
Loop Integrands from the Riemann Sphere

Yvonne Geyer

Mathematical Institute, Oxford

November 6, 2015
South East Mathematical Physics Seminars

University of Surrey

arXiv:1507.00321
YG, Lionel Mason, Ricardo Monteiro, Piotr Tourkine

Yvonne Geyer (Oxford) Loop Integrands from the Riemann Sphere Nov 6, 2015



Motivation

Motivation

Feynman diagrams

M =
∑

graphs Γ

graph combinatorics

combinatorical problem

Worldsheet models

M = + + + ...

integration over moduli space

geometric problem

CHY formulae

M =
∑

zi | ki·P(zi)=0

IL(ki, εi, zi)IR(ki, ε̃i, zi)
J

localized on scattering equations

algebraic problem
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Motivation

Scattering Equations and CHY formulae
The Scattering Equations [Cachazo-He-Yuan, Mason-Skinner]

The scattering equations

underpin CHY formulae for tree-level scattering amplitudes
arising from Ambitwistor worldsheet models
determine n points zi on a Riemann surface

To define the scattering equations, construct P(z, zi) ∈ Ω0(Σ,KΣ)

∂̄P = 2πi
∑

i

kiδ̄(z − zi)dz .

On the Riemann sphere, and for n null momenta ki,
this is solved by

P0(z) =

n∑
i=1

ki

z − zi
dz .

z1

z2

zn
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Motivation

Scattering Equations and CHY formulae
Scattering Equations [Cachazo-He-Yuan, Mason-Skinner]

With P0(z) =
∑n

i=1
ki

z−zi
dz, we thus obtain the

Scattering Equations at tree-level:

ResziP
2
0(z) = ki · P0(σi) =

∑
j,i

ki · kj

σi − σj
= 0 .

Note:

(n − 3) independent equations
(n − 3)! solutions
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Motivation

Scattering Equations and CHY formulae
CHY formulae [Cachazo-He-Yuan]

Representation of the tree-level S-matrix of massless theories:

Mn,0 =

∫
dσn

vol SL(2,C)

′∏
i

δ̄

∑
j,i

ki · kj

σi − σj

In

with σi ∈ Σ � CP1, ki null momenta of the scattered particles.

Integration over moduli space Mn,0 fixed completely by imposing
the (n − 3) scattering equations [CHY, GM, Witten];∑

j,i

ki · kj

σi − σj
= 0 .
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Motivation

Scattering Equations and CHY formulae
CHY formulae [Cachazo-He-Yuan]

Representation of the tree-level S-matrix of massless theories:

Mn,0 =

∫
dσn

vol SL(2,C)

′∏
i

δ̄

∑
j,i

ki · kj

σi − σj

In

gravity: In =Pf′(M) Pf′(M̃)
YM: In = Cn Pf′(M)

M =

(
A −CT

C B

)
, Pf′(M) =

(−1)i+j

σij
Pf(Mij

ij) ,

Aij =
ki · kj

σij
, Bij =

εi · εj

σij
, Cij =

εi · kj

σij
,

Aii = 0 , Bii = 0 , Cii = −
∑
j,i

Cij
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Ambitwistor Strings

Question: Where are these formulae coming from?
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Ambitwistor Strings

Ambitwistor Worldsheet models

Upshot:

correlators of worldsheet models.

Target space:
phase space of complex null rays = ambitwistor space.

ambitwistor strings: new formulae for loop integrands that
localise completely on loop-extensions of the scattering
equations.
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Ambitwistor Strings

Ambitwistor Space

Ambitwistor space A = space of (complex) null rays in MC
symplectic quotient of cotangent bundle of (supersymmetric)
spacetime (X,P,Ψ) ∈ T∗M by constraints P2 = 0 and Ψr ·P = 0

A :=
{
(Xµ,Pµ,Ψ

µ
r ) ∈ T∗M

∣∣∣ P2 = 0
} /
{D0,Dr}

with Hamiltonian vector fields D0 = P · ∇, Dr = Ψr · ∇ + P · ∂Ψr

A is a symplectic holomorphic manifold, with symplectic
potential

Θ = P · dX +
1
2

∑
r

Ψr · dΨr
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Ambitwistor Strings

The Ambitwistor String [Mason-Skinner,Berkovits]

Construct a theory describing maps Σ→ A:

S = 1
2π

∫
P · ∂̄X + 1

2
∑

r Ψr · ∂̄Ψr −
e
2 P2 − χrP · Ψr ,

where Pµ ∈ Ω0(Σ,K). Ψ
µ
i ∈ ΠΩ0(Σ,K1/2

Σ
).

Geometrically:
action from symplectic potential Θ

gauge fields e and χr impose the constraints reducing to A.

Gauge freedom:

δXµ = αPµ , δPµ = 0 , δe = δ̄α .

Quantise using BRST procedure

Q =

∮
cT +

c̃
2

P2 +
∑

r

γrP · Ψr + ghosts

Anomalies cancel for d = 10 as in the usual superstring
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Ambitwistor Strings

The Ambitwistor String [Mason-Skinner]

S = 1
2π

∫
P · ∂̄X + 1

2

∑
r Ψr · ∂̄Ψr −

e
2 P2 − χrP · Ψr

Simplest vertex operators, describing graviton, B-field and
dilaton:

V = cc̃ δ2(γ) εµνΨ
µ
1Ψν

2eik·X

In the presence of these vertex operators, integrate out X.

∂̄P = 2πi
∑

i

kiδ̄(z − zi)dz .

Localisation on scattering equations from integrating out
moduli of gauge field e:

Scattering equations ⇔ map to A

The correlation functions yield the CHY formulae:

M =

∫
dµ

′∏
i

δ(ki · P(zi))IL(ki, εi, zi)IR(ki, ε̃i, zi)
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Ambitwistor Strings

New Ambitwistor String theories [Casali-YG-Mason-Monteiro-Roehrig]

SΨ

SΨ1 ,Ψ2

Sρ,Ψ

SYM
∗

SYM0
∗

SΨ

Einstein

BI

EM

EYM

YM

SΨ1 ,Ψ2

Galileon

DBI

ext. DBI

NLSM

Sρ,Ψ

EMS

EYMS

YMS

SYM
∗

EYMS

gen.YMS

SYM0
∗

Scalar
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From Torus to RS

Towards Quantum Gravity:
Loop Integrands from the Riemann Sphere
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From Torus to RS

Motivation

Feynman diagrams

M =
∑

graphs Γ

graph combinatorics

combinatorical problem

Worldsheet models

M = + + + ...

integration over moduli space

geometric problem

CHY formulae

M =
∑

zi | Sj(zi)=0

IL(ki, εi, zi)IR(ki, ε̃i, zi)
J

localized on scattering equations

algebraic problem
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From Torus to RS

Upshot

Problem: Worldsheet formulations of quantum field theories
have had a wide ranging impact on the study of amplitudes.
However, the mathematical framework becomes very
challenging on the higher-genus worldsheets required to
describe loop effects.

Upshot: Derive a framework, applicable in such worldsheet
models based on the scattering equations, that transforms
formulae on higher-genus surfaces to ones on (nodal)
Riemann spheres.
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From Torus to RS

Scattering Equations on the Torus

Recall: To define the scattering equations, construct a 1-form
P(z, zi) ∈ Ω0(Σ,KΣ), such that

∂̄P = 2πi
∑

i

kiδ̄(z − zi)dz .
z1

On the torus Σq = C/{Z ⊕ Zτ}, this is solved by

P = 2πi `dz +
∑

i

ki

(
θ′1(z − zi)
θ1(z − zi)

+
θ′1(zi − zref )
θ1(zi − zref )

+
θ′1(zref − z)
θ1(zref − z)

)
dz ,

where q = e2πiτ parametrizes the modulus and ` ∈ Rd the
zero-modes of P. Using this, we have the

Scattering Equations on the torus:

ResziP
2(z) := 2ki · P(zi) = 0 , P2(z0) = 0 .
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From Torus to RS

The 1-loop Integrand [Adamo-Casali-Skinner, Casali-Tourkine]

The ACS proposal for the 1-loop integrand of type II supergravity
takes the form

M (1)
SG =

∫
dd` dτ δ̄(P2(z0))

n∏
i=2

δ̄(ki · P(zi))︸                         ︷︷                         ︸
Scattering Equations

 ∑
spin struct.

Z(1)(zi)Z(2)(zi)

︸                          ︷︷                          ︸
≡Iq, fermion correlator

modular invariant
localises on discrete set of solutions
conjecture: for Iq = 1, sum over permutations of n-gons in
d = 2n + 2 dimensions
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From Torus to RS

From the Torus to the Riemann Sphere
Residue theorem

→

Residue theorem: elliptic curve −→ nodal Riemann spere at q = 0.

M (1)
SG =

1
2πi

∫
dd`

dq
q
∂̄

(
1

P2(z0)

) n∏
i=2

δ̄(ki · P(zi))Iq

= −
1

2πi

∫
dd` ∂̄

(
dq
q

)
1

P2(z0)

n∏
i=2

δ̄(ki · P(zi))Iq

= −

∫
dd`

1
P2(z0)

n∏
i=2

δ̄(ki · P(zi))I0

∣∣∣∣
q=0

.

Note that this moves us off ambitwistor space.
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From Torus to RS

From the Torus to the Riemann Sphere
Contour argument

residue theorem⇔ contour integral argument in fund. domain
modular invariance: contributions form sides and unit circle
cancel

⇒ localisation on q = 0

1
2-1

2

τ
↔

Contour argument in the fundamental domain
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From Torus to RS

From the Torus to the Riemann Sphere

Mapping the fundamental domain to the Riemann sphere
σ = e2πi(z−τ/2), we obtain

P(z) = P(σ) = `
dσ
σ

+

n∑
i=1

ki dσ
σ − σi

.

Setting S = P2 − `2 dσ2/σ2, the vanishing of the residues of S gives

the off-shell scattering equations

0 = ResσiS = ki · P(σi) =
ki · `

σi
+

∑
j,i

ki · kj

σi − σj
,

manifestly off-shell through loop momentum `

closely related to tree-level scattering equations at n + 2 points
any n − 1 equations imply all n + 2
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From Torus to RS

From the Torus to the Riemann Sphere

Off-shell scattering equations

0 = ResσiS = ki · P(σi) =
ki · `

σi
+

∑
j,i

ki · kj

σi − σj
,

Using this, we get the following

One-loop integrand on the nodal Riemann sphere

M (1) = −

∫
dd`

1
`2

n∏
i=2

δ̄(ki · P(σi))︸             ︷︷             ︸
off-shell scattering equations

dσi

σ2
i

I0 ,

which is our new proposal for the supergravity 1-loop integrand,
with I0 the q = 0 limit of the ACS correlator.
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Loop integrands

The n-gon conjecture

Following the framework derived above, the n-gon conjecture
becomes

M (1)
n−gon = −

∫
d2n+2`

1
`2

n∏
i=2

δ̄(ki · P(σi))
dσi

σ2
i

,

which can be checked to give, with M (1) =
∫

dd`M̂ (1),

M̂ (1)
n =

(−1)n

`2

∑
σ∈Sn

n−1∏
i=1

1

` ·
∑i

j=1 kσi + 1
2
(∑i

j=1 kσi

)2 .

Using partial fraction identities and shifts in the loop momentum,
this is indeed equivalent to the sum over permutations of n-gons.

⇒ proof of n-gon conjecture (n = 4, 5, 6)
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Loop integrands

The Supergravity 1-loop Integrand

For supergravity, Iq ≡ I(ki, εi, zi|q) = IL
q I

R
q , where each term is

given by a sum over spin structures arising from the fermion
correlator. At q = 0, this becomes

IL
0 = 16 (Pf(M2) − Pf(M3)) − 2 ∂q1/2Pf(M3) .

The 1-loop supergravity integrand is thus given by

M̂ (1) = −

∫
IL

0I
R
0

1
`2

n∏
i=2

δ̄(ki · P(σi))
dσi

σ2
i

.

At n = 4, I = t8t8R4 is a constant kinematic tensor and the results
coincide with the n-gon conjecture. At n = 5, the amplitude can be
written in terms of pentagon and box integrals.

⇒ proof of ACS 1-loop expression (n = 4, 5)
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Loop integrands

The super Yang-Mills 1-loop Integrand

Remarkably, this naturally leads to a conjecture for super
Yang-Mills scattering amplitudes at 1 loop;

M̂ (1)(1, . . . , n) =

∫
IL

0 PTn

n∏
i=2

δ̄(ki · P(σi))
dσi

σi
.

Here, the supergravity factor IR
0 has been replaced by a cyclic sum

over Parke-Taylors factor running through the loop,

PTn =

n∑
i=1,i mod n

σ0∞

σ0 iσi i+1σi+1 i+2 . . . σi+n∞
.

⇒ This indicates the flexibility of our approach, no 1-loop
ambitwistor expression was previously known!
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Proof

Proof at one loop:
Factorisation and Q-cuts
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Proof

Proof Part I: Q-cuts [Baadsgaard, Bjerrum-Bohr, Bourjaily, Caron-Huot, Damgaard, Feng]

Starting from the Feynman diagram expansion,

M (1)
FD =

N(`)
D1(`)...Dm(`)

,

shift the loop momentum ` → ` + η, such that η · ` = η · ki = 0,
and η2 = z. In particular, Di(`)→ Di(`) + z.
use Cauchy Residue theorem.
shift loop momentum ` in each term by appropriate sum of
external momenta KI .

⇓

‘Q-cut’ expansion

M (1)
FD =

∑
I

`

`+KI

I I =
∑

I

M (0)
I M (0)

Ī

`2(2` · KI + K2
I )
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Proof

Proof Part II: Factorisation [YG-Mason-Monteiro-Tourkine]

All poles (and residues) of M (1) are determined from
localising on the boundary of the moduli space

⇔

factorising the nodal Riemann sphere

There are two cases of interest:
seperating degeneration: M (1) →M (1)

I
1

K2
I
M (0)

Ī

→

‘Q-cut’ degeneration: M (1) →
M (0)

I (...,`I ,`I+KI )M
(0)
Ī

(...,−`I ,−`I−KI )

`2(2`·KI+K2
I )

→

This concludes the proof:

M (1) = M (1)
∣∣∣∣
Q-cut representation
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The All-loop Integrand

Extension:
The All-loop Integrand
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The All-loop Integrand

The All-loop Integrand

Starting from the natural extensions of the ACS proposals to
Riemann surfaces of genus g, we can again use residue theorems
to localize on boundary components of the moduli space by
contracting g a-cycles to obtain a nodal Riemann sphere.

→

This fixes g moduli, with the remaining 2g − 3 now associated with
2g new marked points. The 1-form P is then given by

P =

g∑
r=1

`rωr +
∑

i

ki
dσ

σ − σi
,

where ωr is a basis of g global holomorphic 1-forms on the nodal
Riemann sphere.
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The All-loop Integrand

The All-loop Integrand

Setting S(σ) := P2 −
∑g

r=1 `
2
rω

2
r , the multiloop off-shell scattering

equations are

ResσiS = 0 , i = 1, . . . , n + 2g .

This leads to the following proposal for the

all-loop integrand;

M̂ (g)
SG =

∫
(CP1)n+2g

IL
0I

R
0

Vol G

g∏
r=1

1
`2

r

n+2g∏
i=1

δ̄(ResσiS(σi)) ,

where I0 =

IL
0I

R
0 , gravity

IL
0PTn, Yang-Mills

.

Remarkably, this suggests that n-point g-loop integrands have a
similar complexity to tree amplitudes with n + 2g particles.
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Conclusion and Outlook

Conclusion

We derived

a framework to derive formulae for loop integrands on a nodal
Riemann sphere using residue theorems, applicable to wide
range of theories.
new formulae for supergravity, super YM and n-gon integrands
at 1 loop,
supported on new, off-shell scattering equations that depend
on the loop momenta.
a proposal for the all-loop integrands in supergravity, SYM and
biadjoint scalar theories.

This formalism implies that n-point g-loop scattering amplitudes
have the same complexity as n + 2g-point tree-level amplitudes!
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Conclusion and Outlook

Outlook

At one loop:

Can we use this to describe other massless theories at one
loop?
What about a 4d-specific ‘twistorial’ expressions at one loop?
Can we find a worldsheet description? Importantly, this would
allow for a direct derivation of interands (and might extend to
higher loops).

Concerning the all-loop integrand conjecture:

Investigate the known 2-loop integrands for the double box
[Adamo-Casali].
Proof? This could resolve the question concerning the UV
behaviour of maximal supergravity!
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Thank you!

Yvonne Geyer (Oxford) Loop Integrands from the Riemann Sphere Nov 6, 2015


