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Perturbation Theory & Asymptotic Series

Perturbation theory: fundamental in computations of
I energies in quantum mechanics
I Solutions on NLODEs
I beta-functions in quantum field theory
I genus expansions of string theory
I large N expansion of non-abelian gauge theories

· · ·

Goal: to understand analytic properties beyond numerical computations

BUT... most perturbative expansions are asymptotic, i.e. zero radius of
convergence!

I Why? due to non–perturbative ”semi-classical” effects such as
I instantons
I renormalons
I Other objects not captured by a perturbative analysis
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Double Well in Quantum Mechanics

IN QUANTUM MECHANICS
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I Schrödinger eq

Hψ (x , g) = E(g)ψ (x , g)

g = 0 ⇒ Harmonic oscillator
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Double Well in Quantum Mechanics
IN QUANTUM MECHANICS

Take coupling     very smallg

V (x)

x
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Double Well in Quantum Mechanics

Take coupling     very smallg

‣ Ground-state energy:

where  E0 = 1/2

Eg.s.(g) '
1X

n=0

En gn

Questions:
• Does the series converge?
•  Analytic structure of             ?                Eg.s.(g)

E0

E0 + E1 g
E0 + E1 g + E2 g2

Questions:

I Does the series converge? No! Asymptotic series

I Exact results? Borel transform & resummation
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Aside: Asymptotic series

f (g) '
∑

n≥0

fn g
n

I Divergent! No matter how small g is: fn g
n →∞

I Truncate at some optimal n = N: very good approximation

I Take g � 1 fixed: define truncation fN(g) =
∑N

n=0 fn g
n

ASIDE: ASYMPTOTIC SERIES

f(g) '
1X

n=0

fn gn

N = 1 ! f0 + f1g

N = 2 ! f0 + f1g + f2g
2

N(optimal)
N

-10

-20
-A/g

log(f � fN )

Optimal error :

for some value A

(f � fN )(g) ⇠ e�A/g

• Assume    

• Define  fN (g) =

NX

n=0

fn gn

g fixed and small

N(optimal) ⇡ A/g

e−A/g Non-perturbative effect: g → 0 invisible in perturbation theory!
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Aside: Asymptotic series

f (g) '
∑
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fn g
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I Divergent! No matter how small g is: fn g
n →∞

I Truncate at some optimal n = N: very good approximation

I Take g � 1 fixed: define truncation fN(g) =
∑N

n=0 fn g
n

ASIDE: ASYMPTOTIC SERIES

f(g) '
1X

n=0

fn gn

Optimal truncation
fNop

(g) =

NopX

n=0

fn gn

V (x)

x

Double-well Potential:                      instantons!

A = 1/6

Nop = A/g ⇡ 16

g = 1/100
Optimal error :

(f � fN )(g) ⇠ e�A/g

⇡ 5.7 ⇥ 10�8

If we fix

En ⇠ n! A�n
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Analytic properties? Resummation

Perturbative expansion of quantity F (g) in parameter g ∼ 0

F (g) '
∑

n≥0

Fn g
n+1 , Asymptotic series: Fn ∼ n!

I How to find F (g)?

I Borel transform B[F ]: ”remove” the factorial growth

I Analytically continue B[F ] to full complex plane

I Define resummation SF by the inverse Borel transform
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Aside: Borel Transform & Resummation

Asymptotic series: F (g) '
∑

n≥0

Fn g
n+1 , with Fn ∼ n!

I Borel transform: B[F ](s) =
∞∑

n=0

Fn

n!
sn

Rule: B
[
gα+1

]
(s) = sα/Γ(α + 1)

I finite radius of convergence - find function B[F ](s)

I In general B[F ](s) will have singularities

I Borel resummation of F is the Laplace transform

SF (g) =

ˆ ∞
0

ds B[F ](s)e−s/g
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Resummation & Ambiguities

F (g) '
∑

n≥0

Fn g
n+1 , Asymptotic series: Fn ∼ n!

Borel resummation of F along direction θ is the Laplace transform

SθF (g) =

ˆ eiθ∞

0

ds B[F ](s)e−s/g

I BUT: SF is just a Laplace transform - needs an integration contour to be
properly defined!

I If we have a singularity in the complex Borel plane:

Nonperturbative ambiguity: ambiguity in choosing
how integration contour will avoid the singularity
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Nonperturbative Ambiguity

Borel resummation of F along direction θ is the Laplace transform

SθF (g) =

ˆ eiθ∞

0

ds B[F ](s)e−s/g

I Take B[F ](s) with singularities in direction θ:

Nonperturbative ambiguity:

I B[F ](s) ∼ 1
s−A

in direction θ

S+F (g)− S−F (g) ∼ exp (−A/g)

I around g ∼ 0 this is non-analytic

I Singularities in the Borel plane occur along Stokes lines

Perturbative series is non-Borel resummable along Stokes lines
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Glimpse into Resurgence

I Borel plane singularities:

I Related to non-perturbative data
I Govern asymptotic behaviour of original perturbative series

Non-perturbative information resurges in the
perturbative data!

I Understanding the resurgent properties of our solution:

Obtain a non-ambiguous, global, analytic result
How can we achieve this?
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Next

Resurgence
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Beyond Perturbation Theory?

Learn from the example of anharmonic potential in QM
[Vainshtein’64, Bender,Wu’73]

I Perturbative series of ground-state energy:

E (0)(g) =
∑

E
(0)
k g k , E

(0)
k ∼ k!A−k , k � 1

I Resummation along real axis: singularities and ambiguity!

What happens if we try to include instanton sectors?

I Expanding around each fixed instanton sector

n − instanton sector: E (n)(g) = e−nA/g
∑

E
(n)
k g k

Also asymptotic, with large-order behaviour

E
(n)
k ∼ k! (n A)−k , k � 1

All multi-instanton series suffer from nonperturbative ambiguities!
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Problem or Solution?

I Infinite instanton sectors with nonperturbative ambiguities!

Seems to make the problem with perturbation theory even worse!

I BUT: for the ground state energy of double-well potential
[Bogomolny,Zinn-Justin’80-83]

I ambiguity in 2-instanton sector precisely cancels ambiguity in perturbative
expansion

I ambiguity in 3-instanton sector cancels ambiguity in 1-instanton sector

I · · ·

Multi-instantonic ambiguities are the solution to our problem!
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Beyond Perturbation Theory!

Ground-state energy = sum over all multi-instanton sectors

Ambiguities arising in different sectors conspire to cancel each other

The final result is real and free from any nonperturbative ambiguities!

How to implement this sum? Transseries ansatz!

Transseries: formal power series in two or more variables, each a function of the
parameter z ∼ 0

E(g , σ) =
∑
n≥0

σnE (n)(g) , E (n)(g) ' e−nA/g
∑
k≥1

E
(n)
k gk

I our case has e−A/g and g

I σ: instanton counting parameter
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Ambiguities along Stokes lines

E(g , σ) =
∑
n≥0

σnE (n)(g) , E (n)(g) ' e−nA/g
∑
k≥1

E
(n)
k gk

I If B[E (n)] has singularities in a direction θ (Stokes line)

I E (n)(g) has an associated ambiguity: (Sθ+ − Sθ−)E (n) 6= 0

I BUT: Sθ±E are related:

Sθ+E (n) = Sθ− ◦
(
E (n) −DiscθE

(n)
)

I Discθ 6= 0 encodes Stokes transition at θ

I Cancelling ambiguities:

I Choose σ = σ0 such that (Sθ+ − Sθ−)E (z , σ0) = 0

I Non-ambiguous result is 1
2

(Sθ+ + Sθ−)E (z , σ0)

Calculating Ambiguities and Discontinuities? Via Resurgence
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Resurgence [Écalle’81]

Cancelation of ambiguities in multi-instanton sectors: larger structure behind
perturbation theory!

Resurgence analysis and Transseries

A transseries (z = 1
g ∼ ∞)

F (z , σ) =
∑
n≥0

σnF (n) , F (n)(z) ' e−nAz
∑
k≥0

F
(n)
k z−k

defines a resurgent function if it relates the asymptotics of multi- instanton

contributions F
(`)
n in terms of F

(`′)
n where `′ is close to `

How does it work?
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Resurgence at play[IA,Schiappa,Vonk’11]

-A A 2 A 3 A 4 A 5 A ...

Perturbative series:

Instanton series:

Multi-instanton asymptotic series

FHnLHzL = e-n A z â
g=1

¥

Fg
HnL z-g

FH0LHzL = â
g=0

¥

Fg
H0L z-g-1

FH1L
FH2L FH3L FH4L

FH5LFH-1L

FHzL = â
n=0

¥

Σn FHnLHzL
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Resurgence at play[IA,Schiappa,Vonk’11]

...

Large-order behaviour - Perturbative series for large g

FH1L
FH2L FH3L FH4L FH5L

Fg
H0L ~ S1 â

n>0

anHgL Fn
H1L + 2-g S1

2 â
n>0

bnHgL Fn
H2L + ...

Fg
H0L

S1 Fn
H1L S1

2

2g
Fn

H2L S1
3

3g
Fn

H3L S1
4

4g
Fn

H4L
S1

k

kg
Fn

HkL...

All multi-instanton sectors 

contribute to the large-order

behavior of coefficients Fg
0
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Resurgence at play[IA,Schiappa,Vonk’11]

...

Equivalently: Perturbative series for large g ENCODES all other sectors

FH1L
FH2L FH3L FH4L FH5L

Fg
H0L ~ S1 F1

H1L
+

A

g - 1
F2

H1L
+ ... + OH2-gL

Fg
H0L

S1 F1
H1L

+ ...

From the leading

large g behaviour of Fg
H0L :

determine F1
H1L

, F2
H1L

, ...
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Resurgence at play[IA,Schiappa,Vonk’11]

...

Equivalently: Perturbative series for large g ENCODES all other sectors

FH2L FH3L FH4L FH5L

Fg
H0L - S1 â

n>0

anHgL Fn
H1L ~ 2-g S1

2 F1
H2L

+
2 A

g - 1
F2

H2L
+ ... + OH3-gL

Fg
H0L

S1
2

2g
F1

H2L
+ ...

Re-summing results for FH1L: 
next leading behaviour:

determines F1
H2L

, F2
H2L

, ...

FH1L

(28 March 2018) Resurgence and Asymptotics 18 / 47



Resummation and analytic results

Full solution defined by transseries (z ∼ ∞)

F (z , σ) =
∑
n≥0

σne−nAzΦ(n)(z) , Φ(n)(z) ' zβn
∑
k≥0

F
(n)
k z−k

How to evaluate it? Depends on the value of z ∈ C

I If Re(A z) > 0, non-perturbative sectors exponentially suppressed:
Borel summation

SθF (z , σ) = SΦ(0)(z) + σe−Az SΦ(1)(z) +O
(
e−2Az

)
I we can obtain results for large AND small couling (z � 1)

I If Re(A z) = 0, all sectors of the same order:
Analytic transseries summation

SF (z , σ) =
∑

n≥0

σne−nAzzβn F
(n)
0 +

1

z

∑

n≥0

σne−nAzzβn F
(n)
1 +O

(
z−2
)

I we can obtain anaytic information, e.g. zeros of the solution
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Next

Applications!
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Resurgence in Quantum Theories

I Many recent applications of resurgence

I Ordinary integrals and non-linear differential equations

I Quantum Mechanics: Exact WKB, ambiguity cancelations

I QFTs: fractional instantons, UV renormalons, OPEs

I Matrix models: generalised instanton sectors

I String theory: holomorphic anomaly equation

Next:

1 Analytic summation [Garoufalidis,Its,Kapev,Mariño,IA,Schiappa,Vaz,Vonk,’10 -’18]

I Global solutions of NLODEs: Painlevé I
I Asymptotics of matrix models at large N

2 Ambiguity cancelation and interpolation [IA,’15]

I Cusp anomalous dimension at large coupling

3 Prediction of nonperturbative phenomena [IA,Spaliński’15, on-going]

I Quasi-normal modes in N = 4 SYM
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Summation and analytic results

Painlevé I and Matrix Models
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Painlevé I, 2d Gravity and Matrix models

I Matrix models:
I NP description of string theory in simpler backgrounds: non-critical strings

and Dijkgraaf-Vafa type topological strings[Dijkgraaf,Vafa ’02]

I Simper models for studying NP structure behind large N ’t Hooft expansions

I Can help us understand large-N duality

I 2d quantum gravity is obtained by taking a double scaling limit: large N
and small coupling gs [Douglas,Shenker ’90][Brézin,Kazakov ’90][Gross,Migdal ’90]

I Free energy of 2d gravity related to the Painlevé I NLODE

u2 − 1

6
u′′ = z

I u (z) = −F ′′(z) where z−5/4 ∼ gs .

I Study Painlevé I: simpler model, already showing major features from string
theory

I Asymptotic series with (2g)! growth ⇒ g 2
s expansion
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General solution for Painlevé I

Use a 2-parameter transseries: [Garoufalidis,Its,Kapaev,Mariño ’10] [IA,Schiappa,Vonk ’11]

u(x ;σ1, σ2) =
+∞∑

n=0

+∞∑

m=0

σn
1σ

m
2 e−

(n−m)A
x Φ(n|m)(x)

I Two instanton actions A = ±8
√

3/5: evidence of resonance, many sectors
with same exponential grading

I x = z−5/4 ∼ gs is open string coupling; σi are boundary data

I Asymptotic series: Φ(n|n)(x) have a topological genus expansion (g2
s ),

Φ(n|m), n 6= m have expansions in gs : evidence of resonance

I Sectorial solutions in Painlevé I: specified by boundary data σi
I Different σi determine different solutions and asymptotics

I Stokes phenomena: ”glue” different sectors to build global solutions
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Painlevé I solutions

u(x ,σ) =
∑

n∈N2
0

σne−n·A/xΦn(x), A ≡ (A,−A), σn ≡ σn
1σ

m
2

0 parameter: Tritronquée 1 parameter: Tronquée 2 parameter

4 empty ”quintants” 2 empty ”quintants” General

I Can we ”sum” the transseries into a function? Take σ2 = 0

I If e−A/x is exp. suppressed: Borel-Padé summation

I If e−A/x ∼ 1: analytic transseries summation ⇒ analytical data

I Mathematical interpretation: anti-Stokes line
I Physical interpretation: phase transition
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Painlevé I Partition function Z
I Define Partition function: Z(x ,σ) = eF with F ′′ ≡ u

I Analytic transseries summation: Allows us to go inside the ”filled sectors”

Z(x ,σ) =
+∞∑

n=0

(
σ1e
−A/x

)n
xβnF

(n)
0 + x

+∞∑

n=0

(
σ1e
−A/x

)n
xβnF

(n)
1 + · · ·

I Sectors with poles of u, zeros of Z.
I Find locations of all zeros of the partition

function from the transseries [Costin et al,
’95-13; IA,Schiappa,Vonk, on-going]

Z0 (ζ, q) =
+∞∑

n=0

G2(n+1)ζnqn
2

, ζ ∼ σ1e
−A/x ; q ∼ x

1
2

I Only works for the adjoining sectors: to
get to fifth sector: Stokes phenomena

(28 March 2018) Resurgence and Asymptotics 26 / 47



Summation and analytic results

Large N quartic matrix model
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Quartic matrix model
Quartic model partition function (N × N matrix M)

Z(N, gs) ∝
ˆ

dM exp

(
− 1

gs
TrV (M)

)
, V (z) =

1

2
z2 − 1

24
λz4

Local solutions in ”Stokes regions”: saddle point
analysis around 1-cut solution

Free energy has perturbative genus expansion at large N

F ≡ logZ '
∑
g≥0

Fg (t) g 2g−2
s , t = gsN

I Obey a NP finite difference eq: string equation

R(t)

(
1− λ

6
(R(t − gs) +R(t) +R(t + gs))

)
= t , R(n gs) = rn

where rn = Zn+1Zn−1

Z2
n

and R(t) is directly related to the free energies

(28 March 2018) Resurgence and Asymptotics 28 / 47



Quartic matrix model

R(t) has resurgent properties:

R(t, σ1, σ2) =
∑

n,m≥0

σn
1σ

m
2 e−N (n−m) A(t)

t tβnmR(n|m)(t)

I R(n|m)(t) asymptotic expansions

I Instanton action A(t) and coefficients R
(n|m)
g (t) are functions.

I Large-N phase diagram (first studied in [Bertola ’07,Bertola,Tovbis ’11]): study the
leading contributions to the exponentials:

I Stokes lines Im (A (t) /t) = 0: instanton contributions maximally suppressed

I Anti-Stokes lines Re (A (t) /t) = 0: all contributions of same order

I Recover analytic data from the transseries:

I Finite N results via Borel-Padé summation [Couso-Santamaŕıa,Schiappa,Vaz ’15]

I Lee-Yang zeros via analytic transseries summation [IA,Schiappa,Vonk, on-going]
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Phase Diagram

t I light blue: Stokes regions, standard
’t Hooft large N expansion

I I: 1-cut solution is dominant
I II: 2-cut sym solution dominant

I green: anti-Stokes region,dominated
by 3-cuts solution, modular
properties; no genus expansion
[Bonnet,David,Eynard ’00]

I light red: trivalent tree-like
configuration dominant

I Re line in I and II: Stokes lines, exponentially suppressed saddles are
maximally suppressed

I P1 (P2): DS point described by Painlevé I (II) equation

Evidence of different phases?
What local solutions are associated with each phase?

How to obtain analytic data? Global Solutions?
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The anti-Stokes phase: numerical evidence

I Numerically calculate the recursion coefficients rn with
the boundary condition of the 1-cut configuration

I Take N = 1000 arg t = π
12 fixed, change |t| from the

1-cut phase into anti-Stokes

I r : normalization factor (classical solution gs = 0)

Evidence of different phases: they lead to different asymptotics of the
R (t) in different regions
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The anti-Stokes phase: numerical evidence

I Perform optimal truncation to the one-parameter sectors of R (t, σ1, 0):
I perturbative R(0,0)(t) plus n-instantons R(n,0)(t) , for n = 1, 2, 3

I Compare to the numerical results for the rn

Adding the first three instanton correction to the R (t), we cannot reach
far into the anti-Stokes region: all instanton contributions are of the same
order and need to be included.
Can we do better? Perform analytic transseries summation
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Analytic transseries summation

I Perform analytic transseries summation for the one-parameter partition
function Z (t) = eF

I Sum the leading terms in gs for Z (t)

I Determine the R (t) from these results

Leading gs analytic transseries summation for Z (t) follows the numerical
results far into the anti-Stokes region!
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Zeroes of the partition function

Use the analytic transseries summation to predict Lee-Yang zeros?

I Left: prediction of zeros of Z (t) obtained from
analytic transseries summation with N = 10
eigenvalues

I Down: numerical calculation of zeros from direct
calculation of the matrix integral (N = 100). The
grayscale is proportional to number of zeros

Leading gs quadratic transseries summation for Z (t) predicts analytic re-
sults deep into the anti-Stokes region!
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Ambiguity cancelation and Interpolation

Cusp Anomalous Dimension
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Cusp Anomalous Dimension

I Appears in N = 4 SYM and strings in AdS5 × S5

I Scaling behaviour of the anomalous dimension of a Wilson loop with a
light-like cusp in the integration contour

〈W 〉 ∼ e
−Γcusp log ΛUV

mIR

I Scaling dimension of a twist-2 operator tr(X IDµ1 · · ·DµSX
I ), at large spin

S ;

I Dispersion relation of long folded spinning strings in AdS :

∆− S = f (g) log S

f (g): universal scaling function
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Cusp Anomalous Dimension

I From integrability it obeys the BES integral equations [Beisert,Eden,Staudacher,07]

γ(2gt)

2gt
= K (2gt, 0)− 2g

ˆ ∞
0

dt′

et′ − 1
K(2gt, 2gt′)γ(2gt′)

I K (t, t′) is so-called BES Kernel [Eden,Staudacher,06]

I Cusp anomalous dimension given by

Γcusp (g) = 8 lim
t→0

γ(2gt)

2gt
.

I Weak coupling result g � 1 known

I Resurgent analysis: for g � 1 expansion is asymptotic!
[Basso,Korchemsky,Kotanski,07]
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Transseries and ambiguities [IA,15]

I Up to 2-instantons: 1-parameter transseries ansatz (x = 8πg � 1)

Γcusp (g , σ)

2g
− 1 =

+∞∑
m=0

σme−mA x
2 Γ(m)(x) ; Γ(m)(x) ' x−m/2

+∞∑
k=0

Γ
(m)
k

(x
2

)−k

I Γ(m)(x) are asymptotic series. Resurgent transseries? Yes!

I sectors Γ(0), Γ(1) and Γ(2) related via large order relations

I g real and positive: resummation of each sector Sθ=0Γ(m)(x)

I But: θ = 0 direction has singularities - it is a Stokes line!

I We have an imaginary ambiguity: (S0+ − S0−) Γ(m)(x) 6= 0

I Use resurgence to cancel ambiguity: fix σ0 = σR + iσI

I Γcusp (g , σ0) no longer has imaginary part!

I Can we resum the transseries and obtain results for g finite?

Yes: via the Borel-Padé resummation
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Resummation and Results at Weak Coupling [IA,15]

I Resum the results up to 2nd nonperturbative order:

0.1 0.2 0.3 0.4 0.5

-2

-1

1

2

0.0 0.5 1.0 1.5 2.0

-6

-4

-2

0

2

4

6

Resummation of Transseries ReHG
H0L L+ΣRReHG

H1L L+HΣR

2
-ΣI

2LReHG
H2L L

I dashed – truncated sum of the perturbative expansion Γ(0)

I Blue – known small coupling expansion (7 loops) of Γ (g)
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Prediction of NP phenomena

Hydrodynamics
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Hydrodynamic gradient expansion

I Evolution equations for energy-momentum tensor

∇µTµν = 0

I In hydrodynamic theories the E-M tensor is given by

Tµν = E uµuν + P(E)(ηµν + uµuν) + Πµν ,

I E is energy density

I Πµν is the shear stress tensor

I P(E) = E/3 is pressure in d = 4 conformal theories

I u is flow velocity - timelike eigenvector of the E-M tensor

I Hydrodynamic gradient expansion: approximate Πµν by series of
corrections to ideal fluid behaviour
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Fluid-gravity correspondence

I Hydrodynamic gradient expansion can be determined via the microscopic
theory associated to the fluid

I For relativistic hydrodynamics with boost invariant flow: microscopic theory
is large N N = 4 SYM at strong coupling

I Objective: determine energy density from gauge-gravity duality, by solving
Einstein’s equations with appropriate metric ansatz

I Non-hydrodynamic d.o.f. are exponentially decaying sectors of a
transseries-type ansatz for the metric components, quasi-normal modes
(QNM)

I Determine perturbative part to very high order (240 terms)
[Heller,Janik,Witaszczyk,’13]

I Determine non-perturbative sectors to high order
[IA,Jankowski,Meiring,Spaliński,Witaszczyk,on-going]
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Non-hydrodynamic modes and gradient expansion

Borel transform for the perturbative part of gradient expansion:
[Heller,Janik,Witaszczyk,’13] [IA,Jankowski,Meiring,Spaliński,Witaszczyk,on-going]

QNM:

ω1; 2ω1; 3ω1
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ω1 = 3/2 (2.746676 + 3.119452i);

ω2 = 3/2 (4.763570 + 5.169521i);

ω3 = 3/2 (6.769565 + 7.187931i);

Resurgence?
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Transseries and NP predictions

I Multi-parameter transseries ansatz for the energy density

ε (τ,σ) =
∑

n

σne−n·A(ωi )τ
2/3

Φn (τ)

I Analyse the large order behaviour of the hydrodynamic series

Φ0 (τ) ' τ−4/3
+∞∑
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Summary

Introduction to resurgence and applications to physical problems

I Resurgence analysis:

I Transseries solutions

I Predictions and large-order relations

I Ambiguity cancelations

I Summation and analytic results

I Applications:

I Painlevé I NLODE and Large N dynamics of matrix models
I Strong coupling of cusp anomalous dimension
I Strongly coupled fluid in N = 4 SYM and gravitational QNM
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Current work

I Analysis of phase diagram of quartic matrix model

I Stokes transitions;

I modular properties of the transseries

I Stokes transitions in Painlevé I

I Algebra structure of multi-parameter resurgent transseries, interplay
between

I coupling gYM , gs → 0;
I rank of gauge group N →∞;
I ’t Hooft coupling λ = g 2

YMN fixed: large, small

I Applications of resurgence in string theory observables:

I Bremsstrahlung function;

I Lüscher corrections and the thermodynamic Bethe ansatz
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Thank you!
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