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Abstract

A method is described for calculating steady-state patterns in large-scale nonlinear
systems, taking into account the effect of a lateral boundary and without the need
for extensive numerical calculations. The key feature is the determination of the
phase shift of the nonlinear periodic form distant from the boundary as a function
of wavelength. This is found by analyzing the solution close to the boundary, where
Floquet theory is used to describe the departure of the solution from its periodic
form. For a restricted band of wavelengths lying within the Eckhaus boundary, dual
solutions for the phase shift are found, one of which corresponds to an unstable
state. Results are presented here for the one-dimensional Swift-Hohenberg equation
in a semi-infinite domain but in principle the method can be applied to more general
pattern-forming systems. The results are compared with the predictions of weakly
nonlinear theory and with nonlinear computations on a large but finite domain.
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1 Introduction

There are many examples of systems that develop a cellular pattern through

a bifurcation or smooth evolution from a structureless state. Such patterns

have been observed in the hydrodynamic instability of simple fluids (such as
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Rayleigh-Bénard convection and Taylor-Couette flow), in the electrohydrody-

namic instability of liquid crystals, in crystal growth and in the buckling of

plates (see, for example, [1]). A key issue in predicting pattern formation in

such systems is to understand how the presence of lateral boundaries affects

the structure, orientation and wavelength of the pattern. It is known from

experimental work on Rayleigh-Bénard and other systems that such bound-

aries generally have a strong influence, even in large-aspect-ratio systems [2],

but numerical investigations are hampered by the immense computing power

needed to accurately simulate three-dimensional flows in the fully nonlinear

regime (see, for example, [3]). Thus a number of phenomenological models

have been studied as a means of gaining insight into the nonlinear regime.

The following model equation was first introduced by Swift and Hohenberg

[4]:

∂u

∂t
= εu −

(
1 + ∇2

)2
u − u3. (1)

Here t is time, ε is a control parameter and u = u (x, y, t) is a two-dimensional

scalar field which is intended to represent a characteristic property of the

convection pattern, such as the vertical velocity component at mid-height in a

horizontal layer parallel to the x, y plane. The Swift-Hohenberg equation has

been much studied in the last twenty years. Cross et al [5,6] investigated the

effect of lateral boundaries on solutions of the one-dimensional equation in the

weakly nonlinear regime (ε ≪ 1) . They showed that even if the lateral walls

are far (many roll-widths) apart, they severely restrict the band of allowed

wavenumbers in the bulk of the fluid compared with that which exists for

the corresponding infinite layer. Kramer and Hohenberg [7] used a numerical

method to find results for two isolated values of ε in the nonlinear regime and

also determined the Eckhaus stability boundary for 0 < ε ≤ 1. Further details

of the bifurcation structure and Eckhaus instability mechanism were discussed

by Tsiveriotis and Brown [8], whilst Hernandez-Garcia et al [9] considered the

influence of noise on pattern selection. A comprehensive numerical study of

the two-dimensional Swift-Hohenberg equation was reported by Greenside et

al [10] and Greenside and Coughran [11], and Kuwamura [12] considered the

stability of roll solutions of the two-dimensional equation using a spectral

analysis.
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In the present paper the weakly nonlinear results of Cross et al [6] for the one-

dimensional Swift-Hohenberg equation are extended to the nonlinear regime

using a method based on Floquet analysis. Steady-state solutions are sought

in a semi-infinite domain x ≥ 0 which adjust to a lateral boundary at x = 0

and approach a periodic form as x → ∞, equivalent to a roll pattern paral-

lel to the boundary in the corresponding Rayleigh-Bénard problem. The aim

is to develop a method that allows the classification of such solutions in the

nonlinear regime in terms of their phase shift relative to the boundary. Once

this phase shift is known, the nonlinear solution is effectively determined far

from the boundary by its periodic extension, avoiding the need for a numeri-

cal representation other than within a few roll-widths of the boundary itself.

An extension of this approach to the Rayleigh-Bénard system would offer

the prospect of avoiding extensive three-dimensional numerical calculations in

large-aspect-ratio systems.

The first step is to determine the steady-state nonlinear spatially-periodic

solutions of the one-dimensional Swift-Hohenberg equation. Some of these

have been discussed by Kramer and Hohenberg [7] although even in the one-

dimensional case there is a myriad of bifurcation structures that result from

mode interactions and lead to a non-uniqueness of periodic states at given val-

ues of ε and the wavenumber q. Dangelmayr [13] and Cox [14] have considered

similar mode interactions in Rayleigh-Bénard convection. Results for the one-

dimensional Swift-Hohenberg equation are determined here using a shooting

method and are described in Section 2. In a semi-infinite domain 0 ≤ x < ∞
the presence of a lateral boundary at x = 0 introduces a spatial perturbation

to the periodic form that can be analyzed using Floquet theory. This analysis

is described in Section 3 and leads to the determination of a set of Floquet

exponents and eigenfunctions for each nonlinear solution at given points in the

ε, q plane. A bi-product of this analysis is the location of the Eckhaus stability

boundary at which the spatial perturbation becomes oscillatory, but within

the Eckhaus boundary the existence of a spatially-decaying mode signals the

possibility of a stable steady-state solution that satisfies the relevant condi-

tions at the lateral boundary x = 0. In effect, this provides the asymptotic

form of the solution as x → ∞ in which the amplitude of the perturbation

and the phase shift of the periodic form must then be chosen to ensure that

the boundary conditions are satisfied at x = 0. This procedure is carried out
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in Section 4 and leads to the classification of dual solutions within a restricted

region of the ε, q plane. At each stage, the results are carefully compared with

those of weakly nonlinear analysis in the limit ε → 0, and stability arguments

are used to show that one of the dual solutions is unstable. The results are

discussed in Section 5.

2 Periodic solutions

In this section steady-state periodic solutions of the one-dimensional Swift-

Hohenberg equation

∂u

∂t
= (ε − 1)u − ∂4u

∂x4
− 2

∂2u

∂x2
− u3 (2)

are found. It is convenient to introduce a positive parameter L and use the

boundary conditions

u =
∂2u

∂x2
= 0 at x = 0, L (3)

in which case the wavenumber of the solution is given by q = nπ/L for some

positive integer n.

2.1 Linear analysis

Infinitesimal perturbations from the trivial solution u = 0 are governed by the

linearized version of the system (2), (3) which has normal-mode solutions

u = est sin
nπx

L
, n = 1, 2, . . . (4)

with growth rates s = ε −
(
(nπ/L)2 − 1

)2
. Thus the trivial solution becomes

unstable when

ε =

((
nπ

L

)2

− 1

)2

. (5)
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Fig. 1. Marginal curves for n = 1, 2 . . . 10.

Figure 1 shows these marginal curves, which identify the onset of nonlinear pe-

riodic solutions, for the first ten modes n = 1, 2, . . . 10. Although these curves

each represent the onset of the same pair of periodic solutions (proportional

to sin
√

(1 ± ε1/2)x) at a given value of ε, their intersection points herald the

development of new nonlinear solutions through mode interactions which are

discussed in more detail below.

2.2 Weakly nonlinear analysis ε ≪ 1

The linear analysis shows that as ε increases from zero, steady-state periodic

solutions with small amplitude first exist in the neighbourhood of the critical

point with wavenumber q = 1. Locally the solution for u can be developed in

the form

u = ε1/2u0 + εu1 + ε3/2u2 + ε2u3 + . . . , ε → 0, (6)
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where ui = ui (x, X, τ) are functions of x and the long length and time scales

X = ε1/2x and τ = εt. Substitution into (2) then yields in succession

∂4u0

∂x4
+ 2

∂2u0

∂x2
+ u0 = 0, (7)

∂4u1

∂x4
+ 2

∂2u1

∂x2
+ u1 =−4

(
∂4u0

∂x3∂X
+

∂2u0

∂x∂X

)
, (8)

∂4u2

∂x4
+ 2

∂2u2

∂x2
+ u2 =−4

(
∂4u1

∂x3∂X
+

∂2u1

∂x∂X

)
− 6

∂4u0

∂x2∂X2

−∂u0

∂τ
− 2

∂2u0

∂X2
+ u0 − u3

0. (9)

Solving equation (7), the relevant periodic form is

u0 = A0 (X, τ) eix +c.c., (10)

where A0 is a complex amplitude function and c.c. denotes complex conjugate.

It now follows from (8) that

u1 = A1 (X, τ) eix +c.c., (11)

where A1 is a further complex amplitude function, and then in order that u2

is periodic the secular terms proportional to e±ix on the right-hand side of (9)

must vanish, in which case A0 satisfies

∂A0

∂τ
= 4

∂2A0

∂X2
+ A0 − 3A0 |A0|2 . (12)

Steady-state periodic solutions for u are now found by assuming that

A0 = Ap (X) = R eiQX , (13)

where R is constant. The conditions (3) then imply that R is purely imaginary

and that Q must satisfy

L
(
1 + Qε1/2

)
= nπ, n = 1, 2 . . . . (14)

Finding R = ±i (1 − 4Q2)
1/2

/
√

3 from (12), it follows that (to within an

arbitrary change of sign) weakly nonlinear steady-state periodic solutions have
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the form

u = up (x) ∼ 2

√
ε

3

(
1 − 4Q2

)1/2
sin

nπx

L
, −1

2
≤ Q ≤ 1

2
(15)

as ε → 0, where Q and L are related by (14). These solutions exist inside the

marginal stability curves, which correspond to the limiting values Q = ±1
2
.

2.3 Nonlinear solutions

A shooting method was used to obtain steady periodic solutions u = up (x)

of the full nonlinear problem (2), (3). The steady-state version of equation

(2) was converted into a set of four first order ordinary differential equations

and solutions obtained by a fourth order Runge-Kutta scheme starting from

conditions

(u, ux, uxx, uxxx) = (0, α, 0, β) at x = 0. (16)

The values of u and its first three derivatives are monitored at x = L and a

Newton iteration used to adjust the values of α and β until u and uxx vanish

there. Solutions were found in the ε, L plane starting at ε = 0.1, L = π where

initial estimates of α and β are provided by the weakly nonlinear solution

(15), (14). The ODE solver within Matlab’s ODESUITE [15] was used and

further solutions were then obtained by incrementing L or ε, using results

from the previous calculation as initial estimates for α and β. The path-

following code used a heuristic method to increment the step size in L or

ε: the number of Newton iterates is monitored and the step size reduced or

increased accordingly.

Figure 2 shows plots of α and β for 2 < L < 7.5 and values of ε in the range

0.01 to 0.65. Profiles of u at L = π over a much wider range of ε are shown in

Figure 3. For low values of ε there is a single nonlinear solution (apart form

an arbitrary change of sign) at each point in the ε, L plane, but at ε = 9/25

further solutions are generated by the 1-2 mode interaction at L =
√

10π/2.

The resulting nonlinear solutions bifurcate from the basic nonlinear solution

in the manner seen in Figure 2 for ε = 0.4, 0.6 and 0.65.
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The next mode interaction is the 1-3 interaction which is initiated at ε = 16/25,

L =
√

5π. The intricate structure of the resulting nonlinear solution is seen

in Figure 2 for ε = 0.65 and leads to the existence of three nonlinear solu-

tions within a restricted range of L. Here the cubic nonlinearity of the Swift-

Hohenberg equation leads to a resonance in which the mode 3 component

evolves smoothly with increasing L, rather than through a bifurcation from

the 1-mode solution. This can be seen in the local profiles of u shown in

Figure 4.

Local analyses of the 1-2 and 1-3 mode interactions were carried out to confirm

and assist in the numerical computations and are described in detail by Ho [16].

8



0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ε=0.1
ε=0.2
ε=0.3
ε=0.4
ε=0.5
ε=0.6

ε=0.8
ε=0.7

ε=0.9
ε=1.0
ε=1.1
ε=1.2

x

u

0 0.5 1 1.5 2 2.5 3 3.5
−1

0

1

2

3

4

5

6

ε=30

ε=25

ε=20

ε=15

ε=10

ε=5

ε=1

x

u

Fig. 3. Profiles of the periodic solution u (x) for L = π and ε in the range 0.1 to 30.

9



0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

x

u

Fig. 4. Profiles of the periodic solution u (x) for ε = 0.65 and values of L near 7.

3 Floquet analysis

Steady-state perturbations to the periodic solutions determined in the previ-

ous section are now considered by writing

u = up (x) + k̃U (x) + . . . , (17)

where the constant k̃ ≪ 1 and up denotes the periodic solution. Substitution

into (2) and neglecting nonlinear terms in k̃ shows that the function U satisfies

(
d2

dx2
+ 1

)2

U − εU + 3u2
pU = 0. (18)

Since (18) is a linear ordinary differential equation with periodic coefficients

it follows from Floquet theory (see, for example, [17]) that there are solutions
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of the form

U (x) = e−cx P (x) , (19)

where P (x) is periodic with the same period as that of up. Note that if the

characteristic exponent c or eigenfunction P is complex then the conjugate of

k̃U is also a solution and can be added in (17) to ensure that u is real. In

order to find c and P , the solution for U is written in the form

U =
4∑

i=1

αiUi (x) , (20)

where Ui are four linearly independent solutions of (18) obtained by, in turn,

using the initial conditions U1 (0) = 1, U ′
2 (0) = 1, U ′′

3 (0) = 1 and U ′′′
4 (0) = 1.

In each case, all other values of Ui and its first three derivatives are taken to

be zero at x = 0. Use of (19) together with the periodicity conditions

djP

dxj
(0) =

djP

dxj
(2L) , j = 0, 1, 2, 3 (21)

then gives




(
U1 − e−2cL

)
U2 U3 U4

U ′
1

(
U ′

2 − e−2cL
)

U ′
3 U ′

4

U ′′
1 U ′′

2

(
U ′′

3 − e−2cL
)

U ′′
4

U ′′′
1 U ′′′

2 U ′′′
3

(
U ′′′

4 − e−2cL
)







α1

α2

α3

α4




=




0

0

0

0




(22)

where Ui and its derivatives are evaluated at x = 2L. Non-trivial solutions

correspond to zeros of the determinant of the coefficient matrix, and this

leads to the evaluation of the Floquet exponent c together with the eigen-

vector (α1, α2, α3, α4) which, to avoid ambiguity, was normalized such that
(

4∑
i=1

α2
i

)1/2

= 1. The eigenfunction P (x) is then determined from (20) and

(19). A fourth order Runge-Kutta scheme was used to evaluate the functions

Ui and their derivatives needed in (22).

In general the determinant of the coefficient matrix in (22) yields four roots

for the Floquet multipliers e−2cL and thus four Floquet exponents c with asso-

ciated eigenfunctions P (x). Figure 5 shows a plot of the periodic solution up
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Fig. 5. Profiles of up (x) and the Floquet eigenfunctions P (x) at L = π, ε = 0.1.
The corresponding exponents c are also indicated.

together with the eigenfunctions P (x) at ε = 0.1, L = π which correspond to

the exponents c = ±0.21956 and c = 0. Note that U = u′
p is always a periodic

solution of equation (18) and corresponds to the repeated root c = 0, provid-

ing a useful check on the numerical algorithm. For general values of ε and L,

the other two Floquet exponents c separate into regions where both are real

(with equal and opposite values) and regions where both are purely imaginary,

with equal and opposite values and
∣∣∣e−2cL

∣∣∣ = 1. The boundary of these two

regions where c = 0 constitutes the Eckhaus stability boundary [18] since it is

the locus of points at which spatially oscillatory disturbances to the periodic

solution up have zero temporal growth rate. This curve has also been found

by Kramer and Hohenberg [7]. Within the Eckhaus boundary, where c is real,

the solution (19) with c positive represents a spatially decaying solution which

approaches the periodic form as x → ∞. Figure 6 shows plots of the Floquet

exponents for several values of ε and Figure 7 shows the Eckhaus boundary
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(c = 0). Note that in Figure 6 for ε = 0.6 there is a small region in which c

is real near L = 5.2 which lies outside the main Eckhaus boundary. This is

associated with the mode 1-2 interaction discussed in the previous section and

suggests the possibility of further stable states at higher wavelengths; these

are not investigated here.

In Figure 7 the Eckhaus boundary obtained from the Floquet analysis is com-

pared with the result of a weakly nonlinear analysis. This is obtained by

writing the solution of (12) as

A0 = Ap (X) + K̃B (X) + . . . (23)

where Ap is the periodic solution (13) and K̃ is small and real. Substitution

into (12) and neglect of the nonlinear terms in K̃ then shows that the function
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B (X) satisfies

4
d2B

dX2
+
(
1 − 6 |Ap|2

)
B − 3A2

pB
∗ = 0, (24)

where the asterisk denotes the complex conjugate. Writing

B = iβ eiQX−CX , (25)

where C is real and β = βr + iβi is complex, equation (24) now gives




(2C2 + 4Q2 − 1) 4QC

−4QC 2C2







βr

βi


 =




0

0


 (26)

and thus a non-trivial solution requires

C2
(
2C2 + 12Q2 − 1

)
= 0. (27)

Two roots correspond to C = 0 (equivalent to c = 0 in the finite ε calculations)

and the other two roots

C = ± 1√
2

(
1 − 12Q2

)1/2
(28)

are purely real if Q2 < 1
12

. If Q2 > 1
12

these roots become purely imaginary

although the analysis must then be generalized to allow for both C and its con-

jugate in (25). The marginal case C = 0 corresponds to the Eckhaus boundary,

which is seen to be given by Q = ±1/
(
2
√

3
)

and (recalling that Q is related

to L by (14)) is shown in Figure 7.

Within the Eckhaus boundary, the positive root (28) confirms the existence of

a solution (23) which decays to the periodic form Ap (X) as X → ∞. Written

in terms of u using (10), this is equivalent to the solution (19) in which

c ∼ ε1/2C =
ε1/2

√
2

(
1 − 12Q2

)1/2
(29)
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and, using (26),

P (x) ∼ βrε
1/2

{
sin

nπx

L
+

2
√

2Q

(1 − 12Q2)1/2
cos

nπx

L

}
(30)

as ε → 0. Note that from (26) the eigenfunction corresponding to the zero

root C = 0 is P (x) ∼ −βiε
1/2 cos nπx

L
, which is proportional to u′

p.

4 Nonlinear solutions at a lateral boundary

Solutions of the one-dimensional Swift-Hohenberg equation

d4u

dx4
+ 2

d2u

dx2
+ (1 − ε)u + u3 = 0 (31)
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are now found in a semi-infinite domain x ≥ 0 with boundary conditions

u =
du

dx
= 0 at x = 0, (32)

and which approach the periodic form

u → up (x + φ) as x → ∞. (33)

Here φ is a phase shift of the periodic solution relative to the boundary and

its determination is one of the key results of the analysis.

The periodic solution (33) must be attained through an exponential decay of

the form

u ∼ up (x + φ) + k e−cx P (x + φ) as x → ∞, (34)

where up (x) , c and P (x) are known from the preceding analysis; the constants

k and φ must be chosen in order that the two conditions (32) are satisfied.

In practice this was achieved by using a new variable x̄ = x + φ so that (34)

becomes

u ∼ up (x) + k̄ e−cx̄ P (x̄) (35)

where k̄ = k ecφ. The solution of (31) for u (x) = ū (x̄) was then computed

using a fourth order Runge-Kutta scheme for values of x̄ decreasing from

zero, using (35) and its derivatives to supply the initial conditions at x̄ = 0.

At the mth stationary point of ū (ū′ (x̄m) = 0) the value of ū is recorded. The

calculation is repeated for a neighbouring value of k̄ and a Newton iteration

used to adjust the value of k̄ until the second condition ū = 0 is satisfied at

x̄ = x̄m. Once the final converged values of k̄ and x̄m are known, the phase

shift can be calculated from the relation φ = x̄m and then k = k̄ e−cφ. In

practice the value of m must be chosen large enough (typically m = 10) to

ensure that u is sufficiently close to the periodic form up at x̄ = 0; checks were

made with different values of m to test the validity of the results.

Plots of k, φ and u (x) for ε = 0.5 and ε = 1 are shown in Figures 8 and

9. Dual solutions (labelled A and B) are found to exist for a restricted band

16
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Fig. 8. Plots of k, φ and u(x) for ε = 0.5. (a) k as a function of 2L, (b) φ as a function
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adjusts to the phase-shifted periodic solution within a couple of wavelengths of the
wall; the periodic solution up(x) is shown by a dashed curve for comparison.

of wavelengths 2L within the Eckhaus boundary. The width of the restricted

band of wavelengths increases as ε increases and its form in the weakly non-

linear limit (ε → 0) was first determined by Cross et al [6]. Here the main

results of the weakly nonlinear analysis are summarized in order to make a

detailed comparison with the numerical results.

In the region where X = ε1/2x = O(1), the solution for u develops in the form

(6) and in the steady-state case

u0,1 = A0,1 (X) eix +c.c, (36)
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Fig. 9. Plots of k, φ and u(x) for ε = 1. (a) k as a function of 2L, (b) φ as a function
of 2L, (c) u(x) as a function of x and 2L for branch A, (d) u(x) as a function of x

and 2L for branch B, (e) u(x) on branch A as a function of x for L = π, (f) u(x)
on branch B as a function of x for L = π. The periodic solution up(x) is shown by
a dashed curve in (e) and (f).

where A0 and A1 satisfy the equations

4
d2A0

dX2
+ A0 − 3A0 |A0|2 = 0 (37)

and

4
d2A1

dX2
+ A1 − 6 |A0|2 A1 − 3A2

0A
∗
1 = 4i

d3A0

dX3
. (38)

Equation (37) is just the steady-state version of (12), and equation (38) comes

from the solvability condition for u3 at order ε2. The relevant solution for A0
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is

A0 =
1√
3

eiθ tanh
X

2
√

2
(39)

where θ is an arbitrary phase constant and then

A1 = eiθ

{
krsech

2 X

2
√

2
+ i

[
1

4
√

6
− 3

4
√

6
tanh2 X

2
√

2
+ ki tanh

X

2
√

2

+l

(
X tanh

X

2
√

2
− 2

√
2

)]}
, (40)

where kr, ki and l are further real constants. As X → ∞ the solution (6)

develops into a periodic solution of uniform amplitude

u ∼ 1√
3
ε1/2 eiqx+iθ +c.c. (41)

For an infinite layer it was shown in Section 2 that solutions of more general

amplitude ε1/2 (1 − 4Q2)
1/2

/
√

3 exist for |Q| < 1
2

with q = 1 + ε1/2Q but the

relevant solutions here correspond to small values of Q, of order ε1/2. Indeed,

since from (39) and (40) as X → ∞,

u∼ 1√
3
ε1/2 eix+iθ

(
1 + iε1/2

√
3lX

)
+ c.c.

∼ 1√
3
ε1/2 eix+iθ

(
1 + iε

√
3lx

)
+ c.c. (42)

it is seen that matching with (41) requires that, correct to order ε, the wavenum-

ber q must be given by

q = 1 + ε
√

3l. (43)

A formal derivation of the solution (41) and (43) obtained by assuming a two-

scale expansion with length scales x ∼ 1 and x ∼ ε−1 is given in Appendix

E of Cross et al [6] although an alternative procedure [19] is to include the

correction (43) to the wavenumber directly in the expansion (6) (and an inner

expansion (44) below) in which case an expansion can be formulated which

remains uniformly valid as X → ∞.
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The solution (6) breaks down on the scale x = O(1) near the boundary where

locally the solution has the form

u = εū0 (x) + . . . as ε → 0 (44)

and ū0 satisfies the linearized version of (31) in which the term εu can also be

ignored. Thus

ū0 = (a + bx) eix +c.c., (45)

where a and b are complex constants. Matching with the outer form (6) and

making use of (39), (40) gives

b =
1

2
√

6
eiθ, a =

(
kr − i

{
2
√

2l − 1

4
√

6

})
eiθ, (46)

whilst application of the boundary conditions (32) requires

a + a∗ = 0, i (a − a∗) + b + b∗ = 0. (47)

Writing a = ar + iai and b = br + ibi, it follows that

ar = 0 = kr cos θ −
(

1

4
√

6
− 2

√
2l

)
sin θ, (48)

ai =
1

2
√

6
cos θ = kr sin θ +

(
1

4
√

6
− 2

√
2l

)
cos θ (49)

and thus

l = − 1

16
√

3
cos 2θ, kr =

1

4
√

6
sin 2θ. (50)

This gives a range of solutions with |l| ≤ 1/
(
16
√

3
)
, that is, the wavenumber

restriction

1 − 1

16
ε ≤ q ≤ 1 +

1

16
ε (51)

in the limit as ε → 0. For a given wavenumber and its corresponding value

of l there are two possible values of θ, say θ = θ0 and θ = π − θ0, (with
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Fig. 10. Region of existence of solutions in the presence of a lateral boundary.
Also shown is the weakly nonlinear approximation, together with the Eckhaus
boundary and the neutral curve. (——) Neutral curve, (– – –) Eckhaus boundary,
(– · – ·) weakly nonlinear theory, (××) present theory.

0 ≤ θ0 ≤ π
2
) corresponding to kr = ± 1

4
√

6
sin 2θ0, respectively. These two

solutions coalesce when θ0 reaches π
2

and l = 1/
(
16
√

3
)
, and when θ0 reaches

zero and l = −1/
(
16
√

3
)

at the other extreme; in both limits kr approaches

zero. Figure 10 shows the weakly nonlinear result (51) along with the results

of the numerical calculations for finite ε.

More detailed comparisons with the weakly nonlinear theory are shown in

Figure 11, where the asymptotic forms of k, u′′ (0) and u′′′ (0) as ε → 0 are

compared with the numerical calculations for ε = 0.1. From (44)–(50),

u′′ (0) ∼ −4εbi = − 2√
6
ε sin θ, ε → 0 (52)
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and

u′′′ (0) ∼ −4εbr = − 2√
6
ε cos θ, ε → 0. (53)

Taking into account the decay of the tanh functions in (39), (40) as X → ∞
and writing the outer solution (6) in terms of the variable x gives

u∼ 2ε1/2

√
3

sin
{(

1 + ε
√

3l
)
x + θ +

π

2
+ O

(
ε1/2

)}
×

(
1 − 2

[
1 − ε1/2

2
√

2
sin 2θ

]
e−

ε1/2x
√

2

)
(54)

as x → ∞. The Floquet exponent and eigenfunction given by (29) and (30)

(evaluated at Q = 0 and with P normalized in the same manner as in the

numerical calculations) are

c ∼ ε1/2

√
2

, P (x) ∼
(

3

8ε

)1/2

up (x) , ε → 0 (55)

and comparison with (54) shows that the phase shift φ is given by

φ ∼ θ +
π

2
, ε → 0 (56)

and the coefficient k is given by

k ∼ −4
√

2√
3

ε1/2

(
1 − ε1/2

2
√

2
sin 2θ

)
, ε → 0. (57)

For the two solution branches A (θ = θ0) and B (θ = π − θ0), the two values

of k coalesce at −4
√

2ε1/2/
√

3 when θ0 = 0
(
l = −1/

(
16
√

3
))

and when

θ0 = π
2

(
l = 1/

(
16
√

3
))

. The phase shifts of the two solutions are φ = θ0+
π
2

and φ = 3π
2
− θ0 so that these differ by π at θ0 = 0 and are equal at θ0 = π

2
.

Solutions for u with opposite sign are obtained by changing the range of θ from

[0, π] to [π, 2π]. For the purpose of the comparison of (52), (53) and (57) with

the numerical results in Figure 11, the formulae given in (43) and (50) have

been used to relate the phase constant θ, via l, to the wavenumber q. Figure

11 indicates excellent agreement between the numerical results at ε = 0.1 and

the results of the weakly nonlinear theory.
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The stability of the dual solutions described in this section can be analyzed

in the weakly nonlinear limit using the approach described by Daniels [20]

for the stress-free Rayleigh-Bénard problem. A general disturbance ũ (x, t) to

the steady-state solution u (x) is introduced and with the temporal deriva-

tive ∂u/∂t added to the left-hand side of (31) the disturbance is expanded in

powers of ε within the inner and outer regions. It is readily shown that distur-

bances in phase with the steady-state solution decay on a time-scale t ∼ ε−1

whereas ‘out-of-phase’ disturbances are neutral on this time scale and must

be examined on the longer time-scale t ∼ ε−2. This leads to the possibility of

spatially decaying, temporally growing disturbances that have the form

ũ∼ i exp
{
i
(
1 + ε

√
3l
)
x + iθ +

(
1

8
ε sin 2θ

)
x

+
(

1

16
ε2 sin2 2θ

)
t
}

+ c.c. (58)

on the scale x ∼ ε−1, provided that

sin 2θ < 0. (59)

For sin 2θ > 0, disturbances that remain bounded spatially are found to decay

temporally. Thus within the one-dimensional framework studied here, of the

dual solutions θ = θ0 and θ = π − θ0 (with 0 ≤ θ0 ≤ π
2
) only the former

(corresponding to the upper branch of values of k in Figure 11) is stable.

Physically, this corresponds to the branch of solutions for which a flow reversal

very close to the lateral boundary is avoided.

5 Summary

A method has been developed for finding steady-state solutions of the one-

dimensional Swift-Hohenberg equation which satisfy no-slip conditions at a

lateral boundary and approach a periodic form at large distances from the

boundary. Use of Floquet theory enables the asymptotic behaviour of the

solution to be analyzed and the existence of dual nonlinear solutions to be

identified for given wavelengths of the periodic form. The lateral boundary

severely restricts the waveband of solutions compared with that which exists
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for an infinite layer. A key result of the analysis is the determination of the

phase shift of the periodic form relative to the boundary, so that at large

distances from the boundary both the amplitude and phase of the possible

periodic forms are known as a function of wavelength.

At finite values of the control parameter ε, the adjustment to the periodic form

is completed within just a few roll-widths of the lateral boundary, the scale of

decay being determined by the Floquet exponent c. This scale increases as ε

decreases, with x ∼
√

2ε−1/2 as ε → 0. A detailed comparison with asymptotic

results has been carried out in this limit, showing that weakly nonlinear theory

remains a reasonable approximation up to ε = 1; however, further work is

needed to investigate the possible significance of mode interactions in the

Swift-Hohenberg system for ε > 9
25

.

The present work shows that, in principle, extended roll patterns in large-scale

systems can be determined in the nonlinear regime by analyzing the structure

of the solution close to the lateral boundaries. This is an important observation

in the context of real pattern-forming systems, such as the Rayleigh-Bénard

system, where the heavy demands of three-dimensional computations still pre-

clude the accurate numerical determination of patterns involving more than

just a few convective rolls. Typical calculations scale with the size of the do-

main, whereas the present method requires the calculation of the solution for

the equivalent of only a few roll widths.

In order to make a direct comparison with numerical computations on a large

but finite domain it is necessary to determine the relevant quantized wave-

length 2L to be used in the present theory. In general this can be calculated

by requiring that the phase shift of the periodic solution induced by each

boundary is the same (modulo 2L), leading to a consistent solution across the

entire domain. Taking the domain to be 0 ≤ x ≤ d with d ≫ L, the phase

shift of up due to the boundary at x = 0 is φ, the function introduced in (33)

and displayed, for example, in figures 8 and 9. Similarly, the second boundary,

at x = d will induce the behaviour

u ∼ up(d − x + φ) = −up(x − d − φ) = up(x − d − φ + L) as d − x → ∞,(60)

equivalent to a phase shift of L − d − φ in the x direction. Allowing for the
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possibility of a sign reversal of u at either end, the phase shift between the

two ends must differ by an integer multiple of L, and so a consistent overall

solution requires

φ = nL + L − d − φ, (61)

where n is an integer. Each function φ involved here may take the value on

either of its two branches (φA or φB, say, corresponding to branches A and B in

figures 8 and 9). This leads to an (unstable) class of non-symmetric solutions

(where φA is used on one side of (61) and φB on the other), an unstable class

of symmetric solutions (where φB is used on both sides) and a stable class of

symmetric solutions (either odd or even in x) where φA is used on both sides.

There have been discussed in the weakly nonlinear limit in [6] and [20].

It should be noted that for given ε and a given domain length d, (61) is an

implicit equation for L (and n). However, to test the present theory against

computations on a finite domain, d can be chosen so that a turning point of the

semi-infinite solution on x ≥ 0 coincides with the mid-point of the domain. In

figure 12, d has been chosen as 61.6473 so that this occurs for the semi-infinite

solution with ε = 0.5 and L = π. It is seen that the semi-infinite solution is

in excellent agreement with a more time-consuming computation carried out

on the finite domain using a combination of time-stepping a finite-difference

representation of the Swift-Hohenberg equation and Newton iteration. The

expected discrepancy very close to the boundary at x = d can easily be re-

moved by using the semi-infinite solution locally. The solution in figure 12

corresponds to taking n = 20 and φ = φA = 2.1631 in (61), this being the

relevant value of φ at L = π in figure 8(b). The value of n in (61) is a measure

of the number of zeros of u(x) in the interval [0, d].

A long-term aim is to extend the present method to the fully nonlinear Rayleigh-

Bénard problem. Progress has already been made by the present authors in

extending the analysis described here for the Swift-Hohenberg equation to two

dimensions (x, y) where (1) applies and the flow domain consists of a semi-

infinite channel x ≥ 0, 0 ≤ y ≤ Ly. This will be the subject of a future

paper.
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