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1. Abelian Higgs Vortices

I The Abelian Higgs (Ginzburg–Landau) vortex is a
two-dimensional static soliton, stabilised by its magnetic
flux. Well-known is the Abrikosov vortex lattice in a
superconductor.

I Vortices exist on a plane or curved Riemann surface M,
with metric

ds2 = Ω(z, z̄) dzdz̄ . (1)

z = x1 + ix2 is a (local) complex coordinate.
I The fields are a complex scalar Higgs field φ and a vector

potential Aj (j = 1,2) with magnetic field F = ∂1A2 − ∂2A1.
They don’t back-react on the metric.

I Our solutions have N vortices and no antivortices. On a
plane, N is the winding number of φ at infinity. If M is
compact, φ and A are a section and connection of a U(1)
bundle over M, with first Chern number N.



I The field energy is
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where Djφ = ∂jφ− iAjφ. The first Chern number is
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I The energy E can be re-expressed as [E.B. Bogomolny]
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where we have dropped a total derivative term.



Taubes Equation

I Minimum energy fields, for given N, satisfy the Bogomolny
equations

D1φ+ iD2φ = 0 , (5)

F − Ω

2
(1− |φ|2) = 0 . (6)

I Using eq.(5) to eliminate Aj , eq.(6) becomes the
gauge-invariant Taubes equation

∇2(log |φ|2) + Ω(1− |φ|2) = 4π
N∑

k=1

δ(z − Zk ) . (7)

Zk are the vortex centres, where φ is zero.



Area Constraint on N

I The surface area
A =

∫
M

Ω d2x (8)

constrains N. Integrating the second Bogomolny equation
gives

2πN =
1
2

A− 1
2

∫
M
|φ|2 Ω d2x , (9)

so
4πN < A . (10)

If A exceeds 4πN, vortices can be at any N specified
locations Z1,Z2, . . . ,ZN [Taubes, Bradlow, Garcia-Prada].



2. Hyperbolic Vortices

I The Bogomolny equations are integrable on the hyperbolic
plane H2, with curvature −1

2 . This was discovered by
Witten in connection with SU(2) instantons in R4 with
SO(3) symmetry. Finite-N solutions are rational.

I N.S.M. and N.A. Rink have found trigonometric and elliptic
vortex solutions on a hyperbolic trumpet and hyperbolic
cylinder H2/Z. These correspond to infinite chains of
vortices on the cover H2.

I R. Maldonado and N.S.M have found isolated vortex
solutions on compact hyperbolic surfaces. They
correspond to an infinite lattice of vortices on a regular
tesselation of H2.



Constructing Solutions
I Write the Bogomolny equations as

Dz̄φ = 0 , (11)

Fzz̄ =
i
4

Ω(1− φφ) , (12)

where Dz̄φ = ∂z̄φ− iAz̄φ and Fzz̄ = ∂zAz̄ − ∂z̄Az .
I Now let φ =

√
H(z, z̄)χ(z), where χ is holomorphic and H

real. Eq.(11) has solution

Az =
i
2
∂z(log H) , Az̄ = − i

2
∂z̄(log H) , (13)

and eq.(12) simplifies to the Taubes equation, in the form

4∂z∂z̄(log H) + Ω(1−Hχ(z)χ(z)) = 4π
N∑

k=1

δ(z−Zk ) . (14)



I The hyperbolic metric Ω dzdz̄ has Gaussian curvature
K = −1

2 , so
4∂z∂z̄(log Ω) = Ω . (15)

I To construct a vortex solution on M, take another
hyperbolic surface M ′, with coordinate w , metric
Ω′(w , w̄) dwdw̄ , and curvature −1

2 , so

4∂w∂w̄ (log Ω′) = Ω′ , (16)

and let f : M −→ M ′ be a holomorphic map given locally by
w = f (z).



I Let
χ(z) =

df
dz

, (17)

and let H be the ratio of the metrics at z and f (z),

H(z, z̄) =
Ω′(f (z), f (z))

Ω(z, z̄)
. (18)

I Then, away from any singularities,

4∂z∂z̄(log H) = −4∂z∂z̄(log Ω) + 4∂z∂z̄(log Ω′)

= −4∂z∂z̄(log Ω) + 4∂w∂w̄ (log Ω′)
df
dz

df
dz

= −Ω + Ω′χχ

= −Ω(1− Hχχ) , (19)

as required.



Rational Solutions on H2

I Let’s take f : H2 −→ H2, using the disc model. The metrics
are

Ω(z, z̄) =
8

(1− zz̄)2 and Ω′(w , w̄) =
8

(1− ww̄)2 . (20)

I Therefore √
H =

1− zz̄
1− f (z)f (z)

(21)

and the Higgs field is

φ =
1− zz̄

1− f (z)f (z)

df
dz

. (22)

I The vortex centres are the ramification points of f , as φ is
zero where df

dz is zero.



I For an N-vortex solution, the required map is from H2 to
H2, mapping boundary to boundary. It is a Blaschke
rational function [Witten]

f (z) =
N+1∏
m=1

z − am

1− amz
(23)

with |am| < 1 , ∀m.
I df

dz = 0 at N locations inside the disc (and N outside).
These are the vortex centres.

I An example is a 1-vortex at the origin. Here f (z) = z2, so

φ =
1− |z|2

1− |z|4
2z =

2z
1 + |z|2

. (24)

Note that |φ| → 1 as |z| → 1.



3. 1-Vortex on the Genus-2 Bolza Surface

I Suppose M is compact, of genus g ≥ 2 and curvature −1
2 .

By Gauss-Bonnet, the area is A = 8π(g − 1), so the
number of vortices is N < 2(g − 1).

I If g = 2, there can only be 1 vortex. If g = 3 there can be
1,2 or 3 vortices, etc.

I The most symmetric genus 2 surface with a hyperbolic
metric is the Bolza surface. This is the algebraic curve

y2 = (x4 − 1)x (x , y ∈ C) . (25)

It double covers the Riemann sphere with six branch points
at the vertices of a regular octahedron. Eight equilateral
spherical triangles (angles π

2 ) are covered by sixteen
equilateral hyperbolic triangles (angles π

4 ). The symmetry
group, excluding reflections, has 48 elements.



Bolza surface double covers the Riemann sphere



I Cut open, the Bolza surface is a regular octagon in H2 with
vertex angles π

4 and opposite edges identified. The
vertices are all identified to one point.

I The octagon makes just one C8 subgroup obvious.
I The universal cover of the Bolza surface is H2, so H2 is

tessellated by Bolza octagons. This is the {8,8}
tessellation.



{8,8} tessellation of H2 by Bolza octagons



Hyperbolic octagon



I To find a 1-vortex on the Bolza surface, centred at the
origin, we need a map f from H2 to H2, with df

dz = 0 at the
origin, compatible with the tessellation into regular
octagons.

I f can be found as a 2-1 map from the Bolza octagon of the
{8,8} tessellation to the square of the {4,8} tessellation.
(Opposite sides of the square are not identified.)



{4,8} tessellation of H2 by hyperbolic squares



I f can effectively be constructed as a 1-1 map from a
triangle (a sixteenth of the octagon) to another triangle (an
eighth of the square).

I A Schwarz triangle map s(ζ) maps H2 (in the upper half
plane model with coordinate ζ) to a triangle. The
triangle-triangle map f (z) is a composition s2(s−1

1 (z)).
I f can be analytically continued by reflections across

boundaries to a map from H2 to H2.
I The vortex has C8 symmetry, and f has an expansion

f = αz2 + βz10 + . . . .



Map f from hyperbolic octagon to hyperbolic square



I s(ζ) is known as a ratio of hypergeometric functions
[Harmer and Martin]

s(ζ) =

√
sin(πa′) sin(πb′)
sin(πa) sin(πb)

Γ(a′)Γ(b′)Γ(c)

Γ(a)Γ(b)Γ(c′)
ζ1−c F (a′,b′; c′; ζ)

F (a,b; c; ζ)
.

(26)
The parameters are linear combinations of the triangle
angles (divided by π), so are simple rational numbers.



I We can calculate the Higgs field numerically and plot its
contours. We can also compute its expansions around the
symmetry points of the Bolza surface analytically.

I The Higgs field near the origin (the vortex centre) is

φ = (4π)−3/2 sin
(π

8

)
Γ2
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)
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)
z + · · · ≈ 1.768z .

(27)
I At an edge mid-point of the octagon (a saddle of |φ|)

|φ| =
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16

) ≈ 0.752 . (28)

I At a vertex (maximally far from the vortex)

|φ| = 2−1/4 ≈ 0.841 , (29)

and this is the maximal value of |φ|.



Contours of |φ|2 for 1-vortex on Bolza octagon



4. Baptista’s Geometric Interpretation of Vortices

I Consider a general surface M with metric ds2 = Ω dzdz̄.
Its Gaussian curvature K is given by

2K Ω = −∇2(log Ω) . (30)

I Define a new metric ds2 = Ω′ dzdz̄ on M using a vortex
solution

Ω′ = Ω|φ|2 . (31)

Ω′ has zeros at the vortex centres, so M with the new
metric acquires conical singularities with opening angle 4π,
and hence deficit angle −2π. The new surface locally
double covers the old surface.



I The new Gaussian curvature K ′ is given by

2K ′Ω′ = −∇2(log Ω′)

= −∇2(log Ω + log |φ|2)

= 2K Ω + Ω(1− |φ|2)− 4π
∑

δ(z − Zk )

= 2K Ω + Ω− Ω′ − 4π
∑

δ(z − Zk ) , (32)

where we used the Taubes equation for |φ|. Therefore

(2K ′ + 1)Ω′ = (2K + 1)Ω− 4π
∑

δ(z − Zk ) . (33)

This is Baptista’s equation. The vortices define a new
metric, preserving (2K + 1)Ω away from the singularities.



I By Gauss–Bonnet, the integrals of both K Ω and K ′Ω′ are
4π(1− g). Integrating (33) therefore gives

A′ = A− 4πN . (34)

A′ is less than A but still positive as 4πN < A.
I For vortices, a hyperbolic surface with constant curvature

K = −1
2 is special. The new metric Ω′ is also hyperbolic,

with K ′ = −1
2 .

I We can verify (34) explicitly for the vortex on the Bolza
surface.

I The moduli space of N-vortex solutions on M is equivalent
to a moduli space of punctures on M of a special conical
type.



5. Conclusions

I Bogomolny vortices are integrable on a hyperbolic surface
of curvature −1

2 . Solutions on the hyperbolic plane are
rational.

I On compact hyperbolic surfaces a few explicit solutions are
known in the most symmetric cases. The vortex number N
is constrained by the genus g.

I Vortices can be interpreted geometrically, as defining
hyperbolic metrics with conical singularities of deficit angle
−2π on a background smooth surface. The metric on the
moduli space of vortices is probably analogous to a
Weil-Petersson metric on the moduli space of surfaces with
these conical singularities. The details have not been
worked out.


