 ), ( −β
α2−β2 , α

α2−β2 ) ∈ T2.
(d) S1,4 is generated by ( 1

2α , 1
2β ), (−1

2α , 1
2β ) ∈ T2.

Following [11], we refer to isotropy subgroups with 1-dimensional fixed point spaces as axial and
the associated spatially doubly-periodic solutions as axial planforms.

This section gives all axial subgroups for the 8-dimensional representations of Γs, and for the
12-dimensional representations of Γh and Γh⊕Z2. The axial subgroups of Γs and Γh are obtained
from the classification of axial planforms given by Dionne and Golubitsky [8], while the results
for Γh⊕Z2 are new. We follow the convention of identifying all solution branches that are on the
group orbit Γzλ of a particular branch zλ. Thus we classify isotropy subgroups of Γ by conjugacy
class since the isotropy of a point zλ ∈ Cs is conjugate to the isotropy of a point on its group
orbit; specifically, Σγzλ

= γΣzλ
γ−1.

Dionne and Golubitsky [8] considered rhombic, square and hexagonal lattices, and determined
the symmetry of the axial planforms on the finest lattice that supports the solution. This was
accomplished by insisting that the isotropy subgroups be translation-free. Here we must ex-
tend their results to the case where the lattice is fixed and hence the representation of Γ given.
In this case, the same solutions are obtained, but the isotropy subgroups are not necessarily
translation-free. The pure translation symmetries of a solution branch play a role in determin-
ing the eigenvalue structure of the Jacobian matrix evaluated on that solution branch (see, for
example, Section 4.2).

Square lattice case.

We list in Table 3 the six axial subgroups of Γs acting on C4 together with their generators, and
their one-dimensional fixed point subspaces. Note that the pure translation subgroups, denoted
S1, S1,2, S1,3 and S1,4, depend on the values α and β and hence are not the same for all 8-
dimensional representations. Associated with these fixed point subspaces are planforms that are
periodic with respect to a finer lattice than L. For instance, the rolls are periodic on a finer
one-dimensional lattice, while each type of rhombs solution is periodic on a finer rhombic lattice,
and simple squares are periodic on a finer square lattice.

Hexagonal lattice cases.

Table 4 lists the axial subgroups, up to conjugacy, of Γh acting on C6 together with their gen-
erators, and their fixed point subspaces. The axial subgroups associated with Γh ⊕ Z2 are listed

10



Table 4: Axial subgroups Σ (up to conjugacy) of Γh and Γh ⊕Z2. The generators of Γh are given
in (2.18)-(2.20), and the action of κ ∈ Z2 is given by (2.25).

Nomenclature Σ Generators of Σ (a) Fix(Σ)

Super Hexagons (SuH±
α,β) D6 Rπ/3, τx1

z1 = z2 = z3 = z4 = z5 = z6 ∈ R±

Rolls (R) Zc
2+̇S1 Rπ, S1 z1 ∈ R, z2 = z3 = z4 = z5 = z6 = 0

Rhombs (Rhh1,α,β) Dn
2 +̇S1,4 Rπ, τnRπ/3τx1

, S1,4 z1 = z4 ∈ R, z2 = z3 = z5 = z6 = 0

Rhombs (Rhh2,α,β) Dm
2 +̇S1,5 Rπ, R5

π/3τx1
, S1,5 z1 = z5 ∈ R, z2 = z3 = z4 = z6 = 0

Rhombs (Rhh3,α,β) Dx
2+̇S1,6 Rπ, τx1

, S1,6 z1 = z6 ∈ R, z2 = z3 = z4 = z5 = 0
Simple Hexagons (SiH±) Z6+̇S1,2,3 Rπ/3, S1,2,3 z1 = z2 = z3 ∈ R±, z4 = z5 = z6 = 0
(a) The generators of S1, S1,4, S1,5, S1,6, and S1,2,3 are given in Table 6.

Table 5: Additional axial subgroups Σ (up to conjugacy) of Γh ⊕ Z2. Also see Table 4.

Nomenclature Σ Generators of Σ (a) Fix(Σ)

Anti-triangles (ATα,β) D6 ((Rπ/3, 0), κ), ((τx1
, 0), κ) z1 = z2 = z3 = −z4 = −z5 = −z6 ∈ Ri

Super Triangles (SuTα,β) D6 ((Rπ/3, 0), κ), ((τx1
, 0), Id) z1 = z2 = z3 = z4 = z5 = z6 ∈ Ri

Anti-hexagons (AHα,β) D6 ((Rπ/3, 0), Id), ((τx1
, 0), κ) z1 = z2 = z3 = −z4 = −z5 = −z6 ∈ R

Simple Triangles (SiT) Z6+̇S1,2,3 ((Rπ/3, 0), κ), S1,2,3 z1 = z2 = z3 ∈ Ri, z4 = z5 = z6 = 0

Rhombs (Rhh0) Zc
2+̇S1,2 ((Rπ, 0), Id), S1,2 z1, z2 ∈ R (b), z3 = z4 = z5 = z6 = 0

(a) The generators of S1,2,3 and S1,2 are given in Table 6.
(b) A hidden reflection further fixes z1 = z2.

in Tables 4 and 5. In the case of Γh, there are two branches each of simple and super hexagons,
which differ by the sign of z1, e.g. SuH+ has z1 > 0 while SuH− has z1 < 0. The equivariant
branching lemma applies to the six axial subgroups in the case that Γ = Γh and ten isotropy
subgroups in the case that there is an extra Z2 symmetry. An eleventh solution branch, rhombs
Rhh0, is known to exist from an analysis of the six-dimensional representation of Γh ⊕ Z2 pre-
sented in [13], where it is called the “pathwork quilt”. This state is discussed further in the next
subsection on hidden symmetries; a hidden reflection fixes z1 = z2.

Table 6 indicates how some of the isotropy subgroups in Table 4 are modified by the extra Z2

symmetry. In this table we denote elements of Γh = D6+̇T2 by (h,Θ) and elements of Γh ⊕ Z2

by ((h,Θ), Id) and ((h,Θ), κ). Here h ∈ D6, Θ ∈ T2 and Z2 = {Id, κ}, where Id specifies the
identity element of a group.

3.2 Hidden symmetries.

The computations, in sections 4 and 5, of the equivariant bifurcation equations take certain
hidden symmetries into account. The hidden symmetries are elements of O(2), which are not in
the holohedry of the lattice, but which nonetheless leave invariant certain fixed point subspaces
of the bifurcation problem restricted to the lattice. The hidden symmetries act only on these
fixed point subspaces and may place some additional restrictions on the form of the bifurcation
problem (2.15). (See Crawford [6] for a detailed treatment of hidden Euclidean symmetries in Γs

mode interaction problems.)
Dionne and Golubitsky [8] classified, by symmetry, the spatially doubly-periodic axial plan-

forms corresponding to translation-free isotropy subgroups. They showed that any planform
corresponding to an isotropy subgroup containing nontrivial translations is in fact supported by
a finer planar lattice. In the context of this finer lattice, the isotropy subgroup contains all the
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Table 6: Generators of subgroups S1 and S∗ of Γh and Γh ⊕ Z2.
S1,S∗ Generators of S1,S∗ ⊂ Γh Generators of S1,S∗ ⊂ Γh ⊕ Z2

S1 (Id, βs ℓ1 − αs ℓ2), where s ∈ R ((Id, βs ℓ1 + ( 1
2β − αs) ℓ2), κ), where s ∈ R

S1,4 (Id, α−β
α2−2αβ ℓ1 − 1

α−2β ℓ2), ((Id, α−2β
2(α2−2αβ) ℓ1), κ),

(Id, −β
α2−2αβ

ℓ1 + 1
α−2β ℓ2) ((Id, 1

2(α−2β) (ℓ1 − 2ℓ2)), κ)

S1,5 (Id, α
α2−β2 ℓ1 − β

α2−β2 ℓ2), ((Id, 1
2(α−β) (ℓ1 − ℓ2)), κ)

(Id, β
α2−β2 ℓ1 − α

α2−β2 ℓ2) ((Id, 1
2(α+β) (ℓ1 + ℓ2)), κ)

S1,6 (Id, 1
2α−β ℓ1 + α−β

2αβ−β2 ℓ2), ((Id, 1
2β ℓ2), κ),

(Id, −1
2α−β ℓ1 + α

2αβ−β2 ℓ2) ((Id, 1
2(2α−β) (2ℓ1 − ℓ2)), κ).

S1,2,3 (Id, α
α2−αβ+β2 ℓ1 − α−β

α2−αβ+β2 ℓ2), ((Id, α
α2−αβ+β2 ℓ1 − α−β

α2−αβ+β2 ℓ2), Id),

(Id, β
α2−αβ+β2 ℓ1 − α

α2−αβ+β2 ℓ2) ((Id, β
α2−αβ+β2 ℓ1 − α

α2−αβ+β2 ℓ2), Id)

S1,2 not applicable ((Id, α+β
2(α2−αβ+β2)

ℓ1 − 2α−β
2(α2−αβ+β2)

ℓ2), κ),

((Id, α−β
2(α2−αβ+β2) ℓ1 + β

2(α2−αβ+β2) ℓ2), κ)

possible symmetries of the planform – there are no hidden symmetries. In the case of the hexago-
nal (square) lattice, the finer lattices are either one-dimensional, rhombic, or hexagonal (square).
The finer rhombic, square, and hexagonal lattices are invariant under D2, D4, and D6 subgroups
of O(2), respectively. Solutions supported by these finer lattices lie in four– or six–dimensional
fixed-point subspaces of the appropriate Γs− or Γh−equivariant bifurcation problems. For exam-
ple, the four-dimensional subspace {z = (z1, z2, 0, 0) : z1, z2 ∈ C} of the square lattice problem
contains all solutions that are periodic on the finer square lattice. This subspace is invariant
under Z4 ⊂ Γs. A hidden reflection in E(2) enlarges Z4 to D4. Similarly, a hidden reflection
enlarges Z6 ⊂ Γh to D6 ⊂O(2) for the six-dimensional subspace of solutions that are periodic on
a finer hexagonal lattice.

We determine the hidden symmetries for the non-translation-free axial planforms in Tables 3,
4 and 5 by considering their symmetries on the finer lattice (see [8, 13]). For example, according
to Table 4, simple hexagons have Z6 symmetry, while on the finest lattice that supports this
planform they have D6 symmetry; it is the hidden reflection mentioned above that enlarges Z6

to D6. We summarize the hidden symmetries of the axial planforms as follows:

(i) Simple hexagons (SiH±) have D6 symmetry where D6 is generated by Rπ/3 ∈ Γh and a
(hidden) reflection through the line containing the vector βℓ1−αℓ2, denoted by τ̃x1

∈ E(2).
This reflection acts as follows

τ̃x1
(z1, z2, z3, 0, 0, 0) = (z1, z3, z2, 0, 0, 0). (3.3)

(ii) Simple triangles (SiT) have D6 symmetry where D6 is generated by ((Rπ/3, 0), κ) ∈ Γh ⊕Z2

and the (hidden) reflection ((τ̃x1
, 0), κ).

(iii) Rhombs (Rhh0) have D2 symmetry where D2 is generated by ((Rπ, 0), Id) ∈ Γh ⊕ Z2 and
the (hidden) reflection τ̃x1

Rπ/3.

(iv) Simple squares (SiS) have D4 symmetry where D4 is generated by Rπ/2 ∈ Γs and a (hidden)
reflection τ̃x1

that acts as follows:

τ̃x1
(z1, z2, 0, 0) = (z1, z2, 0, 0). (3.4)

12



Table 7: Characterization of the rhombs.
Lattice Rhombs aspect ratio angle

Square Rhs1,α,β
α−β
α+β cos−1

(
2αβ

α2+β2

)

Square Rhs2,α,β
β
α cos−1

(
β2−α2

α2+β2

)

Hexagonal Rhh1,α,β
2β−α√

3 α
cos−1

(
α2+2αβ−2β2

2(α2−αβ+β2)

)

Hexagonal Rhh2,α,β

√
3 (α−β)
α+β cos−1

(
α2−4αβ+β2

2(α2−αβ+β2)

)

Hexagonal Rhh3,α,β
2α−β√

3 β
cos−1

(
− 2α2−2αβ−β2

2(α2−αβ+β2)

)

Hexagonal Rhh0
1√
3

2π
3

(v) Each roll (R) (square or hexagonal case) has D2+̇S1 symmetry where D2 is generated by
Rπ and τ̃x1

.

We find that the hidden reflection (3.3) places additional restrictions on the form of the Γh

and Γh ⊕ Z2 bifurcation problems. The hidden reflection (3.4) does not change the general form
of the Γs-equivariant bifurcation problem.

3.3 Axial planforms.

In this section we present examples of the planforms associated with the axial subgroups. Specif-
ically, for each conjugacy class of subgroups Σ ⊂ Γ that fixes a one-dimensional subspace, we
present a grey scale plot of the function v(x) in (2.13) for a representative point z ∈Fix(Σ).

Figure 3 presents examples of square lattice planforms associated with the axial subgroups
listed in Table 3 in the case that (α, β) = (2, 1). The rhombic, super square and anti-square
states depend on (α, β). The rolls and simple squares are, up to scaling of the spatial variable x,
the same for each 8-dimensional representation of Γs.

Examples of planforms associated with the axial subgroups of Γh and Γh⊕Z2 listed in Tables 4
and 5 are depicted in Figures 4 and 5. In the case of Γh ⊕Z2, the SiH− (SuH−) branch of simple
(super) hexagons is on the group orbit of the SiH+ (SuH+) branch since κ(z) = −z. Note that
the only states that are the same (after rescaling x) for every value of α and β are the rolls,
the rhombs Rhh0, the simple hexagons, and the simple triangles. Rolls are the only state that is
common to both the square and the hexagonal lattices.

Only the super- and the anti-states of Tables 3, 4 and 5 are characterized by translation
free isotropy subgroups. Hence these are the only axial planforms with (smallest) periodicity
determined by ℓ1 and ℓ2. All of the other axial planforms are periodic on a finer square, hexagonal,
or rhombic lattice. In particular, the wavelength of their periodicity is 1/kc, where x has been
scaled so that kc =

√
α2 + β2 for square lattice states and kc =

√
α2 + β2 − αβ for hexagonal

lattice states. Note that while the periodicity of super- and anti-states is given by |ℓ1| = |ℓ2| ≫
1/kc, the lengthscale 1/kc is also evident in the patterns. This lengthscale shows up as small
scale structure in the patterns; compare, for example, simple hexagons with super hexagons in
Figure 4.

Finally, we note that there is a countable set of rhombs that are periodic on square or hexag-
onal lattices. In Table 7 we characterize the rhombs on the square and hexagonal lattices in two
different ways. We give the angle between the wave vectors associated with the critical modes,
e.g. the angle between K1 and K3 for Rhs1,α,β. We also give the aspect ratio of the rectangles
evident in the rhomb patterns in Figures 3-5.
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4 Stability Results: Square Lattice.

In this section we compute the linear stability, at bifurcation, of the six axial planforms listed in
Table 3. We do this within the center manifold framework of a general Γs-equivariant bifurcation
problem ż = g(z, λ), g : C4 × R → C4. An equilibrium solution branch zλ of the bifurcation
problem is linearly, orbitally stable if all eigenvalues of the Jacobian matrix Dg(zλ, λ), not forced
by symmetry to be zero, have negative real part for λ sufficiently close to zero. If any eigenvalue
has positive real part then the planform is unstable. Implicit in this is that the stability is only
determined with respect to perturbations which can be supported by the lattice.

4.1 D4+̇T2–equivariant bifurcation problem.

We begin by considering the Γs-equivariant bifurcation problem ż = g(z, λ), g : C4 × R → C4.
We assume that local to the bifurcation point, z = 0, λ = 0, g can be expanded in a Taylor
series about z = 0. This series is determined to sufficient order that we are subsequently able to
evaluate the sign of the real part of each eigenvalue.

The equivariance condition (2.16) for Γ = Γs is satisfied if (see, for example, Appendix A.3
in [6])

ż1 = g1(z1, z2, z3, z4)

ż2 = g1(z2, z1, z4, z3)

ż3 = g1(z3, z4, z1, z2) (4.1)

ż4 = g1(z4, z3, z2, z1) ,

where
g1(z) = g1(z̄) , (4.2)

and
Θ

(
z̄1g1(z)

)
= z̄1g1(z) , for all Θ ∈ T2 . (4.3)

Equivariance with respect to D4 ⊂ Γs is guaranteed by conditions (4.1) and (4.2), while equivari-
ance with respect to T2 ⊂ Γs is equivalent to condition (4.3), i.e., to z1g1(z) being an invariant
function of the T2-action. We proceed by finding the most general T2-invariant polynomial
h = z̄1g1(z); the details of this calculation are relegated to the appendix. The T2-invariant func-
tion h is then used to find the leading order terms in the equivariant bifurcation problem. We
find that

ż1 = z1f(|z1|2, |z2|2, |z3|2, |z4|2) + b1z̄
β−1
1 z̄α

2 zα
3 zβ

4 + b2z̄
α−1
1 zβ

2 zβ
3 z̄α

4 + O(2(α + β)), (4.4)

where it follows from (4.2) that f is a real-valued function of its arguments and that b1, b2 ∈
R. Condition (4.1) determines the remaining components of g from g1. Note that the hidden
symmetry (3.4) is automatically satisfied since g1(z1, z2, 0, 0) = g1(z1, z2, 0, 0).

The cubic truncation of (4.4) is given by

ż1 = λz1 + z1(a1|z1|2 + a2|z2|2 + a3|z3|2 + a4|z4|2) + O(‖ z ‖5) , (4.5)

where the coefficients are real, and we assume, without loss of generality, that time is scaled so
that the linear term is λz.
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4.2 Stability calculations.

To compute the eigenvalues that determine the orbital stability of the axial planforms we exploit
the fact that their symmetry imposes severe restrictions on the 8 × 8 (real) Jacobian matrix Dg
evaluated on the solution branch. Described briefly below are the two approaches that we use
for this computation, which are both standard (see [12]).

The first approach uses the observation that the Jacobian matrix evaluated on a solution
branch zλ commutes with each element σ ∈ Σzλ

. For example, the Jacobian matrix Dg evaluated
on the rolls solution branch commutes with the linear transformations that generate Σ = Zc

2+̇S1

in Table 3, namely
z 7→ z (4.6)

and
z 7→ (z1, e

2πi(α2+β2)sz2, e
2πi(α2−β2)sz3, e

4πiαβsz4), s ∈ R. (4.7)

We choose an ordering of the coordinates on R8 to be (x1, x2, x3, x4, y1, y2, y3, y4), where xj and
yj are the real and imaginary parts of zj , respectively. We let gj = gr

j + igi
j , where the r and i

superscripts specify real and imaginary parts, so that ẋj = gr
j and ẏj = gi

j , j = 1, ..., 4. It follows
from the observation that Dg, evaluated on the rolls solution branch, must commute with the
above transformations that Dg is diagonal and three of the eigenvalues have multiplicity two.
Moreover, the group orbit of rolls is one-dimensional so there is a zero eigenvalue associated with
translation along the group orbit. The null direction is determined by computing the tangent
vector to the group orbit, i.e.,

∂

∂θ1

∣∣∣
Θ=0

Θ(x1, 0, 0, 0) = (−2πiαx1, 0, 0, 0), x1 ∈ R , (4.8)

where the action of Θ on C4 is given by (2.20). It follows that (0, 0, 0, 0, 1, 0, 0, 0) is a null

eigenvector of Dg so that the eigenvalue
∂gi

1

∂y1
is zero.

The second approach to computing the eigenvalues relies on forming the isotypic decomposition

of C4 for the isotropy subgroup Σzλ
of a solution zλ [12]. This decomposition determines coordi-

nates that block-diagonalize Dg. The isotypic decomposition proceeds by first decomposing C4

into Σ-irreducible subspaces Vj so that C4 = V0⊕V1⊕· · ·⊕Vℓ. (A representation is Σ-irreducible
if the only Σ-invariant subspace of Vj, other than {0}, is Vj itself.) The isotypic components
Wj are then formed by combining the irreducible subspaces that are Σ-isomorphic. (Two Σ-
irreducible subspaces are Σ-isomorphic if there exists a linear isomorphic mapping between them
which commutes with the action of Σ.) The isotypic decomposition is C4 = W0 ⊕W1 ⊕· · ·⊕Wk,
k ≤ ℓ, where the Wj are uniquely determined.

For example the isotypic decomposition of C4 for Σ = D4[Rπ/2, τx1
], which applies to the

super squares state, is

C4 = R{(1, 1, 1, 1)} ⊕ R{(1, 1,−1,−1)} ⊕ R{(1,−1, 1,−1)} ⊕ R{(1,−1,−1, 1)}
⊕R{(i, i, i, i), (−i, i,−i, i), (i, 0, 0, i), (0, i,−i, 0)} . (4.9)

The one-dimensional isotypic components immediately determine four of the eigenvalues of Dg
evaluated on the super squares solution branch; these are

∂gr
1

∂x1
+

∂gr
1

∂x2
+

∂gr
1

∂x3
+

∂gr
1

∂x4
,

∂gr
1

∂x1
+

∂gr
1

∂x2
− ∂gr

1

∂x3
− ∂gr

1

∂x4
,

∂gr
1

∂x1
− ∂gr

1

∂x2
+

∂gr
1

∂x3
− ∂gr

1

∂x4
,

∂gr
1

∂x1
− ∂gr

1

∂x2
− ∂gr

1

∂x3
+

∂gr
1

∂x4
. (4.10)
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Additional restrictions are placed on the matrix obtained by restricting Dg to the four-dimensional
isotypic component W4. Specifically, Dg|W4

commutes with the action of D4 on W4
∼= R4, where

W4 is the direct sum of two isomorphic D4-absolutely irreducible subspaces. (Recall that a rep-
resentation of a group Γ acts absolutely irreducibly on a space V if the only linear maps on V
commuting with Γ are multiples of the identity.) It follows that A = Dg|W4

has the form

(
aI2 bI2

cI2 dI2

)
, (4.11)

where I2 is the 2 × 2 identity matrix and a, b, c, d ∈ R. Each eigenvalue in this matrix has
multiplicity two. Moreover, two of the eigenvalues must be zero because the group orbit of super
squares is two-dimensional. Thus the eigenvalues are determined by simply computing the trace
of A, which, in terms of real coordinates, is

Tr(A) =
∂gi

1

∂y1
+

∂gi
2

∂y2
+

∂gi
3

∂y3
+

∂gi
4

∂y4
. (4.12)

This can be further simplified by noting that, since Dg commutes with the transformations Rπ/2

and τx1
,

∂gi
1

∂y1
=

∂gi
2

∂y2
=

∂gi
3

∂y3
=

∂gi
4

∂y4
(4.13)

on the super squares solution branch. Thus the repeated eigenvalue, 1
2Tr(A), is simply 2

∂gi
1

∂y1
.

The details of the computations of the eigenvalues for the remaining axial planforms are
omitted but the results are summarised in the second column of Table 8. Note that symmetry
considerations alone determine that the eigenvalues of Dg are real for all of the axial planforms.

From the leading order terms in the equivariant bifurcation problem (4.4), and the expressions
for the eigenvalues given in the second column of Table 8, the signs of the eigenvalues of Dg at
bifurcation may be determined. Provided the nondegeneracy condition,

b1β + b2α 6= 0, (4.14)

is satisfied, the sign of the second (repeated) eigenvalue for the super squares and anti-squares
solution branches is evaluated by keeping all terms through O(2(α + β) − 1) in (4.4) and using
the observation that

∂gi
1

∂yj

∣∣∣
z=z̄

=
(∂g1

∂zj
− ∂g1

∂z̄j

)∣∣∣
z=z̄

. (4.15)

The signs of all remaining non-zero eigenvalues are determined by the cubic truncation (4.5)
provided the nondegeneracy conditions,

a1 6= 0,±a2,±a3,±a4 , (a1 + a2) 6= ±(a3 + a4) , (a1 − a2) 6= ±(a3 − a4) , (4.16)

are satisfied. The results for all the axial planforms are summarized in the third column of
Table 8. If the nondegeneracy conditions are satisfied we can draw a number of conclusions from
this table.

1. Any one of the axial solution branches can bifurcate supercritically to produce a stable
solution.

2. If the super squares and anti-squares are neutrally stable at cubic order, then one and only
one of these two states bifurcates stably.
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Table 8: Eigenvalues and their multiplicities for axial planforms associated with 8-dim. repre-
sentations of Γs. The coefficients a1, a2, a3, a4, b1, b2 are defined by equations 4.4 and 4.5.

Axial Planform and Eigenvalues Signs of Non-zero
Branching Equation Eigenvalues

Rolls 0,
∂gr

1

∂x1
,

∂gr
2

∂x2
(twice), sgn(a1), sgn(a2 − a1),

0 = λx + a1x
3 + · · · ∂gr

3

∂x3
(twice),

∂gr
4

∂x4
(twice) sgn(a3 − a1), sgn(a4 − a1)

Simple Squares 0 (twice),
∂gr

3

∂x3
(four times), sgn(a3 + a4 − a1 − a2),

0 = λx + (a1 + a2)x
3 + · · · ∂gr

1

∂x1
+

∂gr
1

∂x2
,

∂gr
1

∂x1
− ∂gr

1

∂x2
sgn(a1 + a2), sgn(a1 − a2)

Rhombs (Rhs1,α,β) 0 (twice),
∂gr

2

∂x2
(four times), sgn(a2 + a4 − a1 − a3),

0 = λx + (a1 + a3)x
3 + · · · ∂gr

1

∂x1
+

∂gr
1

∂x3
,

∂gr
1

∂x1
− ∂gr

1

∂x3
sgn(a1 + a3), sgn(a1 − a3)

Rhombs (Rhs2,α,β) 0 (twice),
∂gr

2

∂x2
(four times), sgn(a2 + a3 − a1 − a4),

0 = λx + (a1 + a4)x
3 + · · · ∂gr

1

∂x1
+

∂gr
1

∂x4
,

∂gr
1

∂x1
− ∂gr

1

∂x4
sgn(a1 + a4), sgn(a1 − a4)

Super Squares 0 (twice), 2
∂gi

1

∂y1
(twice), sgn(−b1β − b2α),

0 = λx+
∂gr

1

∂x1
+

∂gr
1

∂x2
+

∂gr
1

∂x3
+

∂gr
1

∂x4
, sgn(a1 + a2 + a3 + a4),

(a1 + a2 + a3 + a4)x
3 + · · · ∂gr

1

∂x1
+

∂gr
1

∂x2
− ∂gr

1

∂x3
− ∂gr

1

∂x4
, sgn(a1 + a2 − a3 − a4),

+(b1 + b2)x
2(α+β)−1 + · · · ∂gr

1

∂x1
− ∂gr

1

∂x2
+

∂gr
1

∂x3
− ∂gr

1

∂x4
, sgn(a1 − a2 + a3 − a4),

∂gr
1

∂x1
− ∂gr

1

∂x2
− ∂gr

1

∂x3
+

∂gr
1

∂x4
sgn(a1 − a2 − a3 + a4)

Anti-Squares sgn(b1β + b2α),

0 = λx+ sgn(a1 + a2 + a3 + a4),

(a1 + a2 + a3 + a4)x
3 + · · · Same as Super Squares sgn(a1 + a2 − a3 − a4),

−(b1 + b2)x
2(α+β)−1 + · · · sgn(a1 − a2 + a3 − a4),

sgn(a1 − a2 − a3 + a4)
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3. If all the axial planforms bifurcate supercritically, then at least one of them is stable.

4. If any axial solution branch bifurcates subcritically, then rolls, super squares and anti-
squares are all unstable.

5. If rolls, super squares, or anti-squares bifurcate subcritically, then all axial planforms are
unstable at bifurcation.

6. If simple squares is the only axial solution branch to bifurcate subcritically, then one, but
not both, of the rhombs solutions may be stable. Similarly, if one of the rhombs solutions
bifurcates subcritically, then simple squares or the other rhombs solution branch may be
stable, though they cannot both be stable in this case.

7. The only solution branches that can co-exist stably are simple squares SiS and the rhombs
Rhs1,α,β, Rhs2,α,β. Any combination of two of these states can bifurcate stably, but not all
three.

5 Stability Results: Hexagonal Lattice.

In this section we compute the linear stability, at bifurcation, of the axial planforms that are
associated with the twelve-dimensional representations of Γh and Γh ⊕ Z2 (see Tables 4 and
5). As with the square lattice case, we do this within the framework of a general Γ-equivariant
bifurcation problem ż = g(z, λ), where g : C6 × R → C6.

In the case of Γ = Γh⊕Z2 there are only odd terms in the Taylor expansion of g due to the Z2

symmetry. However, if the Z2 symmetry is absent, then even terms are admissible. In particular,
we find that the coefficients of most, but not all, quadratic terms in the Taylor expansion of g1

are zero; the exception is ǫ ≡ 1
2

∂2g1

∂z̄2∂z̄3
, i.e., the following vector is Γh-equivariant

(z̄2z̄3, z̄3z̄1, z̄1z̄2, z̄5z̄6, z̄6z̄4, z̄4z̄5) (5.1)

The presence of such a quadratic term ensures that generically all of the axial planforms bifurcate
unstably [15]. In order to obtain stable axial solution branches we focus on the degenerate
bifurcation problem defined by ǫ = 0. We then discuss briefly the unfolding of this bifurcation
problem (i.e., the case 0 < |ǫ| ≪ 1), before analyzing the generic Γh ⊕Z2-equivariant bifurcation
problem.

5.1 D6+̇T2–equivariant bifurcation problem.

In this section we give the Taylor expansion of the equivariant bifurcation problem (2.15) to
sufficient order to determine the signs of the real part of eigenvalues for the axial planforms.

Our approach to determining the leading terms in the Γh-equivariant bifurcation problem
is the same as that employed in Section 4.1 for the Γs-equivariant problem. The general Γh-
equivariant vector field that satisfies the equivariance condition (2.16) is

ż1 = g1(z1, z2, z3, z4, z5, z6)

ż2 = g1(z2, z3, z1, z5, z6, z4)

ż3 = g1(z3, z1, z2, z6, z4, z5)

ż4 = g1(z4, z6, z5, z1, z3, z2) (5.2)

ż5 = g1(z5, z4, z6, z2, z1, z3)

ż6 = g1(z6, z5, z4, z3, z2, z1) ,
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where
g1(z) = g1(z̄) , (5.3)

and
Θ

(
z̄1g1(z)

)
= z̄1g1(z) , for all Θ ∈ T2 . (5.4)

The hidden reflection (3.3) puts an additional restriction on the function g1(z), namely

g1(z1, z2, z3, 0, 0, 0) = g1(z1, z3, z2, 0, 0, 0) . (5.5)

The details of the calculation of the T2-invariant function z̄1g1 are presented in the appendix.
From this invariant function, we determine that the general form of the equivariant vector field
through O(2α − 1) is

ż1 = z1 f1(u1, u2, u3, u4, u5, u6, q1, q̄1, q4, q̄4) + z̄2z̄3 f2(u1, u2, u3, u4, u5, u6, q1, q̄1, q4, q̄4)

+ e1 z̄α−β−1
1 zβ

3 zβ
4 z̄α−β

6 + e2 z̄β−1
1 zα−β

2 zα−β
4 z̄β

5 + O(2α) , (5.6)

where
uj ≡ |zj |2 , q1 ≡ z1z2z3 , q4 ≡ z4z5z6 , (5.7)

and e1, e2 ∈ R are constants. It follows from (5.3) and (5.5), respectively, that

fj(u1, u2, u3, u4, u5, u6, q1, q̄1, q4, q̄4) = fj(u1, u2, u3, u4, u5, u6, q̄1, q1, q̄4, q4) , (5.8)

fj(u1, u2, u3, 0, 0, 0, q1, q̄1, 0, 0) = fj(u1, u3, u2, 0, 0, 0, q1, q̄1, 0, 0) , j = 1, 2 .

The other components of the bifurcation equations are determined from (5.6) using (5.2).

5.2 Stability in the degenerate case ǫ = 0.

As in the square lattice case, we begin by determining the restrictions that symmetry places on
the eigenvalues of the 12 × 12 real Jacobian matrix Dg when it is evaluated on an axial solution
branch. The results are summarized in column two of Table 9.

The calculations that lead to the results in Table 9 are similar to the corresponding calculations
in the square lattice case. We omit the details. Note that rolls and simple hexagons lie in
the six-dimensional fixed-point subspace {z = (z1, z2, z3, 0, 0, 0) : z1, z2, z3 ∈ C} on which the
hidden reflection τ̃x1

(3.3) acts; for these solutions the hidden symmetry is taken into account in
determining the eigenvalues of Dg. In the case of super hexagons, we find the computation of
the eigenvalues of Dg is simplified by forming the D6-isotypic decomposition of C6. It is

C6 = R(1, 1, 1, 1, 1, 1) ⊕ R(1, 1, 1,−1,−1,−1) ⊕ R(i, i, i, i, i, i) ⊕ R(i, i, i,−i,−i,−i)

⊕ R{(1,−1, 0, 0,−1, 1), (−1, 0, 1,−1, 1, 0), (0, 1,−1,−1, 1, 0), (1,−1, 0, 1, 0,−1)}
⊕ R{(−i, 0, i, i, 0,−i), (0,−i, i, 0, i,−i), (0, i,−i,−i, i, 0), (−i, i, 0,−i, 0, i)} . (5.9)

From the expressions for the eigenvalues given in the second column of Table 9 and the
equivariant bifurcation problem (5.6) the signs of the eigenvalues for the degenerate case ǫ = 0
may be calculated. Provided the condition

e1

e2
6= − α + β

2α − β
(5.10)

is satisfied, the eigenvalue
∂gi

1

∂y1
− 1

2

(∂gi
1

∂y2
+

∂gi
1

∂y3

)
, (5.11)
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Planform Eigenvalues Signs of Non-zero Eigenvalues

Rolls
∂gr

1

∂x1
,

∂gr

4

∂x4
(twice),

∂gr

5

∂x5
(twice),

∂gr

6

∂x6
(twice), sgn(a1), sgn(a4 − a1), sgn(a5 − a1), sgn(a6 − a1),

∂gr

2

∂x2

+
∂gr

2

∂x3

(a) (twice),
∂gr

2

∂x2

− ∂gr

2

∂x3

(a) (twice), 0 sgn(a2 − a1)

Simple
∂gr

1

∂x1

+ 2
∂gr

1

∂x2

(a),
∂gr

1

∂x1

− ∂gr

1

∂x2

(a) (twice), sgn(a1 + 2a2), sgn(a1 − a2),

Hexagons
∂gr

4

∂x4

(six times), 3
∂gi

1

∂y1

, 0 (twice ) sgn(a4 + a5 + a6 − a1 − 2a2), sgn[x(c1 − b1 − 2b2)]

Rhombs
∂gr

1

∂x1
+

∂gr

1

∂x4
,

∂gr

1

∂x1
− ∂gr

1

∂x4
, 0 (twice) sgn(a1 + a4), sgn(a1 − a4),

(Rhh1,α,β) µ1, µ2 (four times) such that µ1 + µ2 =
∂gr

2

∂x2

+
∂gr

3

∂x3

, µ1µ2 =
∂gr

2

∂x2

∂gr

3

∂x3

− ∂gr

2

∂x3

∂gr

3

∂x2

sgn(a2 + a5 − a1 − a4), sgn(a2 + a6 − a1 − a4)

Rhombs
∂gr

1

∂x1

+
∂gr

1

∂x5

,
∂gr

1

∂x1

− ∂gr

1

∂x5

, 0 (twice) sgn(a1 + a5), sgn(a1 − a5),

(Rhh2,α,β) µ1, µ2 (four times) such that µ1 + µ2 =
∂gr

2

∂x2
+

∂gr

3

∂x3
, µ1µ2 =

∂gr

2

∂x2

∂gr

3

∂x3
− ∂gr

2

∂x3

∂gr

3

∂x2
sgn(a2 + a4 − a1 − a5), sgn(a2 + a6 − a1 − a5)

Rhombs
∂gr

1

∂x1

+
∂gr

1

∂x6

,
∂gr

1

∂x1

− ∂gr

1

∂x6

, 0 (twice) sgn(a1 + a6), sgn(a1 − a6),

(Rhh3,α,β) µ1, µ2 (four times) such that µ1 + µ2 =
∂gr

2

∂x2

+
∂gr

3

∂x3

, µ1µ2 =
∂gr

2

∂x2

∂gr

3

∂x3

− ∂gr

2

∂x3

∂gr

3

∂x2

sgn(a2 + a4 − a1 − a6), sgn(a2 + a5 − a1 − a6)

∂gr

1

∂x1
+

∂gr

1

∂x2
+

∂gr

1

∂x3
+

∂gr

1

∂x4
+

∂gr

1

∂x5
+

∂gr

1

∂x6
,

∂gr

1

∂x1
+

∂gr

1

∂x2
+

∂gr

1

∂x3
− ∂gr

1

∂x4
− ∂gr

1

∂x5
− ∂gr

1

∂x6
, sgn(a1 + 2a2 + a4 + a5 + a6), sgn(a1 + 2a2 − a4 − a5 − a6)

∂gi

1

∂y1

+
∂gi

1

∂y2

+
∂gi

1

∂y3

+
∂gi

1

∂y4

+
∂gi

1

∂y5

+
∂gi

1

∂y6

, sgn[x(−b1 − 2b2 − b4 − b5 − b6 + c1 + c2 − c3)],

Super
∂gi

1

∂y1

+
∂gi

1

∂y2

+
∂gi

1

∂y3

− ∂gi

1

∂y4

− ∂gi

1

∂y5

− ∂gi

1

∂y6

, sgn[x(−b1 − 2b2 − b4 − b5 − b6 + c1 − c2 + c3)],

Hexagons 2
∂gi

1

∂y1

− ∂gi

1

∂y2

− ∂gi

1

∂y3

(twice), 0 (twice), sgn[−(2α − β)e1 − (α + β)e2],

µ1, µ2 (twice), such that µ1 + µ2 = 2
∂gr

1

∂x1
− ∂gr

1

∂x2
− ∂gr

1

∂x3
sgn(µ1 + µ2) = sgn(a1 − a2),

µ1µ2 = 1
2

{(
∂gr

1

∂x1

− ∂gr

1

∂x2

)2

+
(

∂gr

1

∂x1

− ∂gr

1

∂x3

)2

+
(

∂gr

1

∂x2

− ∂gr

1

∂x3

)2

sgn(µ1µ2) = sgn[2(a1 − a2)
2 − (a4 − a5)

2

−
(

∂gr

1

∂x4
− ∂gr

1

∂x5

)2

−
(

∂gr

1

∂x4
− ∂gr

1

∂x6

)2

−
(

∂gr

1

∂x5
− ∂gr

1

∂x6

)2}
−(a4 − a6)

2 − (a5 − a6)
2]

(a) Here the effect on Dg of the hidden symmetry τ̃x1
(3.3) is included.
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for super hexagons is determined by retaining all terms up to and including the leading order
(α, β)-dependent terms in (5.6). The remaining eigenvalues are determined by a quartic trunca-
tion, that is

ż1 = λz1 + ǫz̄2z̄3 + z1(a1|z1|2 + a2|z2|2 + a2|z3|2 + a4|z4|2 + a5|z5|2 + a6|z6|2)
+z̄2z̄3(b1|z1|2 + b2|z2|2 + b2|z3|2 + b4|z4|2 + b5|z5|2 + b6|z6|2) (5.12)

+z1(c1z1z2z3 + c2z4z5z6 + c3z̄4z̄5z̄6) + O(‖ z ‖5) ,

provided the additional nondegeneracy conditions

a1 6= 0, a2, ±a4, ±a5, ±a6 ,

(a1 + 2a2) 6= 0, ±(a4 + a5 + a6) ,

a1 − a2 6= ±(a4 − a5), ±(a4 − a6), ±(a5 − a6) , (5.13)

2(a1 − a2)
2 6= (a4 − a5)

2 + (a4 − a6)
2 + (a5 − a6)

2 ,

c1 − b1 − 2b2 6= 0, b4 + b5 + b6 ± (c2 − c3) ,

are satisfied. Again, all coefficients are real and we assume time has been scaled so that the linear
term in g(z) is λz. The third column of Table 9 summarises the results in the case ǫ = 0.

From the signs of the eigenvalues given in Table 9 we can draw a number of conclusions:

1. While all axial solution branches bifurcate unstably when ǫ 6= 0, we find, in the degenerate
case ǫ = 0, that any one of the axial solution branches can bifurcate supercritically to
produce a stable solution.

2. There are two distinct branches of simple and super hexagons, denoted SiH± and SuH±,
respectively, associated with x > 0 and x < 0 in the branching equation. If simple hexagons
are neutrally stable at cubic order, then one and only one of the two branches SiH± is
stable. If super hexagons are neutrally stable at cubic order, then one and only one of the
two branches SuH± will be stable if (2α−β)e1 +(α+β)e2 > 0, while they are both unstable
if (2α − β)e1 + (α + β)e2 < 0.

3. If (2α − β)e1 + (α + β)e2 < 0 then it is possible for all of the axial planforms to bifurcate
supercritically, but none be stable. On the other hand, if (2α − β)e1 + (α + β)e2 > 0 and
all axial planforms bifurcate supercritically, then at least one of them must be stable.

4. If any axial solution branch bifurcates subcritically, then rolls and super hexagons are
unstable.

5. If rolls or super hexagons bifurcate subcritically, then all axial planforms are unstable at
bifurcation.

6. If simple hexagons is the only axial solution branch to bifurcate subcritically, then it is still
possible that one, but not more, of the rhombs solutions is stable. Similarly, if rhombs
is the only axial solution branch to bifurcate subcritically, then it is possible for simple
hexagons to be stable, or for one or more of the remaining rhombs solutions to be stable.
However, if simple hexagons and one of the rhombs bifurcate subcritically, then all axial
solution branches are unstable.

7. If two of the rhombs solution branches bifurcate subcritically, then it is possible that the
remaining rhombs solution or simple hexagons is stable, but not both. However, if all three
rhombs solution branches are subcritical, then all axial planforms are unstable.

21



Table 10: Stability results for the hexagonal lattice bifurcation problem in the case |ǫ| ≪ 1, from
column two of Table 9, and equations 5.2, 5.6 and 5.12. Also see column three of Table 9; only
the eigenvalues that depend on ǫ are given here.

Planform ǫ-Dependent Eigenvalues Branching Equation

Rolls ǫx + (a2 − a1)x
2 + · · · 0 = λx + a1x

3

−ǫx + (a2 − a1)x
2 + · · · +O(x5)

ǫx + 2(a1 + 2a2)x
2 + · · · 0 = λx + ǫx2

Simple −2ǫx + 2(a1 − a2)x
2 + · · · +(a1 + 2a2)x

3

Hexagons −ǫx + (a4 + a5 + a6 − a1 − 2a2)x
2 + · · · +O(x4)

−3ǫx + 3(c1 − b1 − 2b2)x
3 + · · ·

Rhombs µ1, µ2; µ1 + µ2 = (−2a1 − 2a4 + 2a2 + a5 + a6)x
2 + · · · 0 = λx + (a1 + a4)x

3

(Rhh1,α,β
(a)) µ1µ2 = −ǫ2x2 +O(x5)

+(a1 + a4 − a2 − a5)(a1 + a4 − a2 − a6)x
4 + · · ·

ǫx + 2(a1 + 2a2 + a4 + a5 + a6)x
2 + · · ·

ǫx + 2(a1 + 2a2 − a4 − a5 − a6)x
2 + · · · 0 = λx + ǫx2

Super −3[ǫx + (b1 + 2b2 + b4 + b5 + b6 − c1 − c2 + c3)x
3] + · · · +(a1 + 2a2)x

3

Hexagons −3[ǫx + (b1 + 2b2 + b4 + b5 + b6 − c1 + c2 − c3)x
3] + · · · +(a4 + a5 + a6)x

3

µ1, µ2; µ1 + µ2 = −4ǫx + 4(a1 − a2)x
2 + · · · +O(x4)

µ1µ2 = 4ǫ2x2 − 8(a1 − a2)ǫx
3 + 4(a1 − a2)

2x4

−2[(a4 − a5)
2 + (a4 − a6)

2 + (a5 − a6)
2]x4 + · · ·

(a) The results for Rhombs (Rhh2,α,β), or Rhombs (Rhh3,α,β), are obtained from those for
Rhombs (Rhh1,α,β) by interchanging the 4 and 5, or 4 and 6, subscripts, respectively.

8. The only solution branches that can co-exist stably are simple hexagons SiH and the rhombs
Rhh1,α,β, Rhh2,α,β, Rhh3,α,β. Any combination of two of these states can bifurcate stably.
It is also possible for all three types of rhombs to be stable simultaneously. However, if two
or more of the rhombs are stable, then simple hexagons are unstable.

5.3 Secondary Bifurcations for 0 < |ǫ| ≪ 1.

In this section we address briefly the unfolding of the degenerate bifurcation problem ǫ = 0
analyzed in the previous section. Specifically, we indicate how the stability of the axial solutions
change along the solution branch in the case that |ǫ| ≪ 1. While a complete analysis of the
unfolding is beyond the scope of the present paper, we do present an example in which part of a
bifurcation diagram is computed. This example indicates the wealth of secondary transitions that
occur close to λ = 0 when |ǫ| ≪ 1. For ǫ 6= 0, certain eigenvalues given in Table 9 are modified
to those given in Table 10. Note that, as discussed above, the presence of the quadratic term
in the bifurcation problem ensures that at least one of the eigenvalues for each axial planform is
positive for (λ, z) sufficiently close to the origin.

As a specific example, we consider the bifurcation problem

ż1 = λ z1 + ǫ z̄2z̄3 + z1 (a1|z1|2 + a2|z2|2 + a2|z3|2 + a4|z4|2 + a5|z5|2 + a6|z6|2)
+ b2 z̄2z̄3 (|z2|2 + |z3|2) + e1 z̄α−β−1

1 zβ
3 zβ

4 z̄α−β
6 + e2 z̄β−1

1 zα−β
2 zα−β

4 z̄β
5 , (5.14)

where

a1 = −1.5, a2 = −3.5, a4 = 0.5, a5 = 0.6, a6 = 0.7, b2 = 0.6, e1 = 1.0, e2 = 0.5. (5.15)
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This choice satisfies the non-degeneracy conditions (5.13). It follows from Table 9 that all three
rhomb states are stable when ǫ = 0. We show two bifurcation diagrams for 0 < ǫ ≪ 1. The
bifurcation diagrams indicate, schematically, the amplitude ‖ z ‖ as a function of the bifurcation
parameter λ for each axial planform. Solutions on the same group orbit are identified and bi-
furcation points are indicated by solid circles. We follow the convention that solid lines indicate
stable solutions and dotted lines indicate unstable solutions. Figure 6 is a well-known bifurcation
diagram that applies to the six-dimensional representation of Γh; here it is obtained by restricting
our analysis to the six-dimensional subspace where z = (z1, z2, z3, 0, 0, 0). Figure 7 gives the bifur-
cation diagram that applies, for the same coefficient values (5.15), in the full twelve-dimensional
space.

In the six-dimensional subspace, where z4 = z5 = z6 = 0, only two axial planforms exist, rolls
and simple hexagons. In this subspace, and for the choice of coefficients (5.15), Figure 6 indicates
that as λ increases through 0, the trivial solution becomes unstable and there is a transition to
stable simple hexagons. On further increase of λ the hexagons become unstable and there is a
transition to rolls. Both the transition to hexagons and that to rolls exhibit hysteresis. The
bifurcation scenario of Figure 6 has been investigated in a wide variety of hydrodynamic systems
[3, 10, 18, 24], in solidification problems [2, 22, 30], and in chemical reaction-diffusion systems
[9, 21].

Figure 7 indicates how the familiar bifurcation diagram in Figure 6 is modified when we
consider stability within the full twelve-dimensional space. In this case, rolls are always unstable
to rhombs, and the range of stability of simple hexagons is greatly decreased. Indeed simple
hexagons are stable only in a subcritical regime where super hexagons are also stable. In this case,
on increasing λ, there is first a jump at λ = 0 to stable super hexagons and then a transition to one
of the three stable rhombs states. All of the transitions exhibit hysteresis. While the bifurcations
to simple and super hexagons are transcritical, all other primary bifurcations are pitchforks. All
of the secondary bifurcation points indicated in the diagram approach λ =‖ z ‖= 0 as ǫ → 0.
The paths of the secondary branches have not been computed.

5.4 Stability results: Γ = Γh ⊕ Z2.

In this section we consider the consequences of the additional Z2 symmetry, κ(z) = −z, for the
generic bifurcation problem on the hexagonal lattice, ż = g(z, λ), g : C6 ×R → C6. Specifically
we consider the branching and stability assignments for the axial planforms listed in Tables 4
and 5.

The Z2 symmetry places some additional restrictions on the eigenvalues of rolls and rhombs

listed in Table 9; specifically, it ensures that
∂gr

2

∂x3
=

∂gr
3

∂x2
= 0 on these solution branches. The

eigenvalues for simple and super hexagons, listed in Table 9, are unchanged. The eigenvalues
of Dg for the remaining axial planforms are listed in Table 11. We note that the D6-isotypic
decomposition of C6 is the same for the super hexagons, anti-hexagons, super-triangles and
anti-triangles planforms; it is given by (5.9). Indeed, the only difference between the eigenvalue
structure for the triangle states and the hexagon states is that the null vectors lie in different
isotypic components in the two cases.

The additional Z2 symmetry forces the coefficients of all even order terms in the Taylor
expansion of the Γh-equivariant bifurcation problem (5.6) to be zero. Hence there are no quadratic
terms; the differences between the degenerate bifurcation problem with Γh-symmetry (ǫ = 0) and
the generic bifurcation problem with Γh ⊕Z2-symmetry arise at O(‖ z ‖4). Thus the eigenvalues
for the rolls and the rhombs in Table 9, which are determined by a cubic truncation, are unchanged
by the extra Z2 symmetry. Note that certain eigenvalues of simple and super hexagons for the
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5.16.

Planform Eigenvalues Signs of Non-zero Eigenvalues

Rhombs
∂gr

1

∂x1

+
∂gr

1

∂x2

(a),
∂gr

1

∂x1

− ∂gr

1

∂x2

(a) ,
∂gr

3

∂x3

,
∂gi

3

∂yi

3

, sgn(a1 + a2), sgn(a1 − a2), −sgn(a1 − a2),

(Rhh0)
∂gr

4

∂x4

(twice),
∂gr

5

∂x5

(twice),
∂gr

6

∂x6

(twice), 0 (twice) sgn(a4 + a6 − a1 − a2), sgn(a4 + a5 − a1 − a2), sgn(a5 + a6 − a1 − a2)

Simple

Hexagons See Table 9. sgn(a1 + 2a2), sgn(a1 − a2), sgn(a4 + a5 + a6 − a1 − 2a2),−sgn(d2)

Simple

Triangles
∂gi

1

∂y1
+ 2

∂gi

1

∂y2

(a),
∂gi

1

∂y1
− ∂gi

1

∂y2

(a) (twice),
∂gr

4

∂x4
(six times), 3

∂gr

1

∂x1
, 0 (twice) sgn(a1 + 2a2), sgn(a1 − a2), sgn(a4 + a5 + a6 − a1 − 2a2), sgn(d2)

Signs of λ1, λ2, µ1 and µ2 as for super triangles.

Super See Table 9. −sgn(d2 + d3), −sgn[(2α − β)e1 + (α + β)e2],

Hexagons −sgn[3(d2 + d4) − (2β − α)(e1 − e2)x
2(α−3)] (b)

Signs of λ1, λ2, µ1 and µ2 as for super triangles.

Anti- Same as Super Hexagons. See Table 9. (−1)α+1sgn[(2α − β)e1 + (α + β)e2], −sgn(d2 − d3)

Hexagons −sgn[3(d2 − d4) − (−1)α(2β − α)(e1 − e2)x
2(α−3)] (b)

Super
∂gi

1

∂y1

+
∂gi

1

∂y2

+
∂gi

1

∂y3

+
∂gi

1

∂y4

+
∂gi

1

∂y5

+
∂gi

1

∂y6

∂gi

1

∂y1

+
∂gi

1

∂y2

+
∂gi

1

∂y3

− ∂gi

1

∂y4

− ∂gi

1

∂y5

− ∂gi

1

∂y6

, sgn(λ1) = sgn(a1 + 2a2 + a4 + a5 + a6),

Triangles 0 (twice), µ1, µ2 (twice) such that µ1 + µ2 = 2
∂gi

1

∂y1

− ∂gi

1

∂y2

− ∂gi

1

∂y3

sgn(λ2) = sgn(a1 + 2a2 − a4 − a5 − a6),

µ1µ2 = 1
2

{(
∂gi

1

∂y1
− ∂gi

1

∂y2

)2

+
(

∂gi

1

∂y1
− ∂gi

1

∂y3

)2

+
(

∂gi

1

∂y2
− ∂gi

1

∂y3

)2

−
(

∂gi

1

∂y4
− ∂gi

1

∂y5

)2

sgn(µ1 + µ2) = sgn(a1 − a2),

−
(

∂gi

1

∂y4

− ∂gi

1

∂y6

)2

−
(

∂gi

1

∂y5

− ∂gi

1

∂y6

)2}
, sgn(µ1µ2) = sgn[2(a1 − a2)

2 − (a4 − a5)
2 − (a4 − a6)

2 − (a5 − a6)
2]

2
∂gr

1

∂x1

− ∂gr

1

∂x2

− ∂gr

1

∂x3

(twice),
∂gr

1

∂x1

+
∂gr

1

∂x2

+
∂gr

1

∂x3

− ∂gr

1

∂x4

− ∂gr

1

∂x5

− ∂gr

1

∂x6

, (−1)α+1sgn[(2α − β)e1 + (α + β)e2], sgn(d2 − d3),

∂gr

1

∂x1
+

∂gr

1

∂x2
+

∂gr

1

∂x3
+

∂gr

1

∂x4
+

∂gr

1

∂x5
+

∂gr

1

∂x6
sgn[3(d2 + d4) + (−1)α(2β − α)(e1 − e2)x

2(α−3)] (b)

Signs of λ1, λ2, µ1 and µ2 as for super triangles.

Anti- Same as Super Triangles. −sgn[(2α − β)e1 + (α + β)e2], sgn(d2 + d3),

Triangles sgn[3(d2 − d4) + (2β − α)(e1 − e2)x
2(α−3)] (b)

(a) Here the effect on Dg of the hidden symmetry τ̃x1
(3.3) is included. (b) The (α, β)-dependent terms can be neglected here for all cases except (α, β) = (3, 2).
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degenerate Γh bifurcation problem depend on the coefficients of quartic terms (see Table 9).
These eigenvalues are now determined at quintic order, that is by the truncation

ż1 = λz1 + z1(a1|z1|2 + a2|z2|2 + a2|z3|2 + a4|z4|2 + a5|z5|2 + a6|z6|2)
+z1(f11|z1|4 + f12|z1|2|z2|2 + · · · + f56|z5|2|z6|2 + f66|z6|4) (5.16)

+z̄2z̄3(d1z1z2z3 + d2z̄1z̄2z̄3 + d3z4z5z6 + d4z̄4z̄5z̄6)

+e1z̄
α−β−1
1 zβ

3 zβ
4 z̄α−β

6 + e2z̄
β−1
1 zα−β

2 zα−β
4 z̄β

5 + O(‖ z ‖7) .

The stability results for the axial planforms are summarized in Table 11. Note that the leading
order α, β dependent terms are O(2α − 1), where 2α − 1 ≥ 5, with 2α − 1 = 5 only in the case
of (α, β) = (3, 2).

We assume that the following nondegeneracy conditions are satisfied:

a1 6= 0, ±a2, ±a4, ±a5, ±a6 ,

(a1 + a2) 6= (a4 + a5), (a4 + a6), (a5 + a6) ,

(a1 + 2a2) 6= 0, ±(a4 + a5 + a6),

(a1 − a2) 6= ±(a4 − a5), ±(a4 − a6), ±(a5 − a6) , (5.17)

2(a1 − a2)
2 6= (a4 − a5)

2 + (a4 − a6)
2 + (a5 − a6)

2 ,

e1

e2
6= − α + β

2α − β
,

d2 6= 0, ±d3,

d2 ± d4 6=
{

0 if (α, β) 6= (3, 2)

±
(

e1−e2

3

)
if (α, β) = (3, 2)

In this case we can draw a number of conclusions from Tables 9 and 11.

1. The rhombs Rhh0 always bifurcate unstably. This observation was made in [13].

2. If simple triangles and simple hexagons are neutrally stable at cubic order, then one and
only one of the two branches is stable. The relative stability properties of these two solutions
is determined at quintic order.

3. It is possible for super hexagons, anti-hexagons, super triangles and anti-triangles to be
unstable, even if they are all neutrally stable at cubic order.

4. It is possible for all of the axial planforms to bifurcate supercritically, but none be stable.

5. If any axial solution branch bifurcates subcritically, then rolls, super hexagons, super tri-
angles, anti-hexagons and anti-triangles are all unstable.

6. If rolls or super hexagons bifurcate subcritically, then all axial planforms are unstable at
bifurcation.

7. If simple hexagons and simple triangles are the only axial solution branches to bifurcate
subcritically, then it is still possible that one, but not more, of the rhombs solutions is stable.
Similarly, if rhombs Rhhj,α,β (j = 1, 2, or 3) is the only axial solution branch to bifurcate
subcritically, then it is possible for simple hexagons or simple triangles to be stable, or for
one or more of the remaining rhombs solutions to be stable.
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8. If simple hexagons and the rhombs Rhh0 bifurcate subcritically, then it is possible for one,
but not more, of the other rhombs to be stable. However, if simple hexagons and one of
the rhombs other than Rhh0 bifurcate subcritically, then all axial solution branches are
unstable.

9. If two of the rhombs Rhhj,α,β (j = 1, 2, 3) solution branches bifurcate subcritically, then
it is possible that one, and only one, of the following solutions is stable: the remaining
rhombs Rhhj,α,β, simple hexagons or simple triangles. However, if Rhh0 and one of the
other rhombs bifurcate subcritically, or if all three of the rhombs Rhhj,α,β solution branches
are subcritical, then all of the axial solutions are unstable.

10. If α is odd, then the only solution branches that can co-exist stably are simple hexagons or
simple triangles and the rhombs Rhh1,α,β, Rhh2,α,β, Rhh3,α,β. Any combination of two of
these states can bifurcate stably. It is also possible for all three types of rhombs to be stable
simultaneously. However, if two or more of the rhombs are stable, then simple hexagons
and simple triangles are unstable. If α is even, then it is also possible for super hexagons
and anti-hexagons to be stable simultaneously, or for super triangles and anti-triangles to
both be stable.

6 Conclusions.

We have investigated steady, spatially-periodic planforms which bifurcate from a spatially-uniform
time-independent solution of E(2)-equivariant and E(2)⊕Z2-equivariant PDEs. We considered
separately the cases where the solutions are doubly-periodic on a square lattice and on a hexag-
onal lattice. The fundamental period ℓ of the lattice was chosen so that the dual lattice contains
wavevectors of critical length kc. For the square lattice ℓ =

√
α2 + β2/kc, while for the hexagonal

lattice ℓ =
√

α2 + β2 − αβ/kc, where α > β > 0 are integers.
For each lattice we determined the relative stability of the planforms which are guaranteed

to bifurcate from the trivial solution by the equivariant branching lemma [12, 29]. Our analysis
proceeded by first determining the general form of the equivariant bifurcation problems, and
then using these equations to compute the linear orbital stability of the axial planforms. For the
square lattice, an order 2(α + β) − 1 truncation of the equivariant bifurcation problem on C4

is required to completely determine the signs of the eigenvalues. In the case of the hexagonal
lattice, an order (2α−1) truncation is necessary. However, an important practical consideration,
in both cases, is that much is already determined at cubic order.

Previous bifurcation studies of the stability of spatially-periodic planforms have focused on
the “small box” limit for which the size of the periodic domain coincides with the wavelength of
the instability, i.e., ℓ = 1/kc. This leads to a bifurcation problem on C2 for the square lattice
and a bifurcation problem on C3 for the hexagonal lattice. These bifurcation problems allow
one to investigate the relative stability of rolls and simple squares in the case of the square
lattice, and rolls and simple hexagons in the hexagonal case. In this paper we considered the
countable set of irreducible representations, on C4 and C6 respectively, of the symmetry groups
associated with the square and hexagonal lattices. This analysis extends the results of the earlier
C2 and C3 bifurcation studies, both enlarging the number of planforms which are supported by
the lattice and allowing for a wider class of disturbances in the stability analysis. In particular,
by considering all of the irreducible representations the stability of rolls, simple squares, simple
hexagons, and simple triangles, to a countable set of perturbations, can be determined. For
example, our bifurcation analysis provides a framework for addressing the relative stability of
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simple hexagons (or simple squares) and a countable set of rhombs. This is of special interest in
light of recent laboratory experiments on chemical Turing patterns in which both hexagonal and
rhombic patterns are observed [14]. Our unfolding of the degenerate bifurcation problem on the
hexagonal lattice provides a simple mathematical setting for investigating a transition between
these states.

Our stability analysis in the case of the Euclidean group is incomplete since, for a given
periodic pattern, we consider only those perturbations that are periodic on the same type of
lattice. For example, there is no simple bifurcation theoretic framework for computing the relative
stability of squares and hexagons since no lattice supports them both. However, we are able to
compute the stability of hexagons relative to rhombs, which are “almost square”, i.e., which are
composed of rectangles with aspect ratio that is close to 1 (see Table 7). For example, for the
representation of D6+̇T2 with (α, β) = (4, 3), the rhombs Rhh3,4,3 are made up of rectangles with
aspect ratio approximately 0.96; the angle between the wave vectors K1 and K6 in this case is
about 92◦.

By not requiring the periodicity ℓ of the lattice to coincide with the wavelength of the in-
stability 1/kc, we were able to investigate axial solution branches with periodicity 1/kc and
simultaneously solution branches that have fundamental periodicity ℓ ≫ 1/kc. In this paper we
called the latter states super squares, super hexagons, super triangles, and anti-squares, anti-
hexagons, anti-triangles. For E(2)(⊕Z2)-equivariant PDEs, there is an infinite family of these
solution branches that is parameterized by the integer pair (α, β). The wavelength of the insta-
bility 1/kc determines the size of the small scale structure of these super and anti-state patterns,
while ℓ determines their periodicity. By increasing α and β we obtain axial planforms that are
periodic on larger and larger scales relative to 1/kc, all of which bifurcate from the trivial so-
lution at λ = 0. This is perhaps interesting in light of recent hydrodynamic experiments on
quasi-patterns [10]. We emphasize, however, that the existence of a center manifold in the case
where the critical wavevectors do not generate a periodic lattice, has not been established, e.g.,
in the case that there are twelve critical wavevectors equally spaced on the critical circle.

The symmetry groups assumed in our analysis arise naturally when periodic boundary condi-
tions are used. Thus our results apply directly to certain numerical studies that incorporate such
boundary conditions. The “small box” limit is obtained by restricting the computational domain
so that it contains only one hexagon or square and applying periodic boundary conditions. Our
analysis applies to computations carried out on larger periodic domains. For example, computa-
tions done on a square domain of side length

√
α2 + β2/kc admit, local to the bifurcation point,

not only steady rolls and simple squares, but also two different rhombic patterns, as well as the
super and anti-square states. This paper has shown that each of these states has the possibility
of being stable.
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7 Appendix.

In this appendix we sketch the calculations of the equivariant bifurcation equations presented in
sections 4.1 and 5.1.

D4+̇T2–equivariant bifurcation problem:

Let h(z) = z̄1g1(z) be a T2-invariant function that has Taylor expansion

h(z) =
∑

ki≥0

ak zk1

1 z̄k2

1 zk3

2 z̄k3

2 zk4

3 z̄k5

3 zk7

4 z̄k8

4 , (7.1)

where k2 > 0. Given the action (2.20) of T2 on C4, the T2-invariance of h determines that ak = 0
unless

(k1 − k2) (αθ1 + βθ2) + (k3 − k4) (−βθ1 + αθ2)

+ (k5 − k6) (βθ1 + αθ2) + (k7 − k8) (−αθ1 + βθ2) = 0 (7.2)

for all (θ1, θ2) ∈ T2. Clearly, k1 = k2, k3 = k4, k5 = k6, and k7 = k8 is a solution to equation
(7.2), which yields the T2-invariants |zj |2, j = 1, 2, 3, 4. In the following we factor out all powers

of |zj |2 from the translation invariant monomials Pk(z) = zk1

1 z̄k2

1 zk3

2 z̄k4

2 zk5

3 z̄k6

3 zk7

4 z̄k8

4 , and only

consider monomials of the form zm
1 zn

2 zp
3zq

4, where we adopt the convention that zm
j ≡ z̄

|m|
j if

m < 0. In this way we reduce the problem of finding all T2-invariant monomials to one of finding
m,n, p, q ∈ Z such that

m(αθ1 + βθ2) + n(−βθ1 + αθ2) + p(βθ1 + αθ2) + q(−αθ1 + βθ2) = 0. (7.3)

Since θ1 and θ2 are independent this requires

(m − q)α − (n − p)β = 0 , (n + p)α + (m + q)β = 0 . (7.4)

Furthermore, since α and β are relatively prime, this implies

m − q = jβ , n − p = jα , (7.5)

n + p = kβ , m + q = −kα ,

where j, k ∈ Z. Solving for m,n, p and q gives

m = −1

2
(kα − jβ) , n =

1

2
(jα + kβ) , (7.6)

p = −1

2
(jα − kβ) , q = −1

2
(kα + jβ),

Since α and β are relatively prime and not both odd, the system of equations (7.6) has no
(nontrivial) solution if any two of m,n, p or q are zero. It then follows that both k and j are even
and equations (7.6) may be replaced by

m = −(k′α − j′β) , n = (j′α + k′β) , (7.7)

p = −(j′α − k′β) , q = −(k′α + j′β) ,

where j′, k′ ∈ Z. If j′ = 0, k′ 6= 0 or j′ 6= 0, k′ = 0, then (7.7) yields the translation invariant
monomials

z̄α
1 zβ

2 zβ
3 z̄α

4 , zβ
1 zα

2 z̄α
3 z̄β

4 , (7.8)
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and their complex conjugates.
The monomials (7.8) are order 2(α + β). We now show that these are the lowest order

(nontrivial) translation invariant monomials of the form zm
1 zn

2 zp
3zq

4. To do this we consider the
remaining cases for which j′k′ 6= 0 in 7.7:

1. j′ > 0, k′ > 0

2. j′ > 0, k′ < 0

3. j′ < 0, k′ > 0

4. j′ < 0, k′ < 0.

In case 1, since no solution to (7.7) exists if two of m,n, p and q are zero, the order of the invariant
is

|m| + |n| + |p| + |q| > |n| + |q| ≥ (j′ + k′)(α + β) ≥ 2(α + β) (7.9)

since j′, k′ > 0.
Similarly, in case 2 the order of the invariant is

|m| + |n| + |p| + |q| > |m| + |p| ≥ (j′ + |k′|)(α + β) ≥ 2(α + β). (7.10)

The argument that |m|+ |n|+ |p|+ |q| > 2(α+β) is similar for cases 3 and 4. Hence no invariants
of order less than or equal to 2(α + β) occur for j′k′ 6= 0.

D6+̇T2–equivariant bifurcation problem:

As in the square lattice case, we assume that local to the bifurcation point we can Taylor
expand the function g1(z). We proceed by determining the form of T2-invariant monomials. In
the following, we assume that overall factors of |zj |2, j = 1, ..., 6, have been removed from the

monomials. Then, following the convention that zn
j ≡ z̄

|n|
j if n < 0, we find that the T2-invariant

monomials have the form
zm
1 zn

2 zp
3zq

4z
r
5z

s
6, (7.11)

where m,n, p, q, r, s ∈ Z satisfy

m − n + q − s = jβ , n − p − r + s = −jα , (7.12)

n − p − q + r = kβ , m − p − q + s = kα ,

where j, k ∈ Z.
There are no nontrivial solutions of (7.12) with more than three of m,n, p, q, r, s zero. In the

case that j = k = 0 in (7.12), then m = n = p and q = r = s, which yield the invariants

z1z2z3 and z4z5z6 , (7.13)

and their complex conjugates.
We claim that the lowest order (α, β)-dependent invariants (|j| + |k| 6= 0) are

zβ
1 z̄α−β

2 z̄α−β
4 zβ

5 , zβ
2 z̄α−β

3 z̄α−β
5 zβ

6 , zβ
3 z̄α−β

1 z̄α−β
6 zβ

4 , (7.14)

and their complex conjugates, which are order 2α. Note that the set of the three invariants (7.14)
together with their complex conjugates is invariant under the action of D6. We justify the above
assertion by the following steps:
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1. Show that we can assume that one of m,n, p is zero and that one of q, r, s is zero. We then
focus on the specific case with p = 0 since the invariants with m = 0 and n = 0 can be
transformed to p = 0 by the action of Rπ/3 ∈ D6 on the invariant.

2. Consider the cases where p = 0 and exactly two of m,n, q, r, s are zero.

3. Consider the cases where p = 0 and only one of q, r, s is zero.

Step 1. Consider m,n, p ≥ 0. If m,n, p are all nonzero, then we can construct a lower degree
T2-invariant monomial from (7.11) by factoring out the invariant z1z2z3. Thus the lowest degree
monomials cannot have m,n, p > 0. Similarly, if m,n, p < 0, then we can lower the degree by
factoring out the invariant z̄1z̄2z̄3.

Suppose now that m,n, p do not all have the same sign; for example, consider the case
m ≥ n ≥ 0 ≥ p. Then the order of the monomial is m + n + |p| + |q| + |r| + |s|. However, if

zm
1 zn

2 z̄
|p|
3 zq

4z
r
5z

s
6 is invariant, then so is zm−n

1 z̄
|p|+n
3 zq

4z
r
5z

s
6, which is of lower order m+|p|+|q|+|r|+|s|

unless n = 0, in which case it has the same order. Since we only aim to find the lowest order
(α, β)-dependent monomials, we can assume n = 0 in (7.11). The argument is the same for the
other orderings of m,n, p, and 0; in each case we can find a lower degree invariant monomial
unless one of m,n, p is zero. Hence, the lowest order (α, β)-dependent monomial has at least one
of m,n, p equal to zero, and by a similar argument we can assume that one of q, r, s is zero. In
the following steps, we assume that p = 0.

Step 2. Let p = 0 and exactly two of m,n, q, r, s be zero. From step 1, we can assume that
at least one of q, r, s is zero. There are nine combinations to consider; in each case we obtain an
invariant of degree greater than 2α. As an example, consider p = r = s = 0. Then equations
(7.12) can be solved provided we choose j and k such that

(k − j)α = (j + 2k)β . (7.15)

Thus
k − j = lβ , j + 2k = lα , (7.16)

where l ∈ Z. Solving for j and k gives

j =
1

3
l(α − 2β) , k =

1

3
l(α + β) , (7.17)

and, since α + β is not a multiple of 3, l must be divisible by 3. Let l = 3l′, l′ ∈ Z, then we find

m = l′β(2α − β) ,

n = l′α(2β − α) , (7.18)

q = −l′(α2 − αβ + β2) .

The order of the invariant zm
1 zn

2 zq
4 is 3l′αβ, which is greater than the order of the invariants (7.14).

The other eight combinations, with three non-zero exponents, also give invariants of order either
3αβ, α2 + αβ, or 2α2 + αβ − β2, all of which are greater than 2α.

Step 3. If p = 0, then it follows from (7.12) that

m = jβ − 1

3
(j − k)(α + β) ,

n = kβ − jα +
1

3
(j − k)(α + β) , (7.19)

q − s = jβ − kα − 1

3
(j − k)(α + β) ,

r − s = kβ +
1

3
(j − k)(α + β) .
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We set (k − j) = 3l, l ∈ Z, because α + β in not a multiple of 3. Hence,

m = jβ + l(α + β) ,

n = −j(α − β) + l(2β − α) ,

q − s = −j(α − β) − l(2α − β) , (7.20)

r − s = jβ + l(2β − α) ,

where j, l ∈ Z.
We consider the three cases q = 0, r = 0, and s = 0 separately. The invariant zβ

1 z̄α−β
2 z̄α−β

4 zβ
5

in (7.14) is obtained in the case p = s = 0 for l = 0, j = 1 in (7.20). The cases p = q = 0
and p = r = 0 lead to nontrivial invariant monomials of degree greater than 2α. For example,
if p = q = 0, the degree of the monomial is |m| + |n| + |r| + |s|. It follows from the restriction
α > β > α/2 in Table 2 that

|m| + |n| + |r| + |s| > |m + n + r| = |l|(α + 4β) > 2|l|α . (7.21)

Hence, the degree of the monomial is greater than 2α unless l = 0. However, if l = 0, then

|m| + |n| + |r| + |s| = |j|(3α − β) > 2|j|α . (7.22)

This proves that the monomials associated with p = q = 0, mnrs 6= 0, are all of degree greater
than 2α. The argument in the case p = r = 0 is similar.
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(a) (b)

Figure 1: (a) Critical circles for the square lattice when kc = 1,
√

3 and 5. (b) Critical circles for
the hexagonal lattice when kc = 1 and

√
7.

K1

ℓ1 + ℓ2

K4

K3K2

(a)

K2

K5

K4

K1

K3

K6

ℓ1 − 2ℓ2

ℓ1 + ℓ2

(b)

Figure 2: (a) Square lattice wave vectors Kj for the eight-dimensional representations of Γs in
Table 1. (b) Hexagonal lattice wave vectors Kj for the twelve-dimensional representations of Γh

in Table 2.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Axial planforms associated with 8-dimensional representation of Γs with (α, β) = (2, 1)
and x1, x2 ∈ [−1, 1] (i.e., four copies of the fundamental domain are shown); (a) rolls, (b) rhombs
(Rhs1,2,1), (c) rhombs (Rhs2,2,1), (d) simple squares, (e) super squares, and (f) anti-squares.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Axial planforms associated with 12-dimensional representation of Γh with (α, β) =
(3, 2), x1, x2 ∈ [− 2√

3
, 2√

3
]; (a) rhombs (Rhh1,3,2), (b) rhombs (Rhh2,3,2), (c) rhombs (Rhh3,3,2), (d)

rolls, (e) simple hexagons (SiH+), and (f) super hexagons (SuH+).
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(a) (b) (c)

(d) (e) (f)

Figure 5: Axial planforms associated with 12-dimensional representation of Γh ⊕ Z2 with
(α, β) = (3, 2), x1, x2 ∈ [− 2√

3
, 2√

3
]; (a) rhombs (Rhh0), (b) super hexagons, (c) anti-hexagons, (d)

simple triangles, (e) super triangles, and (f) anti-triangles. (See Figure 4 for the additional axial
planforms: rolls, simple hexagons, Rhh1,3,2, Rhh2,3,2, and Rhh3,3,2.)
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Figure 6: Example of an hexagonal lattice bifurcation diagram for solutions in the six-dimensional
subspace, z = (z1, z2, z3, 0, 0, 0). Solid (dotted) lines indicate stable (unstable) solutions. The
secondary solution branch has the form z = (x1, x2, x2, 0, 0, 0), where x1, x2 ∈ R.

λ
Simple Hexagons−

Simple Hexagons+

Rolls

•

•

•

•

Figure 7: Example of an hexagonal lattice bifurcation diagram for the twelve-dimensional repre-
sentations of Γh. Here 0 < ǫ ≪ 1 in equation 5.14; see equation 5.15 for the other coefficients.
Secondary bifurcation points are indicated by a solid circle; no secondary solution branches are
shown.
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