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Quantum Gaudin Model

I Let g be any symmetrizable Kac-Moody algebra (e.g. spM , or ŝlM , . . . )

I Assign irreducible highest-weight g-modules {Lλi} to marked points {zi} in C:

C

z1

z2

z3

Lλ1

Lλ2

Lλ3

I Canonical element: Ξ =
∑

roots α

Ξα, Ξα ∈ gα ⊗ g−α

Hi =

N∑
j=1
j 6=i

Ξ(ij)

zi − zj
∈ U(g)⊗N , i = 1, . . . , N

Quadratic Gaudin Hamiltonians Hi :
⊗N

k=1 Lλk →
⊗N

k=1 Lλk
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Bethe ansatz for Gaudin models

I Gaudin model solvable by a form of Bethe ansatz:

I Pick m ≥ 0 additional marked points wj (Bethe roots)
I Associate to each a simple root αc(j)
I Construct Bethe vector ψ = ψ({zi}, {λi}, {wj}, {αc(j)})

I Theorem: if Bethe roots {wj} obey Bethe equations then ψ is a joint eigenvector of

the Hi, with explicit eigenvalues.

−
N∑
i=1

(λi|αc(j))
wj − zi

+
m∑
i=1
i6=j

(αc(i)|αc(j))
wj − wi

= 0, j = 1, . . . ,m.

Ei :=
N∑
j=1
j 6=i

(λi|λj)
zi − zj

−
m∑
j=1

(λi|αc(j))
zi − wj

, i = 1, . . . , N.

I Theorem holds for any symmetrizable Kac-Moody algebra g.
(General proof is in terms of hyperplane arrangements [Schechtman & Varchenko, 91])
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Finite type g – Gaudin algebra and Opers

For g of finite type (i.e. one of slM , soM , spM , e6, e7, e8, f4, g2)
much more is known:

Hi ∈ B ⊂ U(g)⊗N

Gaudin/Bethe Algebra

[Feigin Frenkel Reshetikhin]
[Mukhin Tarasov Varchenko]

I B : a (large) commutative subalgebra of U(g)⊗N

generated by Hi together with higher Gaudin Hamiltonians

I ψ is a joint eigenvector for the entire algebra B

I Theorem: Joint eigenvalues encoded as functions on a space of opers
[Frenkel], [Rybnikov], [Mukhin Tarasov Varchenko]

– “Geometric Langlands correspondence”

Charles Young Hypergeometric Integrals of Motion and Affine Gaudin Models SEMPS, Surrey, March 2018



Main questions:

Suppose g is of untwisted affine type (e.g. ŝlM , ŝoM , ŝpM ,. . . )

1. Are there higher Gaudin Hamiltonians?

2. If yes, then what parameterizes their eigenvalues?
Functions on opers?? What opers?? What do such functions look like??

. . . important questions for mathematical physics because affine (quantum) Gaudin
models are closely related to integrable (quantum) field theories in 1 + 1 dimensions

Plan of this talk:

(i) Define a notion of affine opers, generalizing definitions from finite type in the most
direct way possible.

(ii) Main result: the functions on the space of affine opers are of a very different
character than in the finite case:
they are given by hypergeometric-type integrals over cycles of a twisted homology
defined by the levels of the modules at the marked points.

(iii) Conjecture: these integrals are the eigenvalues of (higher) Gaudin Hamiltonians
(. . . prompts a conjecture about the form of such Hamiltonians themselves)

(iv) Check this conjecture in some special cases (use GKO coset construction/Integrals
of Motion of quantum KdV and quantum Boussinesq theory)
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Review: Opers and Miura opers in finite types
Suppose g is of finite type. Let Lg be its Langlands dual (also of finite type).

I Cartan decomposition: Lg = Ln− ⊕ Lh⊕ Ln+

I Chevalley generators: f̌i, ěi, i = 1, . . . , `.

I Simple coroots: αi := [ěi, f̌i] (are the simple roots of g)

Definition: A Miura Lg-oper is a connection of the form

∇ = d+
(
p̄−1 + u(z)

)
dz.

Principal nilpotent element
p̄−1 :=

∑`
i=1 f̌i

rational function valued in Cartan Lh ∼= h∗

For us, u(z) is of the form

u(z) = −
N∑
i=1

λi
z − zi

+
m∑
j=1

αc(j)
z − tj

and encodes the marked points {zi}, Bethe roots {wj}, highest weights {λi} and
“colours” of the Bethe roots {c(j)}.
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Definition: An Lg-oper is a gauge equivalence class [∇] of connections of the form

∇ = d+
(
p̄−1 + b(z)

)
dz

rational function valued in Borel Lb+
∼= Lh⊕ Ln+

under the gauge action of the unipotent subgroup LN = exp(Ln+).

Fact: Each oper [∇] has a unique representative of canonical form

d+

p̄−1 +
∑
r∈Ē

v̄r(z) p̄r

 dz.

finite (multi)set of exponents of Lg

rational coefficient functions

element p̄r ∈ Ln+ of
grade r in principal gradation
(h.w. vector for principal sl2)

Corollary: These v̄r(z) are “good coordinates” on the space of opers.

I Each Miura oper ∇ defines an underlying oper [∇]

Fact: The Bethe equations precisely ensure v̄r(z) have poles only at the marked points
z1, . . . , zN (and ∞) and not at the Bethe roots w1, . . . , wm.
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Dictionary:

Miura oper ∇ ←→ u(z) ∈ Lh ←→ joint eigenvector ψ of Gaudin Hamiltonians

Underlying oper [∇]←→ {v̄r(z) ∈ C}r∈Ē ←→ eigenvalues of all Gaudin Hamiltonians
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Opers and Miura opers in affine types
Suppose g is of untwisted affine type. Let Lg be Langlands dual (affine, maybe twisted).

I Cartan decomposition: Lg = Ln− ⊕ Lh⊕ Ln+

I Chevalley generators: f̌i, ěi, i = 0, 1, . . . , `; coroots αi = [ěi, f̌i]

Definition: A Miura Lg-oper is a connection of the form

∇ = d+
(
p−1 + u(z)

)
dz.

Principal nilpotent element
p−1 :=

∑`
i=0 f̌i

rational function valued in Cartan Lh ∼= h∗

I u(z) as before – except ‘colours’ of Bethe roots c(j) ∈ {0, 1, . . . , `} can include 0.

I Principal derivation element: ρ ∈ Lh. [ρ, ěi] = ěi, [ρ, f̌i] = −f̌i.
I Decompose u(z) in basis {αi}`i=0 ∪ {ρ}:

∇ = d+

p−1 −
ϕ(z)

h∨
ρ+

∑̀
i=0

ui(z)αi

 dz, ϕ(z) =

N∑
i=1

ki
z − zi

where ki = 〈k, λi〉 are the levels of the Lλi . Call ϕ(z) the twist function.
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Definition: An Lg-oper is a gauge equivalence class [∇] of connections of the form

∇ = d+
(
p−1 + b(z)

)
dz

rational function valued in Borel Lb+
∼= Lh⊕ Ln+

under the gauge action of the unipotent subgroup LN = exp(Ln+).

Theorem: [Lacroix, Vicedo, CY]

(i) Each oper [∇] has a unique representative of quasi-canonical form

d+

p−1 −
ϕ(z)

h∨
ρ+

∑
r∈E

vr(z) pr

 dz.

countably infinite (multi)set of exponents of Lg

rational coefficient functions

element pr ∈ Ln+ of
grade r in principal gradation

(∈ principal Heisenberg subalgebra)
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(ii) The functions ϕ(z) and v1(z) are unique. But the functions vr(z), r ≥ 2, are unique
only up to transformations of the form

vr(z) 7−→ vr(z)− g′r(z) +
rϕ(z)

h∨
gr(z)

for any rational functions gr(z).

Corollary: These vr(z) are “good coordinates” on the space of affine opers.
. . . so how to construct well-defined functions on the space of affine opers?

I Define multivalued function P(z) :=
∏N
i=1(z − zi)ki whose log-derivative is ϕ(z).

I Gauge freedom in vr(z) is then

P(z)−r/h
∨
vr(z) 7−→ P(z)−r/h

∨
vr(z)− ∂z

(
P(z)−r/h

∨
gr(z)

)
.

I To get gauge-invariant quantities we should consider integrals of P(z)−r/h
∨
vr(z). . .
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integrals over any cycle γ which is not only closed but also around which P is
single-valued. . .

I(r)
γ :=

∫
γ

P(z)−r/h
∨
vr(z)dz

Prototypical example of such cycles are Pochhammer contours

C

z1 z2

z3

Corollary: These integrals I
(r)
γ are well-defined functions on the space of affine opers.

Proposition: The Bethe equations precisely ensure there exists a gauge in which
{vr(z)}r∈E have poles only at the marked points z1, . . . , zN (and ∞) and not at the
Bethe roots w1, . . . , wm.

Charles Young Hypergeometric Integrals of Motion and Affine Gaudin Models SEMPS, Surrey, March 2018



Conjectures

1. These integrals I
(r)
γ are the eigenvalues of higher affine Gaudin Hamiltonians.

2. The Hamiltonians themselves are integrals,

H(r)
γ :=

∫
γ

P(z)−r/h
∨
Sr(z)0 dz

for certain “densities” Sr(z)0 ∈ Û(g⊕N ) depending rationally on z.

In particular, each Hamiltonian is labelled by
I an exponent r from the infinite multiset E of exponents and
I a contour γ (more precisely, an element of a twisted homology space)
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Checks

I Semiclassics

I Cubic Hamiltonians

I GKO coset constructions (2-point Gaudin models for ŝl2 and ŝl3)
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Semiclassics

Recall results on classical Principal Chiral Models (PCMs)
[Evans, Hassan, MacKay, Mountain]

I Let j+ = g−1∂+g where g = g(x, t) ∈ G is the PCM field.

I There are Poisson-commuting conserved charges of the form∫ 2π

0

dxKab...cj
a
+j

b
+ . . . j

c
+.

Here Kab...c are certain invariant tensors whose degrees ∈ { exponents of G
repeating modulo the Coxeter number } = { the exponents of the affine algebra }

I Classical PCMs can be interpreted as classical affine Gaudin models and then these
conserved charges are of the form

[Vicedo],[Lacroix, Magro, Vicedo]∫ 2π

0

dxKab...cL(z(0))
aL(z(0))

b . . . L(z(0))
c.

where L(z) is the (Gaudin) Lax matrix and z(0) is a zero of the twist function ϕ(z).
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Semiclassics
On the other hand, one can re-introduce ~ in the quantum-mechanical constructions
above:

H(r)
γ =

∫
γ

P(z)−r/(~h
∨)S(~)

r (z)0dz

Then in the ~→ 0 limit, deform contour γ to apply method of steepest descents:

C

z1 z2

Integrals of the form H
(r)
γ localize at the saddle points of P(z) = zeros of ϕ(z)!

(And count of zeros (= N − 1) agrees with count of independent cycles.)

(Reminiscent of passage from KZ equations to Gaudin model – yet conceptually quite separate)
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Cubic Hamiltonians

I Simplest general direct check is in types ŝlM with M ≥ 3.

I Check for r = 1, 2 only so far, i.e. quadratic and cubic Hamiltonians.

I (Guess that) densities Sr(z)0 are actually Fourier zero modes of certain states in
tensor product of Vacuum verma modules Vk

0 =
⊗N

i=1 V
ki
0

S1(z) := 1
2
Ia−1(z)Ia−1(z) |0〉k ,

S2(z) := 1
3
tabcI

a
−1(z)Ib−1(z)Ic−1(z) |0〉k ,

where Ia−1(z) :=

N∑
i=1

I
a,(tensor factor i)
−1

z − zi
and |0〉k = |0〉 ⊗ . . .⊗ |0〉 .

C

z1

z2

z3

z4

Vk10 Vk20

Vk30Vk40
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Theorem: [Lacroix,Vicedo,CY] For i, j ∈ {1, 2},

Si(z)(0)Sj(w) = D(i)
z Aij(z, w) +D(j)

w Bij(z, w) + TCij(z, w),

for some Vk
0 -valued rational functions Aij(z, w), Bij(z, w) and Cij(z, w).

Proof Direct (lengthy) calculation... e.g.

A22(z, w) =

(
2h∨

3 (
1− 4

h∨2

)
(z − w)3

Ia−4(z)Ia−1(z)−
4h∨

3 (
1− 4

h∨2

)
(z − w)3

Ia−4(z)Ia−1(w)

−
2h∨

2 (
1− 4

h∨2

)
ϕ(z)

(z − w)2
Ia−4(z)Ia−1(w)−

h∨
3 (

1− 4
h∨2

)
(z − w)2

Ia−4
′(z)Ia−1(w)

−
2h∨

3 (
1− 4

h∨2

)
(z − w)3

Ia−3(z)Ia−2(z) +
2h∨

2 (
1− 4

h∨2

)
(z − w)2

fabcI
a
−3(z)Ib−1(z)Ic−1(w)

+
h∨

z − wtabetcdeI
a
−2(z)Ib−1(z)Ic−1(w)Id−1(w)

)
|0〉k

B22(z, w) =

(
−

2h∨
3 (

1− 4
h∨2

)
(z − w)3

Ia−4(z)Ia−1(z) +
8h∨

3 (
1− 4

h∨2

)
(z − w)3

Ia−4(z)Ia−1(w)

+
4h∨

2 (
1− 4

h∨2

)
ϕ(z)

(z − w)2
Ia−4(z)Ia−1(w)−

2h∨
2 (

1− 4
h∨2

)
ϕ(w)

(z − w)2
Ia−4(z)Ia−1(w)

+
h∨

3 (
1− 4

h∨2

)
(z − w)2

Ia−4(z)Ia−1
′(w) +

2h∨
3 (

1− 4
h∨2

)
(z − w)3

Ia−3(z)Ia−2(z)

−
2h∨

2 (
1− 4

h∨2

)
(z − w)2

fabcI
a
−3(z)Ib−1(z)Ic−1(w)

− h∨

z − wtabetcdeI
a
−2(z)Ib−1(z)Ic−1(w)Id−1(w)

)
|0〉k

C22(z, w) =

(
2h∨

3 (
1− 4

h∨2

)
(z − w)4

Ia−3(z)Ia−1(z)

+

(
1− 4

h∨2

)
(z − w)3

(
−4h∨

2
ϕ(z) + 4h∨

2
ϕ(w)− 10

h∨
3

z − w

)
Ia−3(z)Ia−1(w)

−
2h∨

3 (
1− 4

h∨2

)
(z − w)3

Ia−3(z)Ia−1
′(w)−

2h∨
3 (

1− 4
h∨2

)
(z − w)4

Ia−2(z)Ia−2(z)

+
h∨

3 (
1− 4

h∨2

)
(z − w)4

Ia−2(z)Ia−2(w) +
9h∨

2 (
1− 4

h∨2

)
(z − w)3

fabcI
a
−2(z)Ib−1(z)Ic−1(w)

+
h∨

2(z − w)2
tabetcdeI

a
−1(z)Ib−1(z)Ic−1(w)Id−1(w)

)
|0〉k .

Corollary: The corresponding Hamiltonians, i.e. contour integrals of zero modes,
commute.
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GKO coset construction and qKdV integrals of motion
Consider Gaudin model for ŝl2 with 2 marked points.
Quadratic Hamiltonian:

H := H1 = −H2 =
Ξ

z1 − z2
where Ξ = d⊗ k + k ⊗ d+

∑
n

Ian ⊗ Ia,−n

On the other hand, have Segal-Sugawara generators of Virasoro algebra at sites 1 and 2,
and the diagonal copy:

T (1)(x) :=
1

2(k1 + h∨)

∑
n∈Z

: Ia(1)
n I

(1)
a,−n : T (2)(x) :=

1

2(k2 + h∨)

∑
n∈Z

: Ia(2)
n I

(2)
a,−n :

T (diag)(x) :=
1

2(k1 + k2 + h∨)

∑
n∈Z

: (Ia(1)
n + Ia(2)

n )(I
(1)
a,−n + I

(2)
a,−n) :

And then the Goddard-Kent-Olive coset generators of Virasoro are:

T (GKO)(x) := T (1)(x) + T (2)(x)− T (diag)(x) =:
∑
n∈Z

Lnx
−n−2

Fact: The quadratic Gaudin Hamiltonian is the GKO Virasoro zero mode:

Ξ = −(k1 + k2 + h∨)L0
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But the Virasoro algebra is known to have a large commutative subalgebra, called the
algebra of Quantum Integrals of Motion (QIMs) (of quantum (m)KdV).

[Sasaki, Yamanaka],[Feigin, Frenkel]

I1 = L0

I3 = 2

∞∑
n=1

L−nLn + L2
0 −

c+ 2

12
L0 +

c(5c+ 22)

2880

I5 = . . .

Since the first of these is the quadratic Gaudin Hamiltonian, have natural:

Conjecture/Definition: [Feigin, Frenkel] In this case (2 sites, ŝl2) the higher Quantum
Integrals of Motion are the higher affine Gaudin Hamiltonians.

Taking this as a definition, have an arena to test conjecture about eigenvalues. . .
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C

z1 = 0 z2 = 1

Top multiplicity space = Virasoro module with
c (a, b) = 1− 6

(a+b+2) (a+b+3)

∆ (a, b) = b (b+2)
4(a+b+2) (a+b+3)

LaΛ0+bΛ1 ⊗ LΛ0 = L(a+1)Λ0+bΛ1
⊗ U ⊕ . . .

I Virasoro calculation: Vacuum value of, e.g. I5 is

I5 = ∆3 − c+ 4

8
∆2 +

(c+ 2) (3c+ 20)

576
∆ +

(−c) (3c+ 14) (7c+ 68)

290304

I Affine oper calculation: u (z) :=
1
4

(b−a)

z
−

1
4

z−1
, ϕ (z) := a+b

z
+ 1

z−1
and

I(5)
γ =

∫
γ

P(z)−5/2v5(z)dz

where v5(z) is given by

u (z)2
(
d3

d z3
ϕ (z)

)
16

+
5u (z)

(
d
d z
u (z)

) (
d2

d z2
ϕ (z)

)
16

+
−11u (z)2ϕ (z)

(
d2

d z2
ϕ (z)

)
16

+
−7u (z)2( d

d z
ϕ (z)

)2
16

+
5u (z)

(
d2

d z2
u (z)

) (
d
d z
ϕ (z)

)
8

+
−45u (z)ϕ (z)

(
d
d z
u (z)

) (
d
d z
ϕ (z)

)
16

+
23u (z)2ϕ (z)2 ( d

d z
ϕ (z)

)
8

+
−7u (z)4 ( d

d z
ϕ (z)

)
16

+
−u (z)

(
d4

d z4
u (z)

)
16

+
5u (z)ϕ (z)

(
d3

d z3
u (z)

)
8

+
−35u (z)ϕ (z)2

(
d2

d z2
u (z)

)
16

+
7u (z)3

(
d2

d z2
u (z)

)
16

+
11u (z)2( d

d z
u (z)

)2
16

+
25u (z)ϕ (z)3 ( d

d z
u (z)

)
8

+
−43u (z)3ϕ (z)

(
d
d z
u (z)

)
16

+
−3u (z)2ϕ (z)4

2
+

25u (z)4ϕ (z)2

16
+
−u (z)6

8
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I Result: up to constants independent of the sl2 weight b,
both I5 and I

(5)
γ are equal to

425k6 + 6375k5 − 2898b2k4 − 5796bk4 + 36287k4 − 28980b2k3 − 57960bk3 + 97245k3

+3780b4k2 + 15120b3k2 − 84042b2k2 − 198324bk2 + 121724k2 + 18900b4k + 75600b3k

−57960b2k − 267120bk + 57120k − 1512b6 − 9072b5 + 60480b3 + 12096b2 − 120960b

I Similar checks works with (up to 2) Bethe roots instead of vacuum.

I Also have Cubic Affine Gaudin Hamiltonian, so can also try ŝl3 case:
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ŝl3-Coset construction of W3 algebra

C

z1 = 0 z2 = 1

Top multiplicity space = W3 module
[Bais, Bouwknegt, Surridge, Schoutens]

LaΛ0+bΛ1+cΛ2 ⊗ LΛ0 = L(a+1)Λ0+bΛ1+cΛ2
⊗ U ⊕ . . .

I On specializing to case of 2 points and ŝlM , find T =
∫
γ
P(z)−1/3S1(z)dz and

W =

∫
γ

P(z)−2/3S2(z)dz

∝ 1
3
tabcI

a(1)
−1 I

b(1)
−1 I

c(1)
−1 |0〉

k (− 2
M
k2

) (
− 2
M
k2 − 1

) (
− 2
M
k2 − 2

)
+ tabcI

a(1)
−1 I

b(1)
−1 I

c(2)
−1 |0〉

k (− 2
M
k1 − 2

) (
− 2
M
k2 − 1

) (
− 2
M
k2 − 2

)
+ tabcI

a(1)
−1 I

b(2)
−1 I

c(2)
−1 |0〉

k (− 2
M
k1 − 1

) (
− 2
M
k1 − 2

) (
− 2
M
k2 − 2

)
+ 1

3
tabcI

a(2)
−1 I

b(2)
−1 I

c(2)
−1 |0〉

k (− 2
M
k1

) (
− 2
M
k1 − 1

) (
− 2
M
k1 − 2

)
are the coset conformal and W vectors.

I Quantum Integrals of Motion I1, I2, I4, I5, I7, I8, . . . are known.

I Check at least vacuum values of I2, I4, I5.
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Open questions

I Existence proof (or explicit formula) for the higher Hamiltonians?

I Relation to ODE/IM. [Bazhanov, Lukyanov, Zamilodchikov] [Dorey, Dunning, Tateo] ?
(“dual”?)

I Relation to Integrals of Motion in quantum toroidal algebras? [Feigin, Jimbo, Mukhin]
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