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Changes in our climate and environment make it ever more important to understand

the processes involved in Earth systems, such as the carbon cycle. There are many

models that attempt to describe and predict the behaviour of carbon stocks and

stores but, despite their complexity, significant uncertainties remain. We consider

the qualitative behaviour of one of the simplest carbon cycle models, the Data As-

similation Linked Ecosystem Carbon (DALEC) model, which is a simple vegetation

model of processes involved in the carbon cycle of forests, and consider in detail the

dynamical structure of the model. Our analysis shows that the dynamics of both

evergreen and deciduous forests in DALEC are dependent on a few key parameters

and it is possible to find a limit point where there is stable sustainable behaviour

on one side but unsustainable conditions on the other side. The fact that typical

parameter values reside close to this limit point highlights the difficulty of predicting

even the correct trend without sufficient data and has implications for the use of data

assimilation methods.
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One important aspect of understanding global climate change is to develop com-

putational models that enable us to predict the extent of global warming under

different scenarios. One part of these computational models is to understand the

role of forests in determining atmospheric carbon and to this end, a number of

sophisticated models to look at carbon balances in forests have been developed.

With complicated models it can be difficult to develop an intuition for what

causes them to behave in the way they do and therefore what impact any inter-

vention will have. In this paper, we have therefore looked at a relatively simple

model of the carbon cycle in forests to develop an understanding of how differ-

ent processes interact. This model, known as the DALEC model, is important

because it contains the same fundamental processes as many more complicated

models and we expect the same underlying dynamical behaviour to occur in

more complicated models.

We show that the DALEC model contains a transition point where, for pa-

rameters on one side forests thrive, but on the other they die. Analysing data

from two forests we find that they sit near the transition point, and we hypoth-

esize that this is a natural consequence of a tree’s need to optimize its resources.

Such transition points are important because, in a changing world, we expect

parameter values to drift. Drifting across a transition point can have serious

consequences and results in “tipping” from one kind of behaviour to another.

For example, a shift in the amount of rainfall could induce tipping from a sustain-

able forest to a forests that dies. The presence of such transition points also has

important consequences for prediction. Models often contain many parameters

that need to be determined, usually by fitting to data. Different algorithms used

to fit models to data typically lead to slightly different values for parameters.

Away from transition points for non-chaotic systems, this usually means that

there is some small uncertainty in the parameter values that leads to a small

uncertainty in prediction. However, near transitions points, small differences in

parameter values can lead to very different predictions.
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I. INTRODUCTION

The continual increase in computational power brings with it the ability to perform ever-

more detailed studies of the Earth system and its components. Such studies help underpin

the debate on climate change and global warming. Stocks and fluxes of carbon are an

important component of this debate and, within this, the role of terrestrial vegetation and

its influence on climate. Terrestrial vegetation is responsible for the removal of a large

percentage of the carbon dioxide from the atmosphere every year. However, with increasing

carbon dioxide levels and the consequent global warming, terrestrial vegetation may absorb

less carbon dioxide or may even contribute to a further increase in atmospheric carbon

dioxide by dying and decomposing1.

Various sophisticated models are used in the analysis of the carbon cycle including

BETHY2, TRIFFID3, LPJ-DGVM4, SEIB-DGVM5, ED26, Hybrid 3.07 and DOLY8. These

are called Dynamic Global Vegetation Models (DGVMs) and involve many physiological

processes of the terrestrial carbon cycle through both empirical and process based methods.

They are typically quite complex and are driven by climate data. They often distinguish

between a large number of plant functional types. For example, BETHY allows different

photosynthesis models to be used and has vegetation maps rather than plant functional

types. LPJ-DGVM allows for ten different plant types, whereas TRIFFID uses five, and

SEIB even simulates the local interaction among individual trees. Photosynthesis, evapo-

transpiration and soil water dynamics are modelled, using meteorological data on various

time scales and considering different layers of soil.

DGVMs are used both for determining carbon stocks and stores and also to simulate

the effects of future climate change on natural vegetation by combining them with General

Circulation Models (GCMs). For example BETHY has been coupled with a transport model,

TM29, for the CCDAS (Carbon Cycle Data Assimilation System) consortium. TRIFFID has

been coupled to HADCM33 and JULES10 and in a study by Schaphoff11, LPJ-DGVM was

coupled to five different GCMs to compare land biosphere carbon uptake between the GCMs

under five different simulations of climate change driven by a common emission scenario of

CO2 increase.

As our knowledge of processes in the carbon cycle grow it is tempting to extend existing

models making them ever more complex. However, the underlying dynamics of the carbon
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cycle are not well understood, not least because the values of many of the parameters

that appear in the DGVMs are not known with confidence. In some cases parameters are

difficult to measure and in others the data that would be needed to constrain the parameters

is very limited. Uncertainties in observations and parameters influence the outcome of

a simulation of a complex system, such as a GCM, as a consequence of changes in the

dynamics of the core model. Indeed, it has been suggested that as our understanding

develops of the many factors that play a role, such as the concentration of greenhouse gases,

uncertainty in mechanisms and their model depiction, the weighting of global climate models

and uncertainty in projected regional changes, that estimates of complex climate processes

will include more uncertainty in their predictions rather than less12.

Various projects have been designed to use techniques from data assimilation in an at-

tempt to constrain the values of the parameters by ‘confronting the models with data’13,14.

The majority of modern data assimilation schemes use the forward model as part of the

algorithm, and it is vital to understand the nature of the system dynamics if one is to

employ the data assimilation methods with any confidence. For example, variational data

assimilation techniques are based on assumptions of quasi-linearity and the use of Gaussian

statistics. The presence of multiple timescales, either in the frequency of observations or in

the dynamics of the forward model, is a feature that presents challenges to data assimilation

schemes. Understanding the dynamics of carbon cycle models brings insight as to whether

they are amenable to data assimilation methods given the various parameter sensitivities

and the intrinsic separation of timescales, from days (for foliar carbon) to millennia (for soil

organic matter).

In order to begin studying the issues that arise in more complex systems we study a

relatively simple process model which is typical of that which underpins many GCMs. This

is a strategy not dissimilar to that found in other areas of environmental prediction, for ex-

ample the Lorenz 1963 equations15, which were used to study thermal convection in a very

simple setting and which brought to light fundamental properties of dynamical systems.

We therefore focus on the Data Assimilation Linked Ecosystem Carbon (DALEC) model16.

DALEC is a dynamic vegetation model which simulates the carbon cycle of forests and two

variants are considered here, one for an evergreen forest and one for a deciduous forest.

It was especially created for data assimilation and specifically designed for calibration and

testing against eddy flux data. DALEC is a simple box model of carbon pools connected via
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fluxes running at a daily time-step, driven by daily climate data such as temperature, irra-

diance and atmospheric carbon concentration, that aims to capture the essential dynamics

of the carbon cycle. Like many other DGVMS, such as ED26, Hybrid 3.07 and DOLY8, the

modelling of photosynthesis in DALEC is based on the Farquhar photosynthesis model17.

DALEC’s simplicity limits its application to detailed studies of terrestrial carbon sys-

tems, but in turn it facilitates close mathematical scrutiny. We shall show how the generic

behaviour of this model is controlled by various parameters. The techniques we develop

from dynamical systems theory may be applied to more complex models, such as BETHY

or TRIFFID, but it is surely appropriate to describe and test the basic techniques on a

model that permits explicit and detailed analysis.

We formulate the process model for DALEC as a dynamical system, iterative in time,

and we study the model using dynamical systems methods, employing both analytical and

numerical approaches. The work was motivated by a masters thesis by Ilett18, and our

analysis sets Ilett’s work in a broader context. We show how the model predicts different

dynamical behaviour for different parameter regions predicting, for the evergreen version of

DALEC, that if the amount of carbon allocated to foliage is not in balance with the daily

turnover rate of foliage then widespread mortality of the forest will result.

In Section II the DALEC evergreen (DALEC EV) and deciduous (DALEC DE) models

are formulated as daily maps. The behaviour of the evergreen model is studied in Section

III by finding fixed points of the annual map. The effect of smoothing the highly variable

daily driver data is also considered. Similar methods are applied to the DALEC deciduous

(DALEC DE) model in Section IV. Finally, in Section V, an interpretation of the results

and a discussion of their consequences are presented.

II. MODEL DESCRIPTION, DATA AND METHODS

A. Model Description and Data

The DALEC EV model16 describes the time evolution of five carbon pools, namely foliage

(Cf), woody stems and coarse roots (Cw), fine roots (Cr), fresh leaf and fine root litter (Clit)

and soil organic matter and coarse woody debris (Csom), together with one pseudo-pool,

Gross Primary Production (GPP). The carbon cycle of an evergreen forest according to
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FIG. 1. A schematic overview of the carbon cycle of an evergreen forest according to DALEC EV.

DALEC is shown in Fig. 1. The pools are connected by arrows, which represent allocation

and production fluxes. Sunlight, water and CO2 are needed for photosynthesis which takes

place in the needles. The photosynthate is stored in the GPP, which distributes the available

carbon to the Cf , Cw and Cr pools. During photosynthesis carbon is also respired into the

atmosphere by the tree, which is called autotrophic respiration (Ra). Decomposition of litter

in and on the soil results in heterotrophic respiration (Rh).

For our purposes, we express the DALEC EV model equations19 as a discrete dynamical

system in the form of daily maps, specifically:

Cf(t + 1) = (1− p5)Cf(t) + p3(1− p2)GPP (Cf(t), t), (1)

Cr(t + 1) = (1− p7)Cr(t) + p̃4(1− p2)GPP (Cf(t), t), (2)

Cw(t + 1) = (1− p6)Cw(t) + (1− p3 − p̃4)(1− p2)GPP (Cf(t), t), (3)

Clit(t + 1) = (1− (p8 + p1)T (t))Clit(t) + p5Cf(t) + p7Cr(t), (4)

Csom(t + 1) = (1− p9T (t))Csom(t) + p6Cw(t) + p1T (t)Clit(t), (5)

where t is time in days and T (t) = 0.5 exp (p10Tm(t)) and Tm(t) is the mean daily air

temperature, which is the mean of the maximum and minimum daily temperatures. The

term T (t) models the fact that the decomposition of leaf litter and of soil and organic matter
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by fungi and bacteria is strongly dependent on temperature, with decomposition occurring

more rapidly at higher temperatures. For a description of the parameters and the values

used see Appendix A.

The Net Primary Production (NPP) is the net carbon flux from the atmosphere into the

trees and is defined by

NPP (Cf(t), t) = GPP (Cf(t), t)−Ra = (1− p2)GPP (Cf(t), t)

where Ra = p2GPP (Cf(t), t) is the autotrophic respiration. We note that in equations (1)–

(3), it is this NPP that is allocated to the foliar, roots and wood pool with corresponding

fractions p3, p̃4 and 1− p3 − p̃4. We note that the definition of the DALEC model in19 used

a slightly different definition of these constants, and our parameter p̃4 is defined in terms of

the original parameter p4 by

p̃4 = p4(1− p3)

However, our notation is consistent with that used in16, where the parameters t3 and t4

correspond to our parameters p3 and p̃4.

Typical values for the initial conditions for the five pools used by participants of the

REgional FLux Estimation eXperiment (REFLEX)19 are Cf(0) = 150 gC m−2, Cr(0) = 160

gC m−2, Clit(0) = 60 gC m−2, Cw(0) = 9200 gC m−2 and Csom(0) = 11000 gC m−2, where

day zero is taken to be 21st December, the shortest day of the year.

DALEC deciduous (DALEC DE) is another version of the DALEC model, see Fig. 2,

which includes the same five carbon pools as in the evergreen model, together with an

additional labile pool. This pool stores carbon during the winter once the leaves have

dropped and is then depleted during the spring and summer when the leaves grow again. As

for DALEC EV, we express the DALEC DE model equations19 in the form of daily maps,

specifically:

Cf (t+ 1) = (1− p5(p14 + (1− p14)T (t))mtf )Cf(t)

+min(p17 − Cf(t), p3(1− p2)GPP (Cf(t), t))mtl

+p15(1− p16)Clab(t)T (t)mtl, (6)

Clab(t+ 1) = (1− p15T (t)mtl)Clab(t) + p5(1− p14)(1− p16)T (t)mtfCf(t), (7)

Cr(t+ 1) = (1− p7)Cr(t) + p4(1− p2)GPP (Cf(t), t)

−p4min(p17 − Cf (t), p3(1− p2)GPP (Cf(t), t))mtl, (8)
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FIG. 2. A schematic overview of the carbon cycle of a deciduous forest according to DALEC DE.

Cw(t+ 1) = (1− p6)Cw(t) + (1− p4)(1− p2)GPP (Cf(t), t)

−(1− p4)min(p17 − Cf(t), p3(1− p2)GPP (Cf(t), t))mtl, (9)

Clit(t+ 1) = (1− (p1 + p8)T (t))Clit(t) + p5p14mtfCf(t) + p7Cr(t), (10)

Csom(t+ 1) = (1− p9T (t))Csom(t) + p6Cw(t) + p1T (t)Clit(t), (11)

where t is time in days and T (t) = 0.5 exp (p10Tm(t)) is the temperature sensitive rate

parameter. Tm(t) is the mean daily air temperature, which is the mean of the maximum

and minimum daily temperatures. There are 17 parameters in DALEC DE; for a description

and the values used see Appendix A. There are two switches in the model, mtf and mtl,

which have values of either zero or one. The variable mtf switches the turnover of foliar

carbon on (in the autumn, so that the trees drop leaves) or off (during the summer, when

the trees do not drop leaves and in the spring, when the leaves are growing) and mtl switches

the turnover of labile carbon on (used to kickstart the foliar carbon in the spring) or off (in

the summer, when it has been depleted). The algorithm for determining the values of these

switches is given in the20. Typical initial conditions for the five pools are: Cf (0) = 0g C m−2,

Clab(0) = 100g C m−2, Cr(0) = 5g C m−2, Clit(0) = 5g C m−2, Cw(0) = 5g C m−2 and

Csom(0) = 9900g C m−2. Day zero is again taken to be 21st December, where the parameter

values and the values of the initial conditions for the carbon pools are taken from14.
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The GPP for both the evergreen and the deciduous versions represents a daily accumu-

lation of carbon produced by photosynthesis. It takes the following form:

GPP (Cf(t), t) =
E0(Cf(t))I(t)gc(t)(Ca(t)− Ci(Cf(t), t))

E0(Cf(t))I(t) + gc(t)(Ca(t)− Ci(Cf(t), t))
(a2s(t) + a5). (12)

The functions in the GPP are collectively called the Aggregated Canopy Model (ACM). A

description of the various functions in the GPP can be found in Appendix B. The ACM is

a daily time step model that estimates GPP as a function of Leaf Area Index (LAI), foliar

nitrogen, total daily irradiance, maximum and minimum daily temperature, day length,

atmospheric CO2 concentration, soil-plant water potential and total soil-plant hydraulic

resistance. The LAI is the projected leaf area (in m2) per ground area (also in m2) . The

ACM21 has been derived from the Soil-Plant-Atmosphere model (SPA) by22. The SPA

model is a process-based multi-layer (fine-scale) model simulating ecosystem photosynthesis

and water balance at a 30 minute time step and for multiple canopy and soil layers. It

uses the Farquhar model of leaf-level photosynthesis and the Penman-Monteith equation

to predict evapotranspiration23. The equations for the ACM were derived from the SPA

using cumulative or average values of the most sensitive driving variables. Then the ACM

was calibrated so that the estimates of the GPP were similar to those of the SPA model

across a wide range of the driving variables. The only parameter in the ACM which needs

calibrating per site is the nitrogen use efficiency parameter, p11. This parameter determines

the maximum rate of carboxylation per gramme of foliar nitrogen.

In the original Fortran code for DALEC EV and DALEC DE provided by REFLEX19,

the LAI is set to max(0.1, Cf/lma), where lma is the leaf mass per area, which prevents

it from going below 0.1. This is done in order to prevent Cf from ever reaching zero. We

note that the GPP function is undefined, as written, when Cf = 0 since both the numerator

and the denominator are then zero. However, we claim that there is a well-defined limit as

Cf → 0, and more precisely, that limCf→0GPP (Cf , t) = 0. To see this, we note that for

small Cf , E0 = O(C2
f ) and Ca−Ci = O(Cf). Therefore, the numerator of (12) is O(C3

f) and

the denominator is O(Cf). Cancelling a factor of Cf in the numerator and the denominator

then shows that GPP (Cf , t) = O(C2
f ) and so GPP (0, t) = 0 as claimed. This implies that

when there is no foliar carbon, there is no photosynthesis, which seems entirely reasonable.

Setting the LAI to max(0.1, Cf/lma) seems like an artificial constraint and since the model

remains well-defined for Cf = 0 we change the definition of the LAI to be LAI = Cf/lma.
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The implication of removing this constraint is discussed in further detail below.

In order to compute the GPP, daily drivers of maximum and minimum temperature

(from which the temperature range and the mean daily temperature are derived) and solar

irradiance are needed. In the REFLEX project19, the atmospheric carbon Ca increased by

a small amount each year, but we have kept this value constant, although later on we will

consider the effect of changing the value of this constant. The other parameters in the ACM,

for example soil-plant water potential and foliar nitrogen, can be set to appropriate fixed

values for the vegetation in question. Latitude also plays an important role, as it influences

day length and therefore the amount of photosynthate produced.

In the DALEC model the GPP depends on the foliar carbon, Cf , via two functions,

namely E0(t) (canopy level quantum yield) and Ci(t) (CO2 concentration at site of carboxy-

lation). This is because foliage produces the photosynthate, which none of the other carbon

pools do. Therefore the foliar carbon pool is crucial in determining the amount of carbon

the other pools receive and we will show that it is this pool that determines the fate of the

forest.

From the model it is also possible to evaluate the net ecosystem exchange (NEE), which

is the net carbon uptake or loss by the ecosystem. NEE can be calculated as follows:

NEE(t) = Ra(t) +Rh(t)−GPP (Cf(t), t)

where

Ra(t) = p2GPP (Cf(t), t)

for DALEC EV and

Ra(t) = p2GPP (Cf(t), t) + p5(1− p14)p16T (t)mtfCf(t) + p15p16T (t)mtlClab

for DALEC DE, and

Rh(t) = Rh1
(t) +Rh2

(t) = p8T (t)Clit(t) + p9T (t)Csom(t)

Note that we have ignored the dependence on the various carbon pools for NEE and the

respiration terms. If the forest is a carbon sink, the NEE will be negative and it will be a

carbon source if NEE is positive.

In order to run the DALEC models, estimates of the parameters and values for the driver

data are needed. We have used realistic data both for parameters and climate data from

a European flux site, which was provided for the REFLEX project19. The purpose of this

project was to compare the strengths and weaknesses of various data assimilation methods
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for estimating parameters and predicting carbon fluxes using DALEC, based on three years

of driver data. However, in our analysis, the behaviour of the models is studied over a longer

period of time, so driver data for this was created by averaging the three years of available

data to produce mean daily data, which varies on a daily basis in a realistic manner, but

is the same each year. Although daily averaging introduces some smoothing, the drivers

remain highly variable. Since taking an extreme and smoothing the data to remove all

but the annual variation, as discussed in Section V, has little impact, the small amount of

smoothing introduced by taking average daily values over a three year period data should

have a negligible effect. The time scale has been shifted ten days back, so that t = 0 occurs

on the 21st December, the shortest day. This was done in order to ensure that the daylength

function is even around zero (which simplifies the analysis). The last ten days of data were

moved up to the beginning of the file to provide data for the first ten days. For simplicity,

we ignore leap years, so that every year has 365 days.

Although we have used periodic drivers (for temperature and irradiance data) in this

analysis, in reality they are not periodic. This lack of periodicity has two components:

firstly, the solar luminosity fluctuates due to changing bright and dark structures (such

as sunspots) on the solar disk24. This introduces an approximate 0.1% variation in solar

irradiance reaching the Earth’s upper atmosphere over and above the periodic variation due

to time of year. Secondly, and much more significantly, local weather patterns lead to large

variations in solar irradiance and temperature at the Earth’s surface. For example, for the

temperate forest in the Northern hemisphere of interest here, although there is an annual

pattern of higher levels of irradiance and higher temperatures in the summer as compared

with the winter, on the same day in successive years the irradiance and temperature can

vary by a factor of two. However, if we assume that the drivers are periodic but with

some natural variability then this lack of exact periodicity effectively corresponds to a small

amount of noise in the system which would not change the overall structure and so we expect

our results to be valid more generally.
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B. Methods

1. Fixed Point Analysis

Our goal is to understand the dynamical behaviour of the DALEC models. Previous

studies have focussed on parameter fitting or measuring carbon fluxes by running the models

forward in time.

Since we have made the drivers periodic on an annual cycle, this results in solutions of the

DALEC model evolving towards periodic solutions with period of one year. These periodic

states can be found either by running the model forward in time or by recognising that, for

a periodic solution, the amount of carbon on day t in year n is the same as on day t in year

n+ 1 so, for example for the foliar carbon pool, a periodic solution will satisfy

Cf(t) = Cf(t+ 365).

Periodic solutions can therefore be found as fixed points of an annual map, which is obtained

by iterating the daily map 365 times. We analyse the fixed points of the annual map and use

continuation software to follow paths of fixed points. The advantages of finding the periodic

states by solving for fixed points of the annual map are that it is then possible to trace out

the behaviour of the periodic state as a function of the parameters, by varying either one or

more parameters, and that it is possible to follow both stable and unstable solutions. We

also determine the stability of the fixed points. Although unstable solutions are not seen in

practice, they play a significant role as boundaries between regions in which qualitatively

different behaviour occurs. From these results, the structure of the dynamics of the models

can be determined.

The continuation software CL Matcont for maps25, a freely available Matlab tool, is used

to follow paths of fixed points of the annual map.

We now consider the stability of fixed points of the annual map for DALEC EV. The

Jacobian matrix derived from the iteration (1)–(5) is given by

J(Cf (t), Cr(t), Cw(t), Clit(t), Csom(t)) =
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










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
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
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

1− p5 + p3(1− p2)dGPP (Cf(t), t) 0 0 0 0

p̃4(1− p2)dGPP (Cf(t), t) 1− p7 0 0 0

(1− p3 − p̃4)(1− p2)dGPP (Cf(t), t) 0 1− p6 0 0

p5 p7 0 1− (p8 + p1)T (t) 0

0 0 p6 p1T (t) 1− p9T (t)



























where

dGPP (Cf(t), t) =
dGPP (Cf(t), t)

dCf(t)

We note that this matrix is lower triangular and that 1− (p8 + p1)T (t) > 0, 1− p9T (t) > 0

for all t since the loss of litter or soil and organic matter cannot exceed the amount that is

present.

The stability of a fixed point of the annual map is determined by the product of 365 such

matrices, given by

Ja(Cf(0), Cr(0), Cw(0), Clit(0), Csom(0)) =
364
∏

t=0

J(Cf(t), Cr(t), Cw(t), Clit(t), Csom(t))

Now the product of lower triangular matrices is also lower triangular and so the matrix Ja

is lower triangular. Also, the diagonal entries of Ja are the product of the diagonal entries

of J . The stability of a fixed point of the annual map is determined by the eigenvalues of

Ja evaluated at the fixed point and since this matrix is lower triangular, its eigenvalues are

the diagonal entries, which are given by

λ1 =
364
∏

t=0

(1− p5 + p3(1− p2)dGPP (Cf(t), t)) , λ2 = (1− p7)
365, λ3 = (1− p6)

365,

λ4 =
364
∏

t=0

(1− (p8 + p1)T (t)) , λ5 =
364
∏

t=0

(1− p9T (t))

We note that 0 < λ2, λ3, λ4, λ5 < 1 and that these eigenvalues do not depend on the annual

fixed point. Thus, an annual fixed point will be stable if |λ1| < 1 or unstable if |λ1| > 1.

Moreover, any bifurcations on a branch of fixed points are determined by λ1 which depends

only on the variable Cf . In Section IIIA, we consider the dynamics of the variable Cf since

this equation decouples from the remaining equations.

For the DALEC DE model, it can be shown that the Jacobian evaluated at an annual

fixed point has the same four eigenvalues λ2–λ5 as for the evergreen model that lie between

zero and one. Thus, the stability of a fixed point and any bifurcations on a branch of annual
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FIG. 3. Smooth and variable drivers over a three year period, data from Loobos forest in the

Netherlands: (a) the maximum temperature, (b) the temperature range and (c) the irradiance.

Note that the maximum temperature rarely drops below zero.

fixed points will be determined by the remaining 2× 2 matrix derived from the Cf and Clab

equations.

2. Smoothing the Drivers

The model is driven by highly variable drivers which are shown in Fig. 3. In Section III,

we consider the effect that smoothing the variable drivers for temperature and irradiance

has on the results. For example, we express the maximum temperature as:

Tmax(t) = c0 + c1 cos
(

2πt

365

)

+ c2 sin
(

2πt

365

)

,

which involves only three constants. For the temperature drivers a fast Fourier transform

(FFT) of the data is used to find the constants c0, c1 and c2. We found that the behaviour of

Cf was very sensitive to the irradiance and that smoothing the highly variable irradiance data

with the simple periodic function given above using an FFT did not give a good prediction

for Cf . Therefore, we used four dimensional variational (4DVAR) data assimilation to

find values of c0, c1 and c2 in the smooth approximation to the irradiance that gave good

agreement with Cf obtained using the driver data. We do not discuss the 4DVAR technique

here, but it is described in many sources, such as Talagrand and Courtier26.

As well as describing the irradiance by three terms of a Fourier Series, we also describe
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FIG. 4. The irradiance smoothed by a Fourier series and a quadratic function.

it by using a quadratic polynomial, created for one year and then periodically extended (by

mapping it forward twice). The reason for this is that the Fourier series does not reach the

higher peaks of the irradiance data (see Fig. 4).

III. BEHAVIOUR OF THE CARBON POOLS FOR DALEC EV

A. Behaviour of the Foliar Carbon Pool

We commence our analysis by observing that in the DALEC EV model equations (1)–(5),

the equation for Cf decouples from the other equations which means that the dynamics of

the foliar carbon is independent of the other pools. In contrast, all the other pools are

influenced by the behaviour of the foliar carbon pool. Therefore the dynamics of the forest

is driven by and depends on Cf and on the parameters in this pool, namely p2 (fraction

of GPP respired), p3 (fraction of NPP allocated to foliage), p5 (daily turnover fraction of

foliage) and p11 (nitrogen use efficiency parameter in the ACM). For the purpose of our

analysis, we only consider parameters p2, p3 and p5. Furthermore, in equation (1) for the

foliar carbon pool the parameters p2 and p3 only appear in the combination p3(1− p2); thus

we define p23 = p3(1−p2). Although the individual parameters p3 and p2 represent different
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FIG. 5. The top line shows that for a value of p5 = 0.0024, Cf stabilises on a periodic state. The

bottom line shows Cf decreasing and going to zero for p5 = 0.0035, showing several years of decline

resulting in mortality. The values of the other parameters are p23 = 0.1392 and p11 = 7.4. Day 0

for each year is December 21st, the shortest day of the year at a latitude of 52◦.

physiological processes, it is only their combination as p23 that alters the dynamics of the

foliar carbon pool. This parameter combination represents the fraction of GPP allocated to

the foliar carbon every day.

Fig. 5 shows two graphs of Cf , resulting from running the model forward over a number

of years using highly variable but periodic drivers, for two different values of p5. The solid

line (p5 = 0.0024) shows the foliar carbon growing to a stable periodic state with a period

of one year. During this annual cycle there is more foliar carbon during the summer than

during the winter, as photosynthesis is increased in the summer. In contrast, the dashed

line (p5 = 0.0035) shows the foliar carbon steadily decreasing on average over a period of 8

to 9 years and then asymptoting to zero, which represents the forest dying. This raises the

question: “How does the change in behaviour take place and at what parameter value?”

The transient behaviour of Cf that leads to a stable periodic state, as shown in Fig. 5,

suggests that the DALEC EV model has a periodic solution with a period of one year for

certain values of the parameters. As described in Section IIB, this periodic solution can be
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FIG. 6. Path of fixed points for the annual map for p23 = 0.1392. The top branch is stable and

the bottom branch is unstable and there is also a stable fixed point branch at Cf = 0. On the

vertical axis the value of Cf on day 0 of each year (December 21st) is shown. The arrows indicate

how solutions are drawn towards the stable and away from the unstable branches over time.

regarded as a fixed point of an annual map and so we used CL Matcont for maps25 to find

this fixed point and to follow a path of fixed points with varying p5. The results in Fig. 6 show

how the periodic state changes as parameter p5 is varied. It has two branches, representing

two paths of fixed points, which are connected by a limit point or fold bifurcation. The top

branch is stable and the bottom branch is unstable, with the change of stability occurring

at the limit point. If a fixed point is stable, it acts as an attractor and so solutions close

by will be drawn towards this fixed point solution. If a fixed point is unstable, it acts as a

repellor for nearby solutions.

We have already seen in Section IIA that GPP (0, t) = 0 for all t and this implies that

Cf(t) = 0 is a fixed point of the daily map and therefore is also a fixed point of the annual

map for all values of the parameters. The derivative of the iteration for the annual map

with respect to Cf(t), evaluated at Cf(t) = 0, is (1 − p5)
365 (since GPP (Cf , t) = O(C2

f ))

and so, since 0 < p5 < 1 (which is always true for physical reasons), the zero fixed point is

always linearly stable. In this way, we find that the annual map of Cf has either one (stable)
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fixed point or three fixed points (two stable separated by one unstable), depending on the

parameter values.

Unstable solutions are not seen in simulations, but they play a significant role in deter-

mining what kind of behaviour occurs. For example, if a simulation is carried out with the

initial value of Cf (0) = Cf0 at a point anywhere on the graph between the top and bottom

branch, such as at p5 = 0.0024 and Cf0 = 140 (see Fig. 5), then Cf will be attracted to the

top branch and will grow to a stable periodic state. If the initial condition is at a point

below the bottom branch, for example at p5 = 0.0024 and Cf0 = 20, it will be repelled from

the bottom branch and attracted to the fixed point Cf = 0. If p5 is chosen to the right of the

limit point, for example p5 = 0.0035 (see Fig. 5) then the iterates will also be attracted to

Cf = 0 for all initial values of Cf . In this case, the forest is unsustainable and will eventually

die for any initial value of the foliar carbon (see Fig. 5). Once the forest has died, it is not

possible for it to re-grow, according to the model, as the state Cf = 0 is an attractor.

In Fig. 7 the limit point of Cf is shown for a range of values of p5 and p23. If p23 changes,

the path of fixed points will move and the limit point will move with it. In this way one

can imagine a whole series of new curves with new limit points. Fig. 7 shows the line of

limit points along with a schematic series of curves. We used CL Matcont for maps25 again,

varying p23 as well as parameter p5, to compute a line of limit points. The computed surface

of fixed points and the line of limit points is shown in Fig. 8.

By finding the limit points of all the possible parameter combinations it is possible to

define for which values of the parameters a forest has a chance of growing to a periodic state

and living, depending on the initial value of Cf , and for which values the forest is doomed to

widespread mortality. As Cf is central to the distribution of carbon to the different carbon

pools, it is possible to conclude that for values of p23 and p5 situated on the left hand side

of the line of limit points, the evergreen forest either grows to a stable periodic state and

lives or it will eventually die, depending on the initial condition for Cf . For values of the

parameters on the right hand side of the line of limit points the conditions are such that

an evergreen forest will eventually die whatever the initial value of Cf . This answers the

question on how the behaviour of the foliar carbon pool changes for different values of the

parameters, p2, p3 and p5. It is interesting to note that the parameter values we have used

result in a point near the limit point line, see Fig. 7. Our choice of parameter values came

from the REFLEX study. As part of this study nine different groups estimated parameters
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FIG. 7. Schematic diagram showing how the path of limit points divides the parameter plane

into two different regions. Note the star near the line of limit points, which represents realistic

parameter values: p5 = 0.0028 and p3(1− p2) = 0.1392.

for the DALEC evergreen model from synthetic data of LAI and NEE. From Table 5 in19,

we see that estimates for the parameter combination p23 varied from 0.08 to 0.19 and for

p5 from 0.0027 to 0.004. The synthetic data for the study was generated by running the

DALEC model forward in time for the parameters indicated by the star in Fig. 7, a region

where the model predicts that the forest will grow to a steady oscillatory state: seven of the

nine groups estimated parameters which indicated that the forest was dying.

We used climate and parameter data from another, younger, forest to see if the parameter

values would also result in a point near the limit point line. The forest is a Metolius young

ponderosa pine site located in a Research Natural Area in the Eastern Cascades, near Sisters,

Oregon, USA21, which, similarly to the Loobos forest used in the REFLEX project, enjoys

a temperate climate. Nearly all the parameter values for this forest are different, including

the a-parameters in the ACM, see Appendix D. The star in Fig. 9 is again near the line

of limit points; close enough that again uncertainty in the parameter values could result in

different predictions as to the future fate of the forest.
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FIG. 8. A plot of the surface of fixed points with the line of limit points projected onto the

parameter plane.

A possible reason for this observed behaviour is that if the mean lifetime of the leaves or

needles (p5) is controlled by physiological factors, and hence comparatively inflexible, then

the strategy adopted by a tree to give maximum growth would be to minimise the quantity

of carbon allocated to leaves (p23) while remaining viable. This suggests that it should lie

close to but above the line of limit points.

B. Smoothing the Drivers

The drivers for temperature and irradiance commonly used are highly variable, see Fig. 3.

We now consider the effect that smoothing the drivers has on the results as, for mathematical

analysis purposes, it is more desirable to work with simple functions rather than raw data.

The smoothed drivers using the three term Fourier series approximation obtained using the

methods described in Section IIB 2 are shown in Fig. 3. The Fourier series approximation

and the piecewise quadratic approximation to the irradiance are shown in Fig. 4. We found

that although with the quadratic approximation the higher peaks are reached, there was

not much difference between this approximation and the Fourier series approximation when
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FIG. 9. The line of limit points for the Oregon forest. The star represents the parameter values.

For this forest p5 = 0.0027 and p3(1− p2) = 0.1659.

compared, running forward the Cf equation. Therefore, for the sake of simplicity, we have

used the Fourier series approximation in our analysis.

In Fig. 10 the graph for Cf is obtained by running the model forward over three years,

both with the original highly variable drivers and the smoothed drivers. This shows that the

the effect of the smoothing on Cf is minimal. The path of fixed points and the line of limit

points produced using the smoothed drivers also show qualitatively very similar behaviour,

see Figs 11 and 12. The only difference is a small change in the path of fixed points for the

foliar carbon and in the position of the limit point. The use of smoothed drivers greatly

simplifies the model as expressing data in terms of functions means it is not necessary to use

separate data files. It can also simplify data collection as only three parameters are required,

namely the mean, amplitude and phase of the annual cycle. The fact that smoothing does

not qualitatively change the dynamics illustrates the robustness of the limit point structure.

According to27, natural variability in drivers is important and ecosystems respond to it.

They show that by taking away high-frequency variability decadal Net Ecosystem Production

(NEP), GPP and total respiration are significantly enhanced. However, the ACM only takes

into account daily measures of climate data and therefore the high frequency variability has
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FIG. 10. Cf over three years shown using noisy drivers and smoothed drivers.

already been taken out. This could also explain why, in Figs 11 and 12, we do not see the

effect predicted by27.

C. Variation in the Atmospheric Carbon and Temperature

In our model we have assumed that the drivers are periodic on an annual timescale and

that the atmospheric carbon is constant. However, in reality the atmospheric carbon is

increasing year by year partly due to human activities such as the burning of fossil fuel28.

The effect of atmospheric carbon is included in the model of photosynthesis, see equation

(B2) in Appendix B. Fig. 13 shows the effect that raising the atmospheric carbon, Ca, has

on the curve in Fig. 11 (using the smoothed drivers). For a given value of p5, if there is more

CO2 available for photosynthesis, then the forest grows towards a higher periodic solution.

The region in the parameter plane where a forest can live is also bigger as the limit point

moves to the right as Ca increases.

Interestingly, the increase of mean daily temperature by a constant amount of 2.4◦C

has no significant effect on the line of limit points. Several studies suggest that this is the
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FIG. 11. The solid curve is the result of using smoothed drivers, the dashed curve is the result of

using noisy drivers.
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FIG. 13. Paths of fixed points for Ca = 380 (dashed) , Ca = 430 (dot), Ca = 480 (dash-dot) and

Ca = 530 (solid).

approximate amount the temperature will rise by the end of the 21st century even if the

atmospheric carbon level is kept at its current value29. This lack of effect could be due to

the fact that the data used is from a forest in a moderate climate. There are only 23 days

in the data where the temperature during the day is slightly below zero. In DALEC EV no

provision is made for when the temperature goes below zero, which is when photosynthesis

slows down or stops30. In DALEC EV photosynthesis takes place whatever the temperature.

One might anticipate more temperature dependence for deciduous forests, as a temperature

increase here could result in an increase in the length of the growing season.

D. Behaviour of the Other Carbon Pools

For each of the fixed points of the annual map for the foliar carbon pool we can find

corresponding fixed points for the other four carbon pools. For the fixed point Cf = 0 it

can be shown that all other pools also have a fixed point at zero. The Jacobian matrix of

equations (1)–(5) evaluated at this fixed point is lower triangular with diagonal entries that

are all less than one, and so the fixed point in which all the pools are zero is a stable fixed

point of the model.
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FIG. 14. Behaviour of Cf , Cr and Clit over 20 years; all three of these carbon pools reach a periodic

state within this time.

The roots carbon pool, Cr, and the litter carbon pool, Clit, reach their (non-zero) fixed

points relatively quickly, on the same time scale as the foliar carbon pool, as the parameters

p7 and p8 are not too small, see Fig. 14. However, the soil and organic matter carbon pool,

Csom, and the woody carbon pool, Cw, take a very long time (thousands of years) to reach

their fixed points, due to the very small values of the parameters p6 and p9, see Fig. 15. The

wood pool, Cw, grows faster than the soil and organic matter pool. Due to the very slow

growth of Csom, we can regard the initial value of Csom as a pseudo-fixed point on a decadal

scale.

IV. PRELIMINARY RESULTS FOR DALEC DECIDUOUS

The main difference between the evergreen and deciduous models is that DALEC DE has

an extra labile pool, Clab, which is used in the spring to kickstart the growth of leaves. It

depletes as the leaves grow and then builds up again in the autumn, when the leaves are

dropping. In this case, we see from the model equations (6)–(11) that the foliar and labile

pools are coupled but decouple from the other four equations.

For the parameter values given in Appendix A we found that Cf and Clab go to zero,
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FIG. 15. Only one point per year plotted, removing the periodic behaviour: Csom and Cw do not

reach their fixed points until after 10, 000 years (note the log scale).

which corresponds to the forest dying. Thus, we changed the parameter p14 to be p14 = 0.19

and found that Cf and Clab then converge to a positive periodic cycle, which corresponds

to the forest living. Thus, it seems that there is a similar structure in this model to that of

DALEC EV. Fig. 16 shows the foliar and labile pools plotted over one year with p14 = 0.19.

In the spring, approximately between days 100 and 150, foliar turnover is switched off and

labile turnover is switched on, allowing leaves to start growing again. This depends on

temperature and the time of year. In the summer, both the labile pool and the foliar pool

remain unchanged for some time (approximately between days 200 and 250), which is when

both the foliar turnover and the labile turnover are switched off. In the autumn, foliar

turnover is switched on, when the minimum temperature goes below the value of p13 and

after more than 200 days of the year have passed. During this phase, the trees drop their

leaves and photosynthesis comes to a halt and so the foliar carbon pool is depleted and

carbon is stored in the labile pool until spring.

Even though the dynamics of the forest now depends fundamentally on the two carbon

pools Cf and Clab, we find a bifurcation structure which is similar to that of DALEC EV,

see Fig. 17. We used the variable daily climate data for these results. However, this time, as
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it is important that the foliar carbon depletes to zero in the autumn and the labile carbon

depletes to zero in the spring, we use parameter p14, the fraction of carbon loss to litter,

as our bifurcation parameter. Varying this parameter retains the depletion of both pools

whereas increasing p5 can stop the foliar carbon pool going to zero in the autumn. So when

we keep all the other parameters fixed and vary p14, we find a limit point for the coupled

dynamics of the foliar carbon pool Cf and the labile carbon pool, Clab, see Figs 17 and 18.

It is interesting to note that the top branches of both graphs are much steeper than the top

branch in Fig. 6. A small change in p14 causes a large change in the value of the fixed point.

However, we also note that Cf is very small, since we are sampling during the winter on 21st

December each year.

We also see from equations (6) and (7) that Cf = Clab = 0 is a fixed point of the daily

map and hence also of the annual map and so, as with DALEC EV, there are either one or

three fixed points depending on the parameter values. For DALEC EV we showed that the

trivial fixed point Cf = 0 is linearly stable. We now show that for DALEC DE the fixed

point Cf = Clab = 0 is also linearly stable.

We write the iteration given by (6) and (7) as

Xn+1 = F (Xn, t)

where X = (Cf , Clab) and F (0, t) = 0. If the Jacobian matrix for these equations is J(X, t),

then the trivial fixed point will be linearly stable if ρ(M) < 1, where ρ is the spectral radius

and

M =
364
∏

t=0

J(0, t)

The form of J(0, t) depends on the values of the two switches mtf andmtl. In spring, mtf = 0

and mtl = 1 and then

J(0, t) = Js(0, t) =







1 p15(1− p16)T (t)

0 1− p15T (t)







In summer, mtf = mtl = 0 and then J(0, t) = I. Finally, in autumn and winter, mtf = 1

and mtl = 0 and then

J(0, t) = Jw(0, t) =







1− p5(p14 + (1− p14)T (t)) 0

p5(1− p14)(1− p16)T (t) 1







We note that the model requires all the non-zero entries in these matrices to be positive.

Taking the matrix one-norm of these matrices, we then see that ||J(0, t)||1 = 1 in all cases.

Thus, using standard properties of matrix norms, we have
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ρ(M) = ρ

(

364
∏

t=0

J(0, t)

)

≤

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

364
∏

t=0

J(0, t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1

≤
364
∏

t=0

||J(0, t)||1 = 1

This does not quite give us the result that we want, as we require strict inequality, and so

we need to introduce at least one strict inequality. To do this, we note that winter will turn

to spring and so, for some t, there will be a matrix product Js(0, t+ 1)Jw(0, t). We aim to

show that ||Js(0, t+ 1)Jw(0, t)||1 < 1 as this is then sufficient to give ρ(M) < 1 as required.

To verify this inequality, we first note that since all the entries in both matrices are non-

negative, as noted above, then all the entries in the matrix product Js(0, t+1)Jw(0, t) will also

be non-negative. Thus the one-norm of this product is simply the largest column sum with

no need to take absolute values. The sum of the second column is simply 1−p15p16T (t) while

the sum of the first column is given by 1−p5p14−p5p16T (t+1)(1−p14)(1+p15(1−p16)T (t)).

These are both strictly less than one and so ||Js(0, t+ 1)Jw(0, t)||1 < 1 as required.

Thus, we conclude that the trivial fixed point Cf = Clab = 0 is linearly stable as claimed.

It is then follows from the analysis in Section IIB 1 that the fixed point for the full model

where all the pools are zero is a stable fixed point.

V. DISCUSSION AND CONCLUSION

We have analysed the qualitative dynamical behaviour of DALEC EV and DALEC DE,

which are simple process-based vegetation models for carbon stocks and stores of evergreen

and deciduous forests that have been used previously to study model uncertainty, parameter

estimation and carbon fluxes. We have shown that the dynamics of the DALEC EV model

fundamentally depends on the behaviour of the foliar carbon pool and the parameters in-

volved in this pool, p3(1− p2) (fraction of GPP allocated to foliage), p5 (daily turnover rate

of foliage) and p11 (nitrogen use efficiency parameter in the ACM). The dynamics of the

foliar carbon pool have a limit point that is dependent on the value of these parameters.

For appropriate values of the parameters and initial conditions the carbon pools converge

to stable periodic annual cycles. However, if either the allocation of carbon to foliage is

too small or the foliage turnover rate is too large then the model predicts that widespread

mortality occurs. Our preliminary study of DALEC DE found that it exhibits a similar limit

point structure to the evergreen model.

We note that if we had not removed the constraint that LAI is max(0.1, Cf/lma) and
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FIG. 16. The foliar and labile pools plotted over one year with p14 = 0.19.

replaced it with LAI= Cf/lma in the DALEC evergreen model, then the limit point structure

would be unchanged but Cf = 0.1 × lma would play the same role as Cf = 0 does in our

work.

That the allocation of carbon to foliage has to be in balance with the foliage turnover rate

for a forest to survive is perhaps not surprising. But the fact that typical parameter values

for the two evergreen forests that we have considered, the Loobos site in the Netherlands

and the NRA site near Sisters, in Oregon, USA, sit near a limit point is interesting. One

consequence is that if for any reason, such as sustained drought, parameters in the model

change then forests can ‘tip’ from a stable to an unstable state resulting in widespread

mortality. In Section IIIA a proposed reason for why evolutionary pressures might drive

typical parameter values towards the limit point was given. The fact that typical parameter

values are above and not at the limit point is a consequence of the fact that long term

survival requires that typical climatic conditions do not cause such tipping.

The presence of the limit point has other consequences: given a level of uncertainty in

the parameters that is not untypical, it is difficult to predict even whether the forests that
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FIG. 17. Limit point for parameter p14 on a path of fixed points of the annual map for Cf for

DALEC DE. The top branch is stable, the bottom branch is unstable and there is also a stable fixed

point branch at Cf = 0. The fixed points are sampled on day 0 of each year, which is December

21st.

are being modelled are growing or dying. This is illustrated by the fact that the parameters

predicted by REFLEX project participants using exactly the same data, in some cases

predicted a growth in foliar carbon and sometimes a decline. This occurs for both evergreen

and deciduous versions – in the latter case this is visible in Fig. 7 of19 where, although

most groups predict that the foliar carbon is decreasing, at least one group predicts that

it is increasing. This is not a fault of the simplicity of the model, but a result of the

fact that there is a structural change in the underlying dynamical system. Knowing where

such structural changes occur highlights parameter regimes where even getting the trend

correct is challenging. Such structural changes may also have implications for the practical

implementation of data assimilation schemes since, close to limit points, the model state

variables become very sensitive to the bifurcation parameters.

The fact that in the DALEC evergreen model the foliar carbon pool decouples from the

other pools has important consequences for data assimilation using this model. A direct
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FIG. 18. Limit point for parameter p14 on a path of fixed points of the annual map for Clab for

DALEC DE. The top branch is stable, the bottom branch is unstable and there is also a stable

fixed point branch at Clab = 0. The fixed points are sampled on day 0 of each year, which is

December 21st.

consequence of this decoupling is that measurements of LAI can only constrain parameters

in the foliar carbon pool. If the parameters in GPP and the parameter relating LAI to foliar

carbon are kept fixed, as in REFLEX, then measurements of LAI can only hope to enable

the fitting of the parameters p5, p11 and the combination p3(1−p2). In DALEC EV, the fact

that p2 and p3 are linked to different physiological mechanisms is irrelevant as far as the foliar

carbon pool is concerned. This is an example of a general point that the sensitivity of the

observables to the parameters in the model has a significant impact on whether it is possible

to retrieve the values of the parameters from data. For example, in the DALEC model LAI

is insensitive to p̃4, so no data assimilation scheme will be able to retrieve the parameter

p̃4 from LAI alone. Furthermore, even if the observables are sensitive to the parameters, it

may not be possible to identify all the parameters reliably (here, LAI is sensitive to both p2

and to p3, but it would only be possible to retrieve the combination p3(1− p2)).

With REFLEX, the participants had not just LAI data but also NEE data to try to
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constrain the parameters. However, it was still not possible to retrieve all parameter values

reliably. Within carbon cycle models the multiple timescales, as illustrated in Fig. 15, means

that it is inevitable that some model parameters are hard to extract from data and this issue

will be investigated, in the context of DALEC, elsewhere.

We found that an increase in the atmospheric carbon parameter Ca increases the region

of the parameter plane where the forest will live, and also results in a higher value of Cf

at the stable non-trivial fixed point. Such a response is in agreement with31 who identify

increased atmospheric carbon as a possible factor in increased growth of trees through carbon

fertilisation. However, growth is also dependent on other resources, such as nutrients and

stressors.32 found that during a six year experiment at a Free Air CO2 Enrichment (FACE)

site in Duke Forest, USA, pines receiving elevated CO2 had on average about 17% more

needles than untreated pines, mainly depending on the amount of nitrogen present in the

soil.

Additionally we have shown that it may not be necessary in DALEC, for a forest that

is living in a steady climate, to use daily driver data, but that it is sufficient to represent

the drivers by a smooth cosine wave, where all that is needed is to measure the amplitude,

mean and phase of the annual cycle. Clearly, smoothing the drivers would not always be

appropriate, in particular when the model is used to study certain shock phenomena. We

also acknowledge that smoothing the drivers takes away the natural variability, to which

ecosystems respond. According to27, removal of high-frequency variability significantly en-

hances decadal Net Ecosystem Production, NEP (measurement of the net gain or loss of

carbon in a system over a period of time), GPP and total respiration. Interestingly, they

also show that solar radiation has a strong effect, whereas temperature variability only has a

minor impact by comparison. During our smoothing exercise, we found that the model was

more sensitive to solar radiation, which is why we had to resort to data assimilation methods

to make the function fit, than to the temperature data. In DALEC EV, using the smoothed

drivers did not make much difference to the results, perhaps as the high frequency variability

was already taken out, the data being daily averages rather than hourly observations.

According to its creator, the DALEC EV model does seem to catch the qualitative be-

haviour of describing carbon stocks and stores: “We have attempted to strike the correct

balance between sufficient model complexity to capture the essential dynamics of the system

while maintaining simplicity”19 and in future research it would be interesting to compare this

32



simple model to more complex models. Photosynthesis sits at the heart of all process-based

models and it is the nonlinearity of the photosynthesis model that underlies the structure

that is seen in DALEC EV and DALEC DE so, even in more complex models, one should

expect a similar bifurcation structure to occur. While it would be more challenging to use

continuation methods on DGVMs that are more complex than DALEC, it may still be fea-

sible. The same basic methods could be used: if climate drivers that are periodic on an

annual scale are used then periodic solutions will exist that can be found by finding fixed

points of an annual map. How these fixed points vary with parameters and their stability

could also be investigated. Of course, climate drivers are not periodic, but as long as they

are approximately periodic then one expects approximately periodic solutions. Bifurcation

techniques that enable the computation of bifurcation structures even in noisy systems33

have been developed.

To conclude, an understanding of what sits at the heart of complex models, which a

generic model such as DALEC represents, can give insight into parameter constrainability

and have an impact on the choice of data assimilation schemes used.
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Appendix A

This appendix contains a description of the parameters in the DALEC models and their

values.

Parameters to be calibrated:
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Parameters used in DALEC EV

Description Value

p1 Daily decomposition rate 0.0000044100

p2 Fraction of GPP respired 0.52

p3 Fraction of NPP allocated to foliage 0.29

p̃4 Fraction of NPP allocated to roots 0.2911

p5 Daily turnover rate of foliage 0.0028

p6 Daily turnover rate of wood 0.00000206

p7 Daily turnover rate of roots 0.003

p8 Daily mineralisation rate of litter 0.02

p9 Daily mineralisation rate of soil and organic matter 0.00000265

p10 Parameter in exponential term of temperature

dependent parameter 0.0693

p11 Nitrogen use efficiency parameter in ACM 7.4
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Parameters used in DALEC DE

Description Value

p1 Daily decomposition rate 0.00001

p2 Fraction of GPP respired 0.45

p3 Fraction of NPP allocated to foliage 0.4

p4 Fraction of NPP remaining after allocation to foliage

allocated to roots 0.4

p5 Daily turnover rate of foliage 0.06

p6 Daily turnover rate of wood 0.00007

p7 Daily turnover rate of roots 0.008

p8 Daily mineralisation rate of litter 0.03

p9 Daily mineralisation rate of soil and organic matter 0.00003

p10 Parameter in exponential term of temperature

dependent parameter 0.073

p11 Nitrogen use efficiency parameter in ACM 14

p12 GDD value causing leaf out

(GDD is the growing degree day factor) 240

p13 Minimum daily temperature causing leaf fall 9

p14 Fraction of leaf loss transferred to litter 0.48

p15 Daily turnover rate of labile carbon 0.09

p16 Fraction of labile transfers respired 0.15

p17 Maximum Cf value (g C m−2) 300
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Parameters viewed as constants, all in the ACM:

Optimised Value

a2 0.0156

a3 4.22273

a4 208.868

a5 0.0453

a6 0.3783

a7 7.1929

a8 0.0111

a9 2.1001

a10 0.7897

Appendix B

This appendix contains the functions in the GPP. Recall that the GPP, as defined in

(12), is

GPP (Cf(t), t) =
E0(Cf(t))I(t)gc(t)(Ca(t)− Ci(Cf(t), t))

E0(Cf(t))I(t) + gc(t)(Ca(t)− Ci(Cf(t), t))
(a2s(t) + a5).

Canopy Conductance, gc(t)

gc(t) =
|ψ|a10

0.5Tr(t) + a6Rtot

, (B1)

where:

ψ = 2 (constant),

Rtot = 1 (constant).

CO2 Concentration at Site of Carboxylation, Ci(Cf (t), t)

Ci(Cf(t), t) =
1

2

[

Ca + q − p(Cf(t), t) +
√

(Ca + q − p(Cf(t), t))2 − 4(Caq − a3p(Cf(t), t))
]

,

(B2)
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where:

Ca = 380 (constant averaged over three years);

q = a3 − a4 = −204.64527

Photosynthate, p(Cf (t), t)

p(Cf(t), t) =
p11NCf (t)

lma gc(t)
exp(a8Tmax(t)), (B3)

where:

N = 4 (EV) and 2.7 (DE) (constant),

lma = 110 (EV), 60 (DE) (constant).

Canopy Level Quantum Yield, E0(Cf (t))

E0(Cf(t)) =
a7Cf(t)

2

Cf(t)2 + a9 lma2
, (B4)

where:

lma = 110 (EV), 60 (DE) (constant).

Solar Declination

δ(t) = −23.4 cos(2πt/365)(π/180) = −0.408 cos(2πt/365). (B5)

Day Length

s(t) = 24 cos−1(− tan(lat) tan(δ(t)))/π, (B6)

where:

lat = 52◦ (EV, constant), 42.5◦ (DE, constant)
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Appendix C

This appendix contains a list of symbols.

Symbol Description

ψ Max soil-leaf water potential difference (MPa)

Tr Daily temperature range (◦C)

Rtot Total plant-soil hydraulic resistance (MPa m2s mmol−1)

N Foliar nitrogen (g N m−2 leaf area)

lma Leaf mass per area (g C m−2 leaf area)

L Leaf area index (m2 m−2) (LAI)

Tmax Maximum daily temperature (◦C)

Tm Mean daily air temperature (◦C)

Ca Atmospheric CO2 concentration (µmol mol−1)

δ Solar declination (radians)

D Day of the year

lat Site latitude (◦)

I Irradiance (MJ−1 m−2 day−1)

Ra Autotrophic respiration

Rh Heterotrophic respiration, Rh1
+Rh2

(g C m−2)

Rh1
: p8ClitT (t)

Rh2
: p9CsomT (t)

Appendix D

This appendix contains the parameter and other constant values for the Oregon forest.

Parameters viewed as constants, all in ACM:
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Optimised Value

a2 0.0142

a3 0.980

a4 217.9

a5 0.155

a6 2.653

a7 4.309

a8 0.060

a9 1.062

a10 0.0006

Parameters to be calibrated:

Description Value in our analysis

p1 Daily decomposition rate 0.0000044100

p2 Fraction of GPP respired 0.473267

p3 Fraction of NPP allocated to foliage 0.314951

p̃4 Fraction of NPP allocated to roots 0.297586

p5 Daily turnover rate of foliage 0.00266518

p6 Daily turnover rate of wood 0.00000206

p7 Daily turnover rate of roots 0.00248

p8 Daily mineralisation rate of litter 0.028

p9 Daily mineralisation rate of soil and organic matter 0.00000265

p10 Parameter in exponential term of temperature

dependent parameter 0.0693

p11 Nitrogen use efficiency parameter in ACM 2.155

Other:
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Value

ψ −0.8502

Rtot 1

N 2.7

lat 52◦

lma 111

Ca 357 (averaged over three years of data)
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