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A method is described for calculating nonlinear steady-state patterns in channels
taking into account the effect of an end wall across the channel. The key feature
is the determination of the phase shift of the nonlinear periodic form distant from
the end wall as a function of wavelength. This is found by analysing the solution
close to the end wall, where Floquet theory is used to describe the departure of the
solution from its periodic form and to locate the Eckhaus stability boundary. A
restricted band of wavelengths is identified, within which solutions for the phase
shift are found by numerical computation in the fully nonlinear regime and by
asymptotic analysis in the weakly nonlinear regime. Results are presented here
for the two-dimensional Swift-Hohenberg equation but in principle the method can
be applied to more general pattern-forming systems. Near onset, it is shown that
for channel widths less than a certain critical value the restricted band includes
both subcritical and supercritical wavelengths, whereas for wider channels only
subcritical wavelengths are allowed.
Key words: convection; nonlinear systems; pattern selection.

1 Introduction

There are many examples of systems that develop a cellular pattern through a
bifurcation or smooth evolution from a structureless state. Such patterns have
been observed in the hydrodynamic instability of fluids, such as Rayleigh-Benard
convection and Taylor-Couette flow, in solidification processes, plate buckling,
nonlinear optics, and in chemical and biological systems (see, for example, Cross
& Hohenberg 1993). In many technological applications, such as crystal growth
processes, solar collectors and heat exchangers, motion occurs within a channel-like
geometry and is strongly influenced by the sidewalls and end walls of the channel.
Carefully controlled Rayleigh-Benard experiments in long channels (Kirchartz &
Oertel 1988) show that cellular patterns consisting of convection rolls parallel to
the end walls can be subject to significant variations in wavelength as the Rayleigh
number increases above its threshold value. Such variations affect the heat transfer
characteristics of the system and are therefore of interest in applications of the
kind mentioned above. Numerical simulations of the entire flow are hampered by
the immense computing power needed to accurately simulate three-dimensional
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convection (Arter & Newell 1988) and the main objective of the present work is
to develop a method that will allow wavelength selection to be predicted in the
fully nonlinear regime without the need for such extensive simulations.

A number of phenomenological models have been studied as a means of gain-
ing insight into the nonlinear regime. The following model equation was first
introduced by Swift & Hohenberg (1977):

∂u

∂t
= ǫu− (1 + ∇2)2u− u3. (1)

Here t is time, x and y are horizontal spatial variables, ∇2 = ∂2/∂x2 + ∂2/∂y2, ǫ
is a control parameter and u = u(x, y, t) is a two-dimensional scalar field which
represents a characteristic property of the pattern, such as the vertical velocity
component at mid-height in a convecting fluid layer. Cross et al (1983) investigated
the effect of lateral boundaries on solutions of the one-dimensional equation in the
weakly nonlinear regime (ǫ≪ 1). They showed that even if the lateral walls are far
(many roll widths) apart, they severely restrict the band of allowed wavenumbers
in the bulk of the fluid compared with that which exists for the corresponding
infinite layer. These results were extended to two values of ǫ in the nonlinear
regime by Kramer & Hohenberg (1984) and to a range of values of ǫ by Daniels
et al (2003) who showed how the waveband is related to the phase shift of the
periodic form relative to the wall. In the present paper this analysis is extended
to the two-dimensional Swift-Hohenberg equation for a channel −a ≤ y ≤ a with
the equivalent of no-slip boundary conditions on the sidewalls:

u =
∂u

∂y
= 0 at y = ±a. (2)

The plan of the paper is as follows. In section 2, periodic solutions in an
infinite channel −∞ < x <∞ are considered. Linear theory is used to determine
the critical value ǫ0 of ǫ above which spatially periodic solutions exist and these
solutions are then found in both the weakly nonlinear regime (ǫ − ǫ0 ≪ 1) and
the fully nonlinear regime (ǫ > ǫ0). Floquet analysis is used in section 3 to study
spatial perturbations to these periodic solutions and to determine the Eckhaus
stability boundary. This leads to the consideration in section 4 of solutions for a
semi-infinite channel x ≥ 0 with an end wall where

u =
∂u

∂x
= 0 at x = 0. (3)

The Floquet analysis determines the spatial decay that occurs in order for the
boundary conditions at the end wall to be met. As in the one-dimensional case,
it is found that steady-state solutions exist for a restricted band of wavelengths.
Within this band the phase shift of the periodic form relative to the end wall is
determined as a function of wavelength using numerical computation in the fully
nonlinear regime and asymptotic analysis in the weakly nonlinear regime. Finally,
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in section 5, a discussion is given of how the present method can be extended
to solve the equivalent nonlinear Rayleigh-Benard system in long channels where,
so far, theoretical results are limited to the solution of the linear problem with
various conditions on the channel walls (Davies-Jones 1970, Luijkx & Platten 1981,
Chana & Daniels 1989) and certain aspects of the weakly nonlinear problem with
either stress-free horizontal walls (Daniels & Chana 1987) or no-slip horizontal
walls (Daniels & Ong 1990).

2 Periodic solutions

In this section steady-state periodic solutions are found for an infinite channel
−∞ < x < ∞,−a ≤ y ≤ a. Linear analysis is used to find the marginal stability
curves that mark the onset of such solutions, weakly nonlinear analysis establishes
their form close to onset and then fully nonlinear solutions are computed using a
Fourier decomposition.

2.1 Linear analysis

Small perturbations from the trivial solution u = 0 are governed by the linearized
version of (1), leading to steady-state solutions of the form

u = eiqxf(y) + c.c., (4)

where q is the wavenumber along the channel, c.c. denotes complex conjugate and
f satisfies

f ′′′′ + 2(1 − q2)f ′′ + ((1 − q2)2 − ǫ)f = 0; f = f ′ = 0 (y = ±a). (5)

The channel halfwidth a can be removed through the transformations

y = aY, f(y) = F (Y ), q2 = 1 −Qa−2, ǫ = δa−4, (6)

giving the system

F ′′′′ + 2QF ′′ + (Q2 − δ)F = 0; F = F ′ = 0 (Y = ±1), (7)

which depends only on the modified wavenumber Q and on δ. Solutions that are
even about Y = 0 onset first and with a normalization F (0) = 1 have the form

F =
cos µ̄ cosh µY − cosh µ cos µ̄Y

cos µ̄− coshµ
, (8)

where
µ = (δ1/2 −Q)1/2, µ̄ = (δ1/2 +Q)1/2 (9)

and
µ tanhµ = −µ̄ tan µ̄. (10)
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Equation (10) defines the marginal stability curves in the Q, δ plane, the lowest
two of which are shown in Fig.1. Turning points occur where µ tanhµ = 1, with
the lowest minimum at (µ, µ̄) = (µ0, µ̄0) = (1.200, 2.798) corresponding to (Q, δ) =
(Q0, δ0) = (3.196, 21.48) and thus critical values of the wavenumber and control
parameter given by

q0 = (1 − 3.196a−2)1/2, ǫ0 = 21.48a−4. (11)

The effect of the channel walls is to inhibit the onset of instability: the narrower
the channel the higher the value of ǫ0. Note that in practice the minimum occurs
at finite wavelengths only for sufficiently wide channels (a > 1.788). Fig.2 shows
the variation of the profile F (Y ) for increasing values of Q on the lowest even
branch. Odd solution branches are found from the equation µ coth µ = µ̄ cot µ̄
and the lowest two of these are also shown in Fig.1.

2.2 Weakly nonlinear analysis ǫ − ǫ0 ≪ 1

The linear analysis shows that, as ǫ increases, steady-state periodic solutions with
small amplitude first exist in the neighbourhood of the critical point ǫ0 with
wavenumber q0. Locally the steady-state solution for u can be developed in the
form

u = ǭ1/2u0 + ǭu1 + ǭ3/2u2 + ǭ2u3 + . . . , ǭ→ 0, (12)

where ǭ = ǫ− ǫ0 > 0 and ui = ui(x, y,X) are functions of x, y and the long length
scale X = ǭ1/2x. Substitution into (1) then yields in succession

Lu0 ≡
((

1 +
∂2

∂x2
+

∂2

∂y2

)2

− ǫ0

)

u0 = 0, (13)

Lu1 = −4

(

1 +
∂2

∂x2
+

∂2

∂y2

)

∂2u0

∂x∂X
, (14)

Lu2 = −2

(

1 +
∂2

∂x2
+

∂2

∂y2

)(

2
∂2u1

∂x∂X
+
∂2u0

∂X2

)

− 4
∂4u0

∂x2∂X2
+ u0 − u3

0. (15)

The relevant solution of (13) is

u0 = (A0(X)eiq0x +A∗

0(X)e−iq0x)f0(y), (16)

where A0 is a complex amplitude function, an asterisk denotes the complex con-
jugate and f0(y) = F0(Y ) is the solution (8) at the critical point. It now follows
from (14) that

u1 = (A1(X)eiq0x +A∗

1(X)e−iq0x)f0(y) − i(A′

0e
iq0x −A′∗

0 e
−iq0x)g0(y), (17)

where A1 is a further complex amplitude function and g0(y) = ∂f/∂q|ǫ0 , the
partial derivative of f viewed as a function of y and q at points on the neutral
curve, evaluated at ǫ = ǫ0. The relevant solution of (15) is then given by

u2 = (A2(X)eiq0x +A∗

2(X)e−iq0x)f0(y) − i(A′

1e
iq0x −A′∗

1 e
−iq0x)g0(y) +

eiq0xh(y,X) + e−iq0xh∗(y,X) + (A3
0e

3iq0x +A∗3
0 e

−3iq0x)h0(y), (18)
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where A2 is a further complex amplitude function. A consistent solution for the
function h requires that A0 satisfies the amplitude equation

α1A
′′

0 + α2A0 − α3A
2
0A

∗

0 = 0, (19)

where the coefficients are real and given by

α1 = aq20α10 + a−1α11, α2 = aα20, α3 = aα30, (20)

where
α10 = 2.926, α11 = 0, α20 = 0.7674, α30 = 1.683. (21)

Details of the derivation of (19)-(21) and of the solutions for g0, h0 and h are given
in Appendix A.

Periodic solutions of the amplitude equation (19) have the form

A0 = (α2/α3)
1/2(1 − α1α

−1
2 Ω2)1/2eiΩX (22)

(to within an arbitrary origin shift in X) where Ω2 < α2/α1. Thus weakly non-
linear periodic solutions are confined to overall wavenumbers q in the range

q0 − (ǫ− ǫ0)
1/2(α2/α1)

1/2 < q < q0 + (ǫ− ǫ0)
1/2(α2/α1)

1/2 (23)

which defines the marginal stability curve in the neighbourhood of ǫ = ǫ0. Using
(20) and (21), it follows that for general values of a > 1.788 the waveband of
nonlinear solutions is restricted to wavelengths 2π/q bounded by

2πa

(a2 − 3.196)1/2

(

1 ± 0.5121a2(ǫ− ǫ0)
1/2

a2 − 3.196

)

(24)

as ǫ→ ǫ0. For large channel widths (a→ ∞) this predicts a band of wavelengths
of width 6.435(ǫ− ǫ0)

1/2 centred on the critical wavelength of 2π and with ǫ0 = 0.
In the long wavelength limit a → 1.788+, both the critical wavelength and the
bandwidth increase, and the validity of formula (24) is restricted to a diminishingly
small range of ǫ near ǫ0, which approaches the value 2.104.

2.3 Nonlinear solutions

Fully nonlinear periodic solutions of (1) and (2) can be sought in the form

u = up(x, y) =
N

∑

n=1

an(y) sin nqx, (25)

where q is the wavenumber. The value of N is infinite in general but in practice
solutions can be found by truncating the infinite series. The form (25) can be
generalized to incorporate an origin shift in x if required and allows the weakly
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nonlinear solutions of section 2.2 to be extended to general values of ǫ > ǫ0.
Substitution of (25) into (1) gives

N
∑

n=1

{a′′′′n +2(1−n2q2)a′′n+(n4q4 −2n2q2 +1− ǫ)an} sin nqx = −
{

N
∑

n=1

an sinnqx
}3

.

(26)
By comparing coefficients of sinnqx on each side, this leads to a coupled system of
N fourth-order ordinary differential equations for the coefficients an, n = 1, 2, . . . N
to be solved subject to the boundary conditions an = a′n = 0 on y = ±a, obtained
from (2). This system was solved using finite difference approximations to the
derivatives of an with a truncation error of order (∆y)2 where ∆y is the step
length in y. This leads to a matrix equation Aa = b where A is the matrix
containing all the coefficients arising from the linear terms in (26), a is the vector
of unknown coefficients at equally-spaced intervals in y and b is a vector containing
all contributions from the nonlinear terms on the right-hand side of (26). This
system was solved by a Newton-Krylov iterative scheme, using the linear theory
of section 2.1, together with a single-mode truncation (N = 1) to obtain initial
results which were then used as starting values for higher truncation levels, up to
N = 9. The scheme was implemented mostly with 51 equally-spaced locations in
y and checks with other step sizes and with linear theory indicated good accuracy
in this case.

Results for the case a = π where, from (11), q0 = 0.8223 and ǫ0 = 0.2206
are shown in Figs 3-5. Fig.3 shows the variation of the coefficients an with ǫ for
q = 1 and n = 1, 3, 5, 7, 9. The even coefficients are zero, a consequence of the
cubic nonlinearity in (26). The coefficients an decrease in size rapidly with n,
so that only a few modes give a good approximation to the nonlinear solution
for the values of ǫ under consideration here. Fig.4 shows the variation of the
coefficient a1 with y and the wavenumber q for ǫ = 0.5. The solution vanishes at
the wavenumbers corresponding to the neutral curve q = 1.1022 and q = 0.3597.
Fig.5 shows the nonlinear periodic solution up(x, y) defined by (25) as a function
of both x and y for q = 1 and ǫ = 0.5.

3 Floquet analysis and the Eckhaus boundary

Steady-state perturbations to the nonlinear periodic solutions determined in the
previous section are now considered by writing

u = up(x, y) + k̄ū(x, y), (27)

where the constant k̄ is small. Substitution into (1) and (2) and neglect of non-
linear terms in k̄ shows that ū satisfies

∂4ū

∂x4
+
∂4ū

∂y4
+ 2

∂4ū

∂x2y2
+ 2

(

∂2ū

∂x2
+
∂2ū

∂y2

)

+ (1 − ǫ)ū+ 3u2
pū = 0 (28)
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with boundary conditions

ū =
∂ū

∂y
= 0 on y = ±a. (29)

Equation (28) is a linear partial differential equation with coefficients periodic in
x and it follows that a solution can be sought in the Floquet form

ū = e−cx
N̄

∑

n=0

(

bn(y) cos nqx+ cn(y) sinnqx
)

, (30)

where c is the characteristic exponent and the periodic part of the solution is ex-
pressed as a Fourier series in x whose coefficients bn(y), n = 0, 1, . . . and cn(y), n =
1, 2 . . . are bounded functions of y. If c is complex then the conjugate of k̄ū can
be added in (27) to obtain the real solution for u. The value of N̄ is infinite in
general but in practice solutions can be found by truncating the infinite series in
both (30) and (25). For N̄ = 1 and N = 1 the equations for the coefficients b0, b1
and c1 are determined from (28) as

b′′′′0 + 2(1 + c2)b′′0 + (c4 + 2c2 + 1 − ǫ)b0 = −3a2
1b0/2, (31)

b′′′′1 + 2(1 + c2 − q2)b′′1 − 4qcc′′1 + 4qc(q2 − c2 − 1)c1

+(c4 + 2(1 − 3q2)c2 + q4 − 2q2 + 1 − ǫ)b1 = −3a2
1b1/4, (32)

c′′′′1 + 2(1 + c2 − q2)c′′1 + 4qcb′′1 − 4qc(q2 − c2 − 1)b1

+(c4 + 2(1 − 3q2)c2 + q4 − 2q2 + 1 − ǫ)c1 = −9a2
1c1/4. (33)

The equation for b0 is disjoint from those for b1 and c1. In fact, because an = 0
for even values of n, solutions for the Floquet coefficients are obtained either with
bn = cn = 0 for odd n or with bn = cn = 0 for even n. Freedom in the choice of
the imaginary part of c means that attention can be restricted to the latter case.

In view of the rapid convergence of (25), computations were carried out initially
using the truncated system (32),(33) together with the boundary conditions b1 =
b′1 = c1 = c′1 = 0 at y = ±a obtained from (29). The finite difference scheme
of section 2 was used to discretize the system leading to a linear homogeneous
matrix equation Bf = 0 for the discrete values of b1 and c1 at M equally-spaced
locations in the y direction. Most computations were carried out with M = 17.
Non-trivial solutions exist for a discrete set of values of the characteristic exponent
c for which the determinant of the matrix B vanishes. Initially the values of a, q
and ǫ were fixed and c was varied within the complex plane to find the zeros of the
determinant of B. Generally this determinant is a very large complex function
so to avoid truncation errors it was more convenient to search for zeros of the
eigenvalue of minimum modulus, λB = min |eigB|. Fig.6 shows contours of log λB
in the range −5 < Re(c) < 5,−5 < Im(c) < 5 for the case a = π, q = 0.8 and
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ǫ = 0.45; a Newton iteration was used to home in on the precise location of the
zeros of λB. In Fig.6, the three characteristic roots c of smallest absolute value
lie on the real axis, located at c ≈ −0.375, 0.375 and c = 0; these will be denoted
by c−, c+ and c0 respectively. The last of these, which is zero for all a, q and ǫ,
corresponds to the exact solution of (28) and (29) ū = ∂up/∂x associated with an
origin shift of up in x. Although Fig.6 shows two sets of roots in the first quadrant,
the higher set can be ignored as it is just a reflection of the lower set about the
line c = iq and corresponds to the fact that any multiple of q in the imaginary
part of c can also be incorporated in the periodic part of the Floquet form (30).
The roots occur in conjugate pairs and also pairs symmetric about the imaginary
axis, giving a quadruply-infinite set corresponding to the existence of a complete
set of eigenfunctions in y, associated with the corresponding eigenvectors f.

Calculations were extended to higher truncation levels N and N̄ , and also
to other values of M . The results shown in Table 1 confirm that the severe
truncation gives a good approximation to the position of the real eigenvalue; in
fact the exponent is more sensitive to the discretization in y, as given by M , than
the number of Fourier modes in either up or ū.

The roots c± are the most significant in terms of the spatial behaviour of the
perturbation (30). Fig.7 shows their movement in the complex plane in the case
a = π and ǫ = 0.45 for a range of wavenumbers q about the critical wavenumber
q0 = 0.8223. As the value of q is increased or decreased from q0 a position is
reached where c± become zero and thereafter become purely imaginary. This
behaviour is shown for different values of ǫ in Fig.8. The wavenumbers at which
c± = 0 define the Eckhaus stability boundary (Eckhaus 1965) since these form the
locus of points at which spatially oscillatory disturbances to the periodic solution
up have zero temporal growth rate. Outside the Eckhaus boundary, spatially
periodic solutions (25) are temporally unstable to periodic solutions of different
wavelength.

Fig.9 shows the Eckhaus boundary computed with M = 17 for the case a = π,
where ǫ0 = 0.2206. At low values of ǫ the zeros of c± depend sensitively on
the value of M and, consistent with the trend shown in Table 1, the numerical
computation overestimates the actual bandwidth. For values of ǫ near ǫ0, the
Eckhaus boundary can be calculated from the weakly nonlinear equation (19) by
considering perturbations to A0 in (22) of the form

Ā(X) = K̄eiΩX+CX . (34)

A non-trivial solution requires either C = 0 (associated with an origin shift of
the periodic form) or α1C

2 + 6α1Ω
2 − 2α2 = 0. Real values of C (corresponding

to the non-existence of spatially periodic disturbances which grow with time) are
confined to the region Ω2 < α2/3α1, equivalent to overall wavenumbers q in the
range

q0 − (ǫ− ǫ0)
1/2(α2/3α1)

1/2 < q < q0 + (ǫ− ǫ0)
1/2(α2/3α1)

1/2 (35)

as ǫ→ ǫ0. This is also shown in Fig.9 for the case a = π.
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4 Nonlinear solutions for a semi-infinite channel

If an end wall is placed across the channel at x = 0 to form a semi-infinite channel
x ≥ 0 then the band of stable wavenumbers is further restricted. We now calculate
this restriction by numerical computation in the fully nonlinear regime and by
asymptotic analysis in the weakly nonlinear regime.

4.1 Nonlinear solutions

Within the Eckhaus boundary where c+ > 0, the results of section 3 indicate the
existence of a (doubly-infinite) set of characteristic exponents c with Re(c) ≥ 0,
corresponding to a complete set of eigenfunctions (30) which (for Re(c) > 0)
decay as x→ ∞. Satisfaction of the no-slip conditions (3) at the end wall requires
a departure of the nonlinear solution from its periodic form (25) which is now
achieved only as x→ ∞. From (27) and (30), the asymptotic form of the solution
as x→ ∞ is expected to be

u ∼ up(x+ φ, y) + ke−c+xP (x+ φ, y). (36)

Here φ is a possible constant phase shift of the solution which corresponds to
the eigenvalue c = 0 and k is a real constant associated with the characteristic
exponent c+ and corresponding eigenfunction

P (x, y) =
∞
∑

n=0

(

bn(y) cosnqx+ cn(y) sin nqx
)

. (37)

The complete asymptotic form (36) will also contain components

kme
−cmxPm(x+ φ, y) + c.c., m = 1, 2 . . . , (38)

where km are (complex) constants associated with the remaining (complex) char-
acteristic exponents cm and corresponding eigenfunctions Pm(x, y). In principle,
the two real constants k and φ, together with the doubly-infinite set of real con-
stants given by the real and imaginary parts of km must be chosen in order that
the two end-wall conditions (3) are satisfied for all values of y. An approximate
estimate of the restricted waveband can be made by assuming that (36) holds for
all x ≥ 0 and that up and the Floquet eigenfunction P (x, y) are replaced by their
one-mode approximations

up(x, y) = a1(y) sin qx, P (x, y) = b1(y) cos qx+ c1(y) sin qx. (39)

Fig.10 shows the variation of a1, b1 and c1 with wavenumber for the case where
a = π and ǫ = 0.4. Noting that the profiles a1, b1 and c1 are similar, it is a good
approximation to apply (3) at the central point y = 0 only, equivalent to a one-
point collocation. Elimination of k then leads to the requirement that the phase
shift φ is determined by solutions of the equation

B1 sin 2qφ− C1 cos 2qφ = −2qc−1
+ B1 − C1, (40)
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where B1 = b1(0) and C1 = c1(0). The left-hand side is an oscillatory function of
φ with amplitude (B2

1 + C2
1 )1/2 so that solutions exist only if

|2qc−1
+ B1 + C1| < (B2

1 + C2
1)1/2. (41)

For ǫ = 0.4 and from the variation of c+ shown in Fig.8 this is approximately the
band of solutions shown in Fig.10. By extending the calculations to other values
of ǫ, a narrow waveband of solutions is obtained in the q, ǫ plane and this is shown
in Fig.9.

In order to calculate the waveband accurately the asymptotic solution (36)
must be replaced by the actual steady-state solution of the nonlinear Swift-Hohenberg
equation and the end wall conditions (3) must be applied at all values of y.
This was achieved by using an explicit finite difference scheme to solve the time-
dependent Swift-Hohenberg equation (1) in the domain 0 ≤ x ≤ x∞,−a ≤ y ≤ a
subject to the no-slip conditions (2) and (3), and the periodicity condition

u =
∂2u

∂x2
= 0 at x = x∞. (42)

A standard 13-point second-order accurate discretization of the spatial derivatives
was used together with a forward difference in time. Steady-state solutions were
found by allowing the solution to evolve from a specified initial state at t = 0,
usually taken as u = (a2 − y2)u0 sin (10πx/x∞) with u0 = 0.3/π2 for the case
a = π. The value of x∞ must be sufficiently large to accommodate the approach
of the solution to its nonlinear periodic form and was generally set to the value
x∞ = 10π/q∞, with results then obtained for a series of values of q∞ near the
critical wavenumber q0 for the infinite channel. The solution then converges to a
steady (non-periodic) state and the actual wavelength λ, wavenumber q = 2π/λ
and amplitude can be deduced from the last half-cycle at x = x∞. The phase
shift φ relative to the end wall can also be calculated since from (36) x∞ +φ is an
integer number of half wavelengths. Most results were obtained with a 100 × 20
grid and a time step ∆t = 2×10−4; typically a steady-state solution was achieved
for values of t in the range 300 to 800, depending on the values of ǫ, q and a.
The scheme was tested by replacing the no-slip condition at x = 0 by a periodic
condition, allowing nonlinear solutions for an infinite channel to be computed.
This predicted a critical wavenumber q0 = 0.827 at ǫ0 = 0.222 in the case a = π,
consistent with the second-order accuracy of the scheme.

Fig.11 shows results for the phase shift φ as a function of q in the case a = π and
ǫ = 0.5. Stable steady-state solutions are limited to the range 0.797 ≤ q ≤ 0.871
with the end points corresponding to the positions where dq/dφ = 0. This is
similar to the behaviour in the one-dimensional case reported by Daniels et al
(2003) where it was shown that dual solutions exist at internal points of the range,
one of which is unstable. The same is expected in the two-dimensional case, but
the method of solution adopted here precludes the determination of the unstable
branch. Fig.12 shows contours of the steady-state solution for a = π, ǫ = 0.5
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and q = 0.835; also shown is the centre-line value u(x, 0) and the corresponding
periodic form up(x, 0), illustrating the phase shift of the solution. Results for
a = π, ǫ = 0.25 and q = 0.829 are shown in Fig.13; as ǫ nears the critical value
ǫ0 = 0.22 the approach of the solution to its nonlinear periodic form occurs over
an increasingly long length scale in x.

By repeating the calculations for a range of values of ǫ, the restricted band
of wavenumbers is determined and is shown in Fig.9 for the case a = π. The
bandwidth is similar to that predicted by the Floquet approximation, but is more
centrally placed relative to the critical wavenumber.

4.2 Weakly nonlinear analysis ǫ − ǫ0 ≪ 1

More insight into the role of the channel halfwidth a can be gained by extending
the weakly nonlinear theory of section 2.2 to provide a prediction of the restricted
waveband for values of ǫ close to ǫ0. This requires a derivation of the equation
for the second amplitude function A1 which appears in the solution (17) for u1.
This is found by consideration of the solvability condition for the term u3 in (12),
which satisfies

Lu3 = −2

(

1+
∂2

∂x2
+
∂2

∂y2

)(

2
∂2u2

∂x∂X
+
∂2u1

∂X2

)

−4
∂4u1

∂x2∂X2
−4

∂4u0

∂x∂X3
+u1−3u2

0u1.

(43)
It is shown in Appendix B that this leads to the amplitude equation

α1A
′′

1 +α2A1 −α3(A
2
0A

∗

1 + 2A0A
∗

0A1) = i(α4A
′′′

0 +α5A
′

0 +α6A
2
0A

′∗

0 +α7A0A
∗

0A
′

0),
(44)

where the coefficients αi(i = 4, 5, 6, 7) are real and given by

α4 = a3q30α40 + aq0α41, α5 = a3q0α50, α6 = −α7/2 = a3q0α60, (45)

where

α40 = 0.06516, α41 = 2.926, α50 = 0.01323, α60 = 0.01132. (46)

The four terms on the right-hand side of (44) are actually linearly dependent
because the first term A′′′

0 can be expressed in terms of the other three using (19).
The expansion (12) is valid over the long length scale x ∼ ǫ−1/2 and this outer

solution must be matched with an inner solution close to the end wall where x ∼ 1
and there is an adjustment to the end-wall conditions (3). In this inner region the
solution can be expanded in the form

u = ǭU(x, y) + . . . , ǭ→ 0 (47)

and is smaller, by a factor of ǭ1/2, than that in the outer region. This is a con-
sequence of the need to satisfy (3) and of consistency in matching between the
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regions, to be discussed below. Substitution in (1) shows that U satisfies the
partial differential equation

LU =

((

1 +
∂2

∂x2
+

∂2

∂y2

)2

− ǫ0

)

U = 0. (48)

This has general solution satisfying the boundary conditions U = ∂U/∂y = 0 at
y = ±a given by

U =

{

(r0f0(y) + s(xf0(y) − ig0(y)))e
iq0x +

∞
∑

n=1

rnfn(y)e
iqnx

}

+ c.c., (49)

where rn, n = 0, 1, . . . and s are arbitrary complex constants, f0 and g0 are the
real functions defined in section 2 and fn and qn, n = 1, 2, . . . are the complex
eigenfunctions and eigenvalues of the system

f ′′′′n + 2(1 − q2n)f
′′

n + ((1 − q2n)
2 − ǫ0)fn = 0; fn = f ′n = 0 (y = ±a) (50)

such that Im(qn) > 0. Solutions for which Im(qn) < 0 are discarded since these
would grow exponentially as x → ∞, whilst the solution for n = 0 with zero
imaginary part corresponds to the critical wavenumber q0. It is convenient to set

rnr,i = χnr,isr + χ̄nr,isi (51)

where rnr,i and sr,i denote the real and imaginary parts of rn and s, and it is
shown in Appendix C that the coefficients χnr,i and χ̄nr,i are then determined as
functions of a from (49) by application of the boundary conditions U = ∂U/∂x = 0
at x = 0. Values of χnr,i and χ̄nr,i for a = π are shown in Table 2.

Matching between the inner solution (47) as x → ∞ and the outer solution
(12) as X → 0 requires that

A0(0) = 0. (52)

This is because if A0 is non-zero at X = 0 an inner solution for u of order ǭ1/2

would be generated similar in form to (49) but with the terms linear in x excluded;
the remaining coefficients rn could not then be chosen to satisfy both of the end-
wall conditions at x = 0. Matching also requires r0 = A1(0) and s = A′

0(0) from
which it follows, by setting n = 0 in (51), that

A1(0) = αA′

0(0) + βA′∗

0 (0), (53)

where
α = (χ0r + χ̄0i + i(χ0i − χ̄0r))/2, (54)

β = (χ0r − χ̄0i + i(χ0i + χ̄0r))/2. (55)

Values of α and β for various values of a are given in Table 3.
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The results (52) and (53) are boundary conditions at X = 0 for the amplitude
functions A0 and A1 in the outer region, allowing A0 to be determined as

A0 =

(

α2

α3

)1/2

eiψ tanh
X̄√
2

(56)

where ψ is an arbitrary constant phase and then A1 as

A1 =
α2

(α1α3)1/2
eiψ

{

āsech2 X̄√
2

+ i

(

b̄ tanh
X̄√
2

+ q̄

(

X̄ tanh
X̄√
2
−

√
2

)

+
l1√
2

+
(l2 + l3)

2
√

2
sech2 X̄√

2

)}

, (57)

where X̄ = (α2/α1)
1/2X,

ā = (αr + |β| cos (γ − 2ψ))/
√

2, (58)

q̄ = (2l1 + l2 + l3 − 2αi − 2|β| sin (γ − 2ψ))/4, (59)

l1 =
α5

α2

− α4

α1

, l2 =
α4

α1

+
α6

α3

, l3 = 2

(

α4

α1

− α6

α3

)

, (60)

αr,i are the real and imaginary parts of α, and β = |β|eiγ . The constant b̄ remains
arbitrary at this stage of the expansion in ǭ.

From (56) and (57), as X → ∞,

u ∼ ǭ1/2(α2/α3)
1/2f0(y)e

iψ+iq0x{1 + iǭ1/2α2α
−1
1 q̄X + . . .} + c.c. (61)

and the solution assumes the form

u ∼ ǭ1/2(α2/α3)
1/2f0(y) exp {i(q0 + ǭα2α

−1
1 q̄)x+ iψ} + c.c. (62)

equivalent to that in an infinite channel with wavenumber

q0 + ǭα2α
−1
1 q̄. (63)

This can be formally confirmed by carrying out a weakly nonlinear expansion with
dual length scales x ∼ 1 and x ∼ ǭ−1 but the details are similar to those already
outlined in section 2 and in the one-dimensional case (Cross et al 1983) and are
omitted here. The results (63) and (59) now show that as the phase ψ varies, the
permissable values of the wavenumber q are limited to the range

q0 + (ǫ− ǫ0)(θ −
w

2
) < q < q0 + (ǫ− ǫ0)(θ +

w

2
) (64)

as ǫ→ ǫ0, where

w = α2|β|/α1, θ = α2(2l1 + l2 + l3 − 2αi)/(4α1). (65)
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This represents a region in the q, ǫ plane that expands linearly from the critical
point (q0, ǫ0). The width ǭw and angle ǭθ of this linear segment depend on the
channel halfwidth a in the manner shown in Fig.14, and Fig.15 shows the waveband
in the q, ǫ plane for several different values of a. The results for a = π are also
included in Fig.9 and are seen to agree well with the fully nonlinear calculations
of section 4.1.

It is seen from Fig.14 that the waveband is generally asymmetric, being skewed
towards subcritical wavenumbers for a < 2.567 and supercritical wavenumbers
for a > 2.567. For a > 7.15, the entire waveband is restricted to supercritical
wavenumbers and it is interesting to compare this with the corresponding result
for the one-dimensional (that is, y-independent) problem (Cross et al 1983) where
solutions for a semi-infinite domain x ≥ 0 are restricted to the symmetric range

1 − ǫ

16
< q < 1 +

ǫ

16
, ǫ≪ 1 (66)

either side of the critical wavenumber q0 = 1. The explanation of this apparent
contradiction is that the large a limit of the present analysis cannot be compared
directly with (66). As a → ∞, the expansion (12) is effectively limited to the
range ǭa4 ≪ 1, equivalent to ǫ − ǫ0 ≪ a−4. In this range the solution varies
with y in the region −a ≤ y ≤ a (through the functions f0(y) and so on). As
nonlinear effects increase, a transition occurs over the range ǫ ∼ a−4 in which
the y-dependence of the solution is relegated to the neighbourhood of the channel
walls. The one-dimensional solution then applies throughout most of the channel
for a−4 ≪ ǫ ≪ 1 with the wavenumber restriction (66) then applicable. The
reason that the waveband (64) is skewed towards supercritical wavenumbers for
large a can now be understood: from (11), the critical wavenumber has the form
q0 ∼ 1 − 1.598a−2 as a→ ∞ which means that the wavenumber must increase as
ǫ increases through the range where ǫ − ǫ0 ∼ a−4 and q − q0 ∼ a−2 in order that
the symmetric form (66) is attained when a−4 ≪ ǫ≪ 1. The transition from (64)
to (66) is a problem of some interest, especially as a further feature is the onset
of rolls perpendicular to the end wall when ǫ reaches values of order a−2.

As the channel width decreases to a = 1.788 the critical wavelength becomes
infinite. Although this behaviour is not relevant in the classical Rayleigh-Benard
system, it is of interest in relation to convection between poorly conducting planes
(Proctor 1981). Fig.14 shows that in this limit the bandwidth increases and the
long wavelength solutions include both subcritical and supercritical modes.

For a pattern of wavenumber q in the range (64), equation (59) determines
the corresponding phase shift ψ. In fact it determines two solution branches for
a given wavenumber, corresponding to ψ = ψ0 (say) and ψ = γ − π

2
− ψ0. Since,

from (56), A′
0(0) = s = α

1/2
2 eiψ/(2α3)

1/2, these two branches are associated with

sr,i = α
1/2
2 (2α3)

−1/2(cosψ0, sinψ0) (67)

and
sr,i = α

1/2
2 (2α3)

−1/2(sin (γ − ψ0),− cos (γ − ψ0)) (68)
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respectively. The inner solution near the end wall is then determined by (49) as a
function of the phase shift ψ0, which varies over the range 1

2
γ − π

4
< ψ0 <

1
2
γ + π

4

as q varies over the range (64). Fig.16 shows contours of the inner solution U
corresponding to the two branches (67) and (68) at the midpoint of the range,
ψ0 = 1

2
γ, for the case a = π. Branch (67) is a stable solution and compares

well with the nonlinear computation in Fig.13 whereas branch (68) involves a flow
reversal close to the end wall and is an unstable solution.

5 Discussion

Nonlinear steady-state solutions of the two-dimensional Swift-Hohenberg equation
have been found for an infinite channel of non–dimensional width 2a. Floquet
theory has been used to investigate the departure of the solution from its periodic
form, leading to the determination of the Eckhaus stability boundary and the
asymptotic form of the solution at large distances from an end wall inserted across
the channel. The phase shift of this asymptotic form has been found as a function
of wavelength by numerical computation in the fully nonlinear case and by weakly
nonlinear theory for values of ǫ close to the threshold value ǫ0, leading to the
determination of the restricted band of wavelengths possible in a semi-infinite
channel.

If a second end wall is present then the waveband is quantized. Using the same
procedure as that described for the one-dimensional case by Daniels et al (2003),
the present results then also determine the families of steady-state solutions even
or odd in x (together with their interconnecting branches) that exist in long finite
channels.

One advantage of the weakly nonlinear treatment of section 4.2 is that the
dependence on the channel halfwidth a can be incorporated analytically through-
out most of the theory. This leads to the interesting result shown in Fig.14 that
the waveband is skewed towards supercritical wavenumbers for sufficiently wide
channels. Since the critical wavenumber for Rayleigh-Benard convection in a rigid,
thermally conducting channel (Chana & Daniels 1989) has a qualitatively similar
behaviour at large a to that of the Swift-Hohenberg system in (11) it is expected
that the same behaviour will occur there.

It is now planned to apply the techniques and insight developed here in two
dimensions to the three-dimensional convection problem. Rayleigh-Benard exper-
iments in long boxes have identified significantly different and as yet unexplained
behaviours for high and low Prandtl number fluids. At high Prandtl numbers lit-
tle change in wavelength is observed as the Rayleigh number increases to as much
as ten times its critical value whereas at low Prandtl numbers the wavelength is
observed to increase steadily through the same range (Kirchartz & Oertel 1988).
It is hoped that the present approach will provide new insight into this behaviour
and also a way of predicting the behaviour of other similar pattern-forming sys-
tems.
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Appendix A. Derivation of the amplitude equation for A0

From (8),

F0(Y ) =
cos µ̄0 cosh µ0Y − coshµ0 cos µ̄0Y

cos µ̄0 − coshµ0

= 0.3422 cosh µ0Y + 0.6578 cos µ̄0Y

(69)
and then g0 = a2q0G0(Y ) where

LG0 ≡ G′′′′

0 + 2Q0G
′′

0 + (Q2
0 − δ0)G0 = 4(F ′′

0 +Q0F0); G0 = G′

0 = 0 (Y = ±1)
(70)

with G0(0) = 0 to fix the otherwise arbitrary multiple of the complementary solu-
tion F0; the same solution can also be calculated from (7) as G0 = −2∂F/∂Q|δ0 ,
giving

G0 =
Y

ν0 + ν̄0

(

ν0

µ0

sinhµ0Y +
ν̄0

µ̄0

sin µ̄0Y

)

− 2ν0ν̄0δ
1/2
0 (coshµ0Y − cos µ̄0Y )

(δ0 −Q2
0)(ν0 + ν̄0)2

= Y (0.2852 sinh µ0Y + 0.2350 sin µ̄0Y ) − 0.1851(cosh µ0Y − cos µ̄0Y ) (71)

where

ν0 = (δ0 − δ
1/2
0 −Q2

0 −Q0)
1/2, ν̄0 = (δ0 + δ

1/2
0 −Q2

0 −Q0)
1/2. (72)

The functions F0 and G0 are shown in Fig.17.
The function h in (18) satisfies

L̄h ≡
((

1 − q20 +
∂2

∂y2

)2

− ǫ0

)

h = ξ(y,X); h =
∂h

∂y
= 0 (y = ±a), (73)

where

ξ = A0f0 − 3A2
0A

∗

0f
3
0 −A′′

0

(

4q0

(

1 − q20 +
d2

dy2

)

g0 + 2

(

1 − 3q20 +
d2

dy2

)

f0

)

. (74)

The linear homogeneous system (5) is self-adjoint and since the inhomogeneous
system for h involves the same linear operator it has a consistent solution only if

∫ a

−a
ξf0dy = 0. (75)

This gives (19) and (20) where

α10 = −4

∫

1

−1

F0(G
′′

0 +Q0G0 − F0)dY, (76)

α11 = −2

∫ 1

−1

F0(F
′′

0 +Q0F0)dY, (77)

α20 =

∫ 1

−1

F 2
0 dY, (78)
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α30 = 3

∫ 1

−1

F 4
0 dY (79)

and evaluation of the integrals using (69) and (71) gives (21).

Appendix B. Derivation of the amplitude equation for A1

It is first necessary to complete the solution for u2 in (18). By expressing the
nonlinear term A2

0A
∗
0 on the right-hand side of (74) in terms of A′′

0 and A0 from
(19), the solution for the function h can be found in the form

h = A′′

0{a4q20H1(Y ) + a2H2(Y )} +A0a
4H3(Y ), (80)

where H1,2,3 satisfy

LH1 = −4(G′′

0 +Q0G0 − F0) − 3α10α
−1
30 F

3
0 ; H1 = H ′

1 = 0 (Y = ±1), (81)

LH2 = −2(F ′′

0 +Q0F0) − 3α11α
−1
30 F

3
0 ; H2 = H ′

2 = 0 (Y = ±1), (82)

LH3 = F0 − 3α20α
−1
30 F

3
0 ; H3 = H ′

3 = 0 (Y = ±1). (83)

Since α11 = 0, equations (70) and (82) differ by a factor of minus two on the
right-hand side and hence the solution for H2 can be taken as H2 = −G0/2. Since
F0 and G0 are known, the remaining equations (81) and (83) can also be solved
analytically. Maple was used to aid with the algebra, giving

H1 = (d1 + d2Y
2) cosh (µ0Y ) + (d3 + d4Y

2) cos (µ̄0Y )

+Y (d5 sinh (µ0Y ) + d6 sin (µ̄0Y )) + d7 cosh (3µ0Y ) + d8 cos (3µ̄0Y )

+d9 cos (µ̄0Y ) cosh (2µ0Y ) + d10 sin (µ̄0Y ) sinh (2µ0Y )

+d11 cos (2µ̄0Y ) cosh (µ0Y ) + d12 sin (2µ̄0Y ) sinh (µ0Y ), (84)

H3 = d13 cosh (µ0Y ) + d14 cos (µ̄0Y )

+Y (d15 sinh (µ0Y ) + d16 sin (µ̄0Y )) + d17 cosh (3µ0Y ) + d18 cos (3µ̄0Y )

+d19 cos (µ̄0Y ) cosh (2µ0Y ) + d20 sin (µ̄0Y ) sinh (2µ0Y )

+d21 cos (2µ̄0Y ) cosh (µ0Y ) + d22 sin (2µ̄0Y ) sinh (µ0Y ). (85)

Here the coefficients d1 to d22 are functions of Q0 and δ0 given to four significant
figures by

d1 = −0.0006539, d2 = −0.1189, d3 = −0.001294, d4 = −0.04200

d5 = 0.1943, d6 = −0.04810, d7 = −0.0002183, d8 = −0.00008236,

d9 = 0.002938, d10 = −0.0004413, d11 = −0.0007635, d12 = 0.001072,

d13 = 0.002506, d14 = −0.002998, d15 = −0.0001211, d16 = −0.004005

d17 = −0.00005726, d18 = −0.00002160, d19 = 0.0007706, d20 = −0.0001158

d21 = −0.0002003, d22 = 0.002812. (86)
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The normalization conditions H1(0) = 0 and H3(0) = 0 have been applied to
completely determine all the coefficients. The functions H1 and H3 are shown in
Fig.17.

The remaining function involved in the solution (18) for u2 is h0 which satisfies

(

1 − 9q20 +
d2

dy2

)2

h0 − ǫ0h0 = −f3
0 ; h0 = h′0 = 0 (y = ±a). (87)

Since this involves a different linear operator it is not possible to scale out the
channel halfwidth a, but the function h0 is not needed to calculate the coefficients
α4, . . . , α7. These now follow from the solvability condition associated with terms
proportional to e±iq0x in (43), giving the results (44) and (45) where

α40 = 4

∫

1

−1

F0(H
′′

1 +Q0H1 +G0)dY, (88)

α41 = 2

∫ 1

−1

F0(2H
′′

2 + 2Q0H2 + 2F0 −G′′

0 −Q0G0)dY, (89)

α50 =

∫

1

−1

F0(4H
′′

3 + 4Q0H3 +G0)dY, (90)

α60 = 3

∫ 1

−1

F 3
0G0dY. (91)

Evaluation of these integrals using Maple gives the results (46).

Appendix C. Derivation of the coefficients χ and χ̄
The channel halfwidth a is removed from the system (50) by the transforma-

tions fn(y) = Fn(Y ), q2n = 1 −Qna
−2, giving

F ′′′′

n + 2QnF
′′

n + (Q2
n − δ0)Fn = 0; Fn = F ′

n = 0 (Y = ±1). (92)

This has solutions that are either even or odd in Y but for the present purposes
it is sufficient to determine the even set. With a normalization Fn(0) = 1, this is
given by

Fn =
cos µ̄n coshµnY − cosh µn cos µ̄nY

cos µ̄n − coshµn
(93)

where
µn = (δ

1/2
0 −Qn)

1/2, µ̄n = (δ
1/2
0 +Qn)

1/2 (94)

are generally complex. Insisting that (93) satisfies the boundary conditions re-
quires that

µ̄n coshµn sin µ̄n + µn cos µ̄n sinhµn = 0. (95)

Splitting (95) into real and imaginary parts gives two sets of real equations for
the real and imaginary parts µnr,i and µ̄nr,i of µn and µ̄n respectively. However,
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these are also related by (94) and taking the real and imaginary parts gives two
further sets of equations

µ̄nr = −µnrµni/µ̄ni (96)

and

µ̄2
ni =

1

2

{

µ2
nr − µ2

ni − 2δ
1/2
0 +

(

(µ2
nr − µ2

ni − 2δ
1/2
0 )2 + 4µ2

nrµ
2
ni

)1/2
}

. (97)

These were used to express µ̄nr,i in terms of µnr,i and then Newton’s method used
to solve the two remaining sets of equations for µnr,i. The real and imaginary
parts of Qn are then calculated from (94) as

Qnr = µ2
ni − µ2

nr + δ
1/2
0 , Qni = −2µnrµni, (98)

respectively. It is sufficient to find solutions in one quadrant of the µnr, µni plane
because the system (95)-(97) is invariant under the transformation µnr → −µnr
and also under µni → −µni. Each solution for µnr,i in the positive quadrant
therefore yields four solutions in the complex plane. In turn these four solutions
provide the eigenvalue Qn and its complex conjugate for each value of n. The
solution that lies on the axis µni = 0 gives the critical wavenumber Q0 = 3.196.
The six complex eigenvalues with (in magnitude) smallest non-zero imaginary part
are listed in Table 4 and the corresponding eigenfunctions are shown in Fig.18.

Introducing (51), the solution (49) satisfies the end-wall conditions U = ∂U/∂x =
0 if the coefficients χn satisfy

χ0rF0 +
∞
∑

n=1

(χnrFnr − χniFni) = 0, (99)

q0χ0iF0 +
∞
∑

n=1

(qniχnr+qnrχni)Fnr+
∞
∑

n=1

(qnrχnr−qniχni)Fni = F0 +a2q20G0 (100)

and the coefficients χ̄n satisfy

χ̄0rF0 +
∞
∑

n=1

(χ̄nrFnr − χ̄niFni) = −a2q0G0, (101)

q0χ̄0iF0 +
∞
∑

n=1

(qniχ̄nr + qnrχ̄ni)Fnr +
∞
∑

n=1

(qnrχ̄nr − qniχ̄ni)Fni = 0. (102)

Truncated forms of these equations were solved by a collocation method, evaluat-
ing each pair at Y = 0 together with M̄ equally-spaced locations in the interval
0 < Y < 1, yielding 2(M̄ + 1) equations for the 2(M̄ + 1) coefficients χnr,i or
χ̄nr,i, n = 0, 1 . . . M̄ . Good convergence was achieved as the value of M̄ was in-
creased - the results given in Table 2 are for M̄ = 6.
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M N N̄ c+
8 1 1 0.3988
17 1 1 0.3750
35 1 1 0.3697
71 1 1 0.3685
17 3 1 0.3749
17 3 3 0.3752

Table 1. Value of the critical exponent c+ for a = π, ǫ = 0.45 and q = 0.8 for
different values of M,N and N̄ .

n χnr χni χ̄nr χ̄ni
0 -0.02201 1.29750 -0.15395 -0.07450
1 0.00163 -0.20391 0.14752 -0.31646
2 0.02468 -0.00649 0.01132 0.04062
3 -0.00520 0.00722 -0.00705 -0.00615
4 0.00090 -0.00384 0.00311 0.00041
5 0.00032 0.00188 -0.00116 0.00086
6 -0.00033 -0.00024 0.00021 -0.00045

Table 2. Values of χnr,i and χ̄nr,i for a = π.

a α β

2.00 -0.03259+1.14116i 0.03068+1.10493i
3.14 -0.04825+0.72573i 0.02625+0.57177i
4.00 -0.05787+0.76647i 0.01177+0.51181i
6.00 -0.08204+1.02209i -0.01498+0.48789i
8.00 -0.13021+1.41751i -0.01811+0.48421i
10.00 -0.19755+1.93484i -0.01994+0.48268i

Table 3. Values of α and β for various values of a.

n Qn n Qn
1 26.30-15.86i 4 216.45-60.56i
2 69.73-29.87i 5 319.59-76.93i
3 133.15-44.83i 6 442.53-93.82i

Table 4. Eigenvalues Qn listed in order of descending imaginary part.
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Figure 1: Marginal stability curves in the Q, δ plane showing the two lowest even
branches (—) and the two lowest odd branches (- - -).
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Figure 2: Variation of the profile F (Y ) for values of Q increasing from Q0 on the
lowest even marginal stability curve.
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Figure 3: Fourier coefficients an(y) of the nonlinear periodic solution for n =
1, 3, 5, 7, 9 as a function of y for a = π, q = 1 and values of ǫ decreasing from 1 in
steps of 0.02.
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Figure 4: Fourier coefficient a1(y) of the nonlinear periodic solution as a function
of y and q for a = π and ǫ = 0.5.
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Figure 5: Periodic solution up(x, y) as a function of x and y for a = π, q = 1 and
ǫ = 0.5.
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Figure 6: Contour plot of log λB in the complex c plane showing the general
pattern of the characteristic exponents for a one-mode truncation at a = π, q = 0.8
and ǫ = 0.45.
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Figure 7: Contour plots of λB in the complex c plane for −0.5 < Re(c) <
0.5,−0.5 < Im(c) < 0.5 showing the location of the characteristic exponents near
the origin for a = π, ǫ = 0.45 and values of the wavenumber q in the range 0.5 to
1.
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Figure 8: Variation of the characteristic exponent c+ with wavenumber q for a = π
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Figure 9: The q, ǫ plane for a = π showing the marginal stability curve (heavy
solid line) and the Eckhaus stability boundary based on weakly nonlinear theory
(thin solid line) and numerical computation (− − −). Also shown (see section 4)
are the waveband for a semi-infinite channel based on a Floquet approximation
(· · ·), numerical computation (⋄ ⋄ ⋄) and weakly nonlinear theory (− · − · −).
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Figure 10: Coefficients a1(y), b1(y) and c1(y) for wavenumbers in the range 0.824 <
q < 0.954 for a = π and ǫ = 0.4.
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Figure 11: Phase shift φ as a function of wavenumber q for a = π and ǫ = 0.5.
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Figure 12: Contours of the steady-state solution u(x, y) for a = π, ǫ = 0.5 and
q = 0.835. Also shown are u(x, 0) and the corresponding periodic form up(x, 0).
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Figure 13: Contours of the steady-state solution u(x, y) for a = π, ǫ = 0.25 and
q = 0.829. Also shown are u(x, 0) and the corresponding periodic form up(x, 0).
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Figure 15: Weakly nonlinear results for the marginal stability curve (—), the
Eckhaus boundary (- - -) and the restriction on the waveband imposed by the end
wall at x = 0 (· · ·): (a) a = 2, (b) a = π, (c) a = 6, (d) a = 10.
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Figure 16: Contours of the inner solution U for a = π: (a) branch 1, corresponding
to values of sr,i given by (67) with ψ0 = γ/2, (b) branch 2, corresponding to values
of sr,i given by (68) with ψ0 = γ/2.
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Figure 18: Real (—) and imaginary (- - -) parts of the six eigenfunctions Fn, n =
1, . . . 6.
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