Coulomb Branch and the Moduli Space of Instantons

Giulia Ferlito

Imperial College London

November 6, 2015

Based on work done in collaboration with Amihay Hanany, Stefano Cremonesi, Noppadol Mekareeya arXiv:1408.6835

- Supersymmetric Gauge Theories in 3d with ${\cal N}=4$ are subject to a peculiar duality: Mirror Symmetry (arXiv:9607207)
- 3d mirror symmetry exchanges Coulomb branch and Higgs branch of two dual theories.

- 3 pieces of jargon that become confusing under mirror symmetry:
 - Coulomb branch: moduli space parametrised by scalars in the V-plet
 - Higgs branch: moduli space parametrised by scalars in the H-plet
 - Moduli Space of Instantons

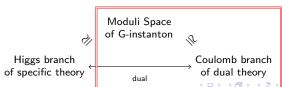
- Supersymmetric Gauge Theories in 3d with ${\cal N}=4$ are subject to a peculiar duality: Mirror Symmetry (arXiv:9607207)
- 3d mirror symmetry exchanges Coulomb branch and Higgs branch of two dual theories.

- 3 pieces of jargon that become confusing under mirror symmetry:
 - Coulomb branch: moduli space parametrised by scalars in the V-plet
 - Higgs branch: moduli space parametrised by scalars in the H-plet
 - Moduli Space of Instantons
- Goal:

Higgs branch of specific theory

- Supersymmetric Gauge Theories in 3d with ${\cal N}=4$ are subject to a peculiar duality: Mirror Symmetry (arXiv:9607207)
- 3d mirror symmetry exchanges Coulomb branch and Higgs branch of two dual theories.

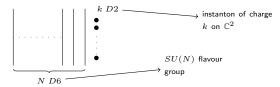
- 3 pieces of jargon that become confusing under mirror symmetry:
 - Coulomb branch: moduli space parametrised by scalars in the V-plet
 - Higgs branch: moduli space parametrised by scalars in the H-plet
 - ► Moduli Space of Instantons
- Goal:



 $\begin{array}{c} \text{Higgs branch} \\ \text{of specific theory} \end{array} \longleftrightarrow \begin{array}{c} \text{Coulomb branch} \\ \text{of dual theory} \end{array}$

- Supersymmetric Gauge Theories in 3d with ${\cal N}=4$ are subject to a peculiar duality: Mirror Symmetry (arXiv:9607207)
- 3d mirror symmetry exchanges Coulomb branch and Higgs branch of two dual theories.

- 3 pieces of jargon that become confusing under mirror symmetry:
 - Coulomb branch: moduli space parametrised by scalars in the V-plet
 - Higgs branch: moduli space parametrised by scalars in the H-plet
 - ► Moduli Space of Instantons
- Goal:


Outline

- Introduction and Motivation
- Brane constructions and quivers
 - ADHM quivers
 - Hilbert series for Higgs branch
 - Dualities on brane construction
 - Overextended Quivers
- \odot Coulomb branch of 3d $\mathcal{N}=4$
 - Fields
 - Monopole operators
 - The Coulomb branch formula for HS
 - Non simply laced quivers
- Summary and Conclusions

ADHM quivers

- Instantons have a well-known realization in terms of branes: Dp-branes inside D(p+4)-branes with or without O(p+4)-planes (orientifolds)
- \bullet To realize a 3d theory choose p=2 $_{\rm (arXiv:9511030),\,(arXiv:9512077)}$ \Rightarrow D2 branes in the background of D6-branes

• This brane construction can be associated to a quiver gauge theory

- \bullet The Higgs branch of this quiver gauge theory is isomorphic to the moduli space of k SU(N) instantons on \mathbb{C}^2
- To engineer other groups need a background with orientifolds

ADHM quivers

G	Brane configurations	ADHM quiver		
A_{N-1}	N D6	$\operatorname{Adj} \qquad \qquad \underbrace{U(k) \qquad \qquad SU(N)}_{}$		
B_N	k $D2$ images N $D6$ images N $D6$	$\begin{array}{c c} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$		
C_N	k D2 images N D6 images N D6 images N D6	$S \xrightarrow{O(2k)} USp(2N)$		
D_N	k D2 images	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Giulia Ferlito

Higgs branch of ADHM quiver theories \cong the moduli space of k G-instantons on \mathbb{C}^2

$$\mathcal{M}_{\scriptscriptstyle\mathsf{H}}^{\scriptscriptstyle\mathsf{ADHM}}\cong\widetilde{\mathcal{M}}_{\scriptscriptstyle\mathsf{k},\scriptscriptstyle\mathsf{G}}\quad\text{ on }\mathbb{C}^2$$

To study moduli space of G-instantons \Rightarrow calculate Hilbert Series for the Higgs branch.

- What is the Hilbert Series (HS)?
 - ▶ It is a partition function that counts chiral gauge invariant operators
- Why do we care?
 - ► The chiral gauge invariant operators parametrise the moduli space
 - Hilbert Series encodes: dimension of moduli space, generators, relations

Higgs branch of ADHM quiver theories \cong the moduli space of k G-instantons on \mathbb{C}^2

$$\mathcal{M}_{\scriptscriptstyle\mathsf{H}}^{\scriptscriptstyle\mathsf{ADHM}}\cong\widetilde{\mathcal{M}}_{\scriptscriptstyle\mathsf{k},\mathsf{G}}\quad \ \, \mathsf{on}\,\,\mathbb{C}^2$$

To study moduli space of G-instantons \Rightarrow calculate Hilbert Series for the Higgs branch.

- What is the Hilbert Series (HS)?
 - ▶ It is a partition function that counts chiral gauge invariant operators
- Why do we care?
 - ▶ The chiral gauge invariant operators parametrise the moduli space
 - Hilbert Series encodes: dimension of moduli space, generators, relations
- How do we calculate it?

HS for the space $\mathbb{C}^2/\mathbb{Z}_2$

- \bullet \mathbb{C}^2 with action of \mathbb{Z}_2 : $(z_1,z_2)\longleftrightarrow (-z_1,-z_2)$
- ullet Holomorphic functions invariant under this action: z_1^2 , z_2^2 , z_1z_2 , z_1^4 , ...
- All monomials constructed from 3 generators subject to 1 relation
 - $lacksquare X = z_1^2$, $Y = z_2^2$, $Z = z_1 z_2$
 - $ightharpoonup XY = Z^2$

HS for the space $\mathbb{C}^2/\mathbb{Z}_2$

Collect the infinitely many invariants in 1 function

- Isometry group of \mathbb{C}^2 : U(2)
- Cartan subalgebra: $U(1)^2$
- ullet Choose counters or fugacities t_1 , t_2
 - t_1 is the U(1) charge of z_1 t_2 " z_2

$$HS(t_1, t_2) = 1 + t_1^2 + t_2^2 + t_1 t_2 + \dots = \sum_{i=1}^{\infty} t_1^i t_2^j$$
 with $j = i \mod 2$

HS for the space $\mathbb{C}^2/\mathbb{Z}_2$

Collect the infinitely many invariants in 1 function

- Isometry group of \mathbb{C}^2 : U(2)
- Cartan subalgebra: $U(1)^2$
- ullet Choose counters or **fugacities** t_1 , t_2
 - t_1 is the U(1) charge of z_1 t_2 " z_2

$$HS(t_1, t_2) = 1 + t_1^2 + t_2^2 + t_1 t_2 + \dots = \sum_{i,j=0}^{\infty} t_1^i t_2^j$$
 with $j = i \mod 2$

ullet Can unrefine: $t_1=t_2=t\longrightarrow {\sf count}$ all monomials at given degree

$$HS(t) = \sum_{i,j...} t^{i+j} = 1 + 3t^2 + 5t^4 + ... = \sum_{k=0} (2k+1)t^{2k}$$
$$= \frac{1 - t^4}{(1 - t^2)^3}$$

Dimension of moduli space = pole of unrefined HS

HS for the space $\mathbb{C}^2/\mathbb{Z}_2$

• Can refine: $t_1 = yt$ and $t_2 = t/y$

$$\begin{split} \mathrm{HS}(t;y) &= \ 1 + (y^2 + 1 + y^{-2})t^2 + (y^4 + y^2 + 1 + y^{-2} + y^{-4})t^4 + \dots \\ &= \sum_{k=0} \chi[2k]_{\vec{y}}^{\mathrm{SU(2)}} t^{2k} \\ &= \frac{1 - t^4}{(1 - t^2 y^2)(1 - t^2)(1 - t^2 y^{-2})} \end{split}$$

$$\begin{array}{l} \blacktriangleright \ \ \text{where} \ y^2+1+y^{-2}=\chi[2]^{\text{SU(2)}}_{\vec{y}} \\ y^4+y^2+1+y^{-2}+y^{-4}=\chi[4]^{\text{SU(2)}}_{\vec{y}} \end{array}$$

- ullet generators: triplet of $SU(2) \longrightarrow X, \ Y, \ Z$ at degree 2
- relation: numerator → quadratic in generators

- ullet $\mathbb{C}^2/\mathbb{Z}_2$ turns out to be $\widetilde{\mathcal{M}}_{\scriptscriptstyle 1,\mathsf{SU}(2)}$
- From ADHM quiver

$$\mathrm{HS}_{\mathrm{1.SU(N)}}(t;\; x, \vec{y}) = \; \frac{1}{(1 - tx)(1 - tx^{-1})} \sum_{k=0} \chi[k, 0, ..., 0, k]_{\vec{y}}^{\mathrm{SU(N)}} \; t^{2k}$$

- factor outside sum o centre of the instanton on \mathbb{C}^2
- ightharpoonup sum ightarrow reduced moduli space $\widetilde{\mathcal{M}}_{\scriptscriptstyle 1,SU(N)}$
- $\chi[1,0,...,0,1]_{\vec{y}}^{\text{SU(N)}} = \text{character of adjoint rep of } SU(N)$
- ▶ Global symmetry $SU(2)_g \times SU(N)$ explicit

- ullet $\mathbb{C}^2/\mathbb{Z}_2$ turns out to be $\widetilde{\mathcal{M}}_{\scriptscriptstyle 1,\mathsf{SU}(2)}$
- From ADHM quiver

Adj
$$U(1)$$
 $SU(N)$

$$\mathrm{HS}_{\mathrm{1,SU(N)}}(t;\; x,\vec{y}) = \; \frac{1}{(1-tx)(1-tx^{-1})} \sum_{k=0} \chi[k,0,...,0,k]_{\vec{y}}^{\mathrm{SU(N)}} \; t^{2k}$$

- factor outside sum \to centre of the instanton on \mathbb{C}^2
- ightharpoonup sum ightarrow reduced moduli space $\widetilde{\mathcal{M}}_{\scriptscriptstyle 1,SU(N)}$
- $\blacktriangleright \ \chi[1,0,...,0,1]_{\vec{y}}^{\text{SU(N)}} = \text{character of adjoint rep of } SU(N)$
- ▶ Global symmetry $SU(2)_g \times SU(N)$ explicit
- Minimal nilpotent orbit of SU(N)

Generalise for any group ${\cal G}$

[Kronheimer]

$$\mathrm{HS}(\widetilde{\mathcal{M}}_{\scriptscriptstyle \mathsf{I},\mathsf{G}};t,\vec{y}) = \sum_{k=0}^{\infty} \chi[k\theta]_{\vec{y}}^{\mathsf{G}} \ t^{2k}$$

where $\left[heta
ight]_{ec{y}}^{\mathsf{G}}$ is the adjoint rep of G

Difficulties

- ullet For k>1, no simple description of $\widetilde{\mathcal{M}}_{\mathsf{k},\mathsf{G}}$
- ADHM construction not known for exceptional groups
- ullet HS for k>1 from Higgs branch o HARD

Difficulties

- ullet For k>1, no simple description of $\widetilde{\mathcal{M}}_{\mathsf{k},\mathsf{G}}$
- ADHM construction not known for exceptional groups
- HS for k > 1 from Higgs branch \rightarrow HARD

Solution: Mirror Symmetry

- Exchanges Coulomb branch with Higgs branch
- Find dual theory (use brane and dualities)
- Compute Coulomb branch HS
 - Coulomb branch HS receives quantum corrections
 - Unknow how to compute calculate HS until 2013

[Cremonesi, Hanany, Zaffaroni]

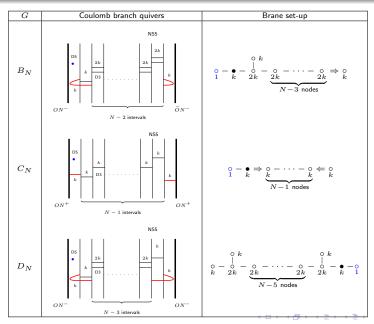
Dualities on brane construction

T-duality: D6-branes \rightarrow D5-branes

 $\mathsf{D2} ext{-branes} o \mathsf{D3} ext{-branes}$ on a circle

 $\hbox{S-duality:} \quad \hbox{D5-branes} \rightarrow \hbox{NS5-branes}$

 $\mathsf{D3}\text{-}\mathsf{branes} \to \mathsf{unchanged}$


No Orientifold T,S-duality No Discrepancy of the property of

Necklace quiver:

Why do we do this?

- S-duality implements mirror symmetry
- ullet S-duality on brane configurations o dual quiver gauge theory

Overextended Quivers

Overextended Quivers

Recap

- Start with ADHM quivers
 Do mirror symmetry to get dual theory
- Do mirror symmetry to get dual theory
- Get nice fancy quivers OVEREXTENDED DYNKIN DIAGRAMS
 - ► Start with Dynkin diagram
 - Attach a node to the "adjoint node"
 - ► Attach another node ⇒ overextended

Overextended Quivers

Recap

- Start with ADHM quivers
- Do mirror symmetry to get dual theory
- Get nice fancy quivers | OVEREXTENDED DYNKIN DIAGRAMS
 - ► Start with Dynkin diagram
 - ► Attach a node to the "adjoint node"
 - ► Attach another node ⇒ overextended

Extrapolate

G	Coulomb branch quivers	
	$egin{pmatrix} \circ & k \\ \\ \circ & 2k \end{pmatrix}$	
E_6	$\overset{\circ}{\underset{1}{\circ}}-\overset{\bullet}{\underset{k}{\bullet}}-\overset{\circ}{\underset{2k}{\circ}}-\overset{\circ}{\underset{3k}{\circ}}-\overset{\circ}{\underset{2k}{\circ}}-\overset{\circ}{\underset{k}{\circ}}$	
E_7	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
E_8	$ \overset{\circ}{\underset{1}{\circ}} - \overset{\bullet}{\underset{k}{\circ}} - \overset{\circ}{\underset{2k}{\circ}} - \overset{\circ}{\underset{3k}{\circ}} - \overset{\circ}{\underset{4k}{\circ}} - \overset{\circ}{\underset{5k}{\circ}} - \overset{\circ}{\underset{6k}{\circ}} - \overset{\circ}{\underset{4k}{\circ}} - \overset{\circ}{\underset{2k}{\circ}} - \overset{\circ}{$	
F_4	$ \begin{array}{cccc} \circ & - & \bullet & - & \circ & - & \circ & \Rightarrow & \circ & - & \circ \\ 1 & k & 2k & 3k & & 2k & k \end{array} $	
G_2	$\circ - \bullet - \circ \Rightarrow \circ$	

$\mathcal{N}=4$	$\mathcal{N}=2$	Field(bosonic)	Label	$SU(2)_C$
V-plet	V-plet: V	gauge	A_{μ}	$ec{\phi} \equiv (\eta, { m Re}\Phi, { m Im}\Phi)$
in adj of \mathcal{G}		real scalar	η	
iii auj 0i g	Chiral Φ	complex scalar	Φ	

- $\langle \vec{\phi} \rangle \neq 0 \Rightarrow \mathcal{G} \rightarrow U(1)^r$, i.e left with photons
- photon in 3d dual to a scalar

$$F_{\mu\nu} = \epsilon_{\mu\nu\rho} \partial^{\rho} \gamma$$

- ullet If some of the scalar VEV=0 \Rightarrow A_{μ} remains nonabelian
 - dualization not clear
- ullet Replace $(A_{\mu},\eta) o$ monopole operators V_m
 - ► Keep Φ
- $\bullet \Longrightarrow V_m$ and Φ parametrise \mathcal{M}_C

What are monopole operators?

• Disorder operators inserted at x s.t A_{μ} has Dirac singularity at x

$$A^{N,S}(\vec{r}) = \frac{\mathbf{M}}{2}(\pm 1 - \cos \theta) d\phi$$
 $\mathbf{M} = \operatorname{diag}(m_1, ..., m_r)$

Dirac quantisation

$$rac{e\mathbf{M}}{2\pi} \in rac{\Lambda_w(\mathcal{G}^V)}{W}$$

- where $\Lambda_w(\mathcal{G}^V)$ weight lattice of dual gauge group
- W is the Weyl group
- Monopole operators: $V_{(m_1,...,m_n)}$

Example: U(N) monopole operators

$$\bullet \mathcal{G}^V = U(N)$$

$$\Lambda_w(U(N)) = \mathbb{Z}^N$$

$$\Rightarrow m_i \in \mathbb{Z}$$
 $i = 1, ..., N$

•
$$W_{U(N)} = S_N$$

► lattice restricted to Weyl chamber

$$m_1 \geq m_2 \geq \ldots \geq m_N$$

A crucial quantum number of monopole operators:

• The charge under $U(1)_C \subset SU(2)_C$ R-symmetry: $\Delta(\vec{m})$

$$\Delta(\vec{m}) = -\sum_{\vec{\alpha} \in \Delta_+} |\vec{\alpha}(\vec{m})| + \frac{1}{2} \sum_{i=1}^n \sum_{\vec{\rho}_i \in \mathcal{R}_i} |\vec{\rho}_i(\vec{m})| \ , \label{eq:delta}$$

- ullet first term: sum over the positive roots of ${\cal G}$
 - contribution from the gauge sector
- second term: sum over the weights of the reps of the hypers
 - contribution from the matter sector
- In IR $\Delta(\vec{m})=$ scaling dimension of operators

Example: quivers with
$$U(N)$$
 nodes $U(N_1)$ $U(N_2)$

Two contributions:

$$\bullet \ \, \mathsf{node} \qquad \begin{matrix} U(N) \\ & \bigcirc \\ & \vec{m} = (m_1, ..., m_N) \end{matrix}$$

$$\Delta_{\mathsf{vec}}(\vec{m}) = -\sum_{1 \leq i < j \leq N} |m_i - m_j|$$
 .

$$\bullet \ \, \mathsf{edge} \, \left| \, \begin{array}{ccc} U(N_1) & U(N_2) \\ & & \\ \hline \vec{m} & \vec{n} \end{array} \right| \,$$

$$\Delta_{\mathsf{hyp}}(\vec{m}, \vec{n}) = \frac{1}{2} \sum_{j=1}^{N_1} \sum_{k=1}^{N_2} |m_j - n_k|$$

$$\bullet \ \Delta_{\rm tot}(\vec{m},\vec{n}) = -\sum\limits_{i < j}^{N_1} |m_i - m_j| - \sum\limits_{i < j}^{N_2} |n_i - n_j| + \frac{1}{2} \sum\limits_{j = 1}^{N_1} \sum\limits_{k = 1}^{N_2} |m_j - n_k|$$

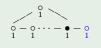
ullet Count monopole operators, grading them by their scaling dimension $\Delta(\mathbf{M})$

$$\mathrm{HS}(t) \sim \sum_{\Lambda_w(\mathcal{G}^V)/W} t^{2\Delta(\mathbf{M})}$$

- One important subtlety: need an extra factor in the sum!
 - ▶ The complex scalar Φ can still take VEV
 - It must be restricted:

$$\Phi_m\in\mathfrak{h}_m$$

- $ightharpoonup H_m$ is the residual gauge group left unbroken by the monopole flux
- Really


$$HS(t) = \sum t^{2\Delta(\mathbf{M})} P_{\mathcal{G}}(t, \mathbf{M})$$

where
$$P_{\mathcal{G}}(t,\mathbf{M}) = \prod_{i=1}^r rac{1}{1-t^{2d_i(\mathbf{M})}}$$

The Coulomb branch formula for HS

Example: 1-SU(N) instanton using Coulomb branch

Take the necklace guiver

N nodes + overextended node

overextended node (blue): m_{-1} affine node (black): m_0 other nodes: m_i i = 1,...N-1

• Need to set $m_{-1} = 0 \to \text{decouple overall } U(1)$

$$\begin{aligned} \operatorname{HS}_{1,N}(t) &= \sum_{m_0=0}^{\infty} \cdots \sum_{m_{N-1}=0}^{\infty} t^{2\Delta(\mathbf{M})} \frac{1}{(1-t^2)^{N-1}} \\ &= \frac{1}{(1-t)^2} \sum_{k_0=0}^{\infty} \dim\left([k,0,...,0,k]_{SU(N)}\right) t^{2k} \end{aligned}$$

Non simply laced quivers

- How do we deal with the quivers which are not simply laced (B_N, C_N, F_4, G_2) ?
- Previously

$$\bigcirc \bigcap_{\vec{m}}^{U(N_1)} \bigcirc \bigcup_{\vec{n}}^{U(N_2)} \\ \triangle_{\mathsf{hyp}}(\vec{m},\vec{n}) = \frac{1}{2} \sum_{j=1}^{N_1} \sum_{k=1}^{N_2} |m_j - n_k|$$

• How about the triple lace in $\circ - \bullet - \circ \Rightarrow \circ \atop 1 \quad k \quad 2k \quad k$

$$\bigcirc_{\vec{m}}^{U(N_1)} \bigcirc_{\vec{n}}^{U(N_2)}$$

$$\triangle_{\mathsf{hyp}}(\vec{m},\vec{n}) = \frac{1}{2} \sum_{j=1}^{N_1} \sum_{k=1}^{N_2} |\lambda m_j - n_k|$$

where $\lambda = 1, 2, \text{ or } 3$ for a single, double or triple bond respectively

• We can now explicitly compute the HS of exotic things like:

Moduli space of 3 G_2 instantons

Summary and Conclusions

- $3d~\mathcal{N}=4$ gauge theories enjoy a powerful symmetry that exchanges Higgs branch with Coulomb branch
- Identified the moduli space of instantons with Higgs branch of ADHM quivers
- Found dual theories using branes
- \bullet Studied the chiral ring on the Coulomb branch of $3d\mathcal{N}=4$ using monopole operators
- \bullet We have a new prescription to calculate HS associated to the chiral any group G and charge k
- By refining the Hilbert series, can extract the generators of the moduli space (combination of bare and dressed monopole operators)
- ullet Extracting all the relations between monopole operators o future work

Thank you!