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In this technical report it is proved that the Störmer-Verlet algorithm, applied to the
dynamically coupled problem of shallow water sloshing in a horizontally moving vehicle
reported in [2], is symplectic if the σ− integral is discretized using the trapezoidal rule.

The starting point is the governing equations for shallow water fluid motion in a vehi-
cle constrained to move horizontally with position q(t) . The governing equations in the
Lagrangian particle path formulation are [2]
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The first equation corresponds to equation (1.4) in [2] and the second equation corresponds
to equation (1.2) in [2]. The Hamiltonian formulation of these equations, with coordinates
(q(t), x(a, t), p(t), w(a, t)) is given in §4.2 of [2]. The symplectic form is

Ω =

∫ L

0

dw ∧ dx ρχ da + dp ∧ dq . (0.1)

1 Störmer-Verlet discretization

Consider the Störmer-Verlet discretization for the Hamiltonian formulation as presented in
§6 in [2],
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where

σn =
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0

wn ρχ da .

The choice of quadrature formula for σn will affect symplecticity. At first we discretized
using Simpson’s rule, but this choice does not preserve symplecticity (this will be apparent
in the proof below). We found that the trapezoidal rule does indeed preserve symplecticity.

The discretized boundary conditions for x(a, t) and w(a, t) are
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2 The discretized symplectic form

Using the trapezoidal rule, and noting that δxn
1 = δxN+1 = 0, the discretization of the

symplectic form (0.1) is
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i ρχi∆a . (2.1)

We say that the numerical scheme is symplectic if

Ωn+1 = Ωn for all n .

3 Variational equations

In order to test for symplecticity, the variational equations associated with the discretization
are required. The most complicated ones are the equations for δwn
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for i = 2, ..., N . To simplify, define
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The variational equations for (q, p) are
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3.1 The (q, p) component of the symplectic form
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3.2 The (x, w) component of the symplectic form
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3.3 Proof that the sum of the An
i terms vanish

Before summing to obtain the symplectic form, first it is shown that the An
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when summed. From the definition,
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4 Summing to obtain the discrete symplectic form

Since δxn
1 = 0 and δxn

N+1 = 0 for all n , we need only sum the terms in (3.2) from i = 2 to
i = N . Summing and using (3.3) and (3.4) results in
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5 Quadrature rule for σn

The terms in parentheses in (4.1) are partial approximations of σn . It is pretty clear that if
we use Simpson’s rule for σn , then the discretization will not be symplectic since the sum
terms in (4.1) will not cancel. However, if we use the trapezoidal rule then the relevant terms
will cancel. Therefore approximate σn as
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6 Checking symplecticity

Adding the two terms in (4.1) and (4.2)
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7 Remarks

Suppose we start in (2.1) with a different quadrature rule

ωn :=
N∑

i=2

ei δw
n
i ∧ δxn

i ρχi∆a ,

where ei are weightings associated with the chosen quadrature formula. Then this choice
will filter through and σn can be evaluated with the same quadrature formula. However,
the scheme will not be symplectic. In this case the proof breaks down in the proof that the
A-terms vanish in §3.3.

Unless, the potential term,
g

xa

∂

∂a

(
χ

xa

)
,

is discretized differently, the symplectic form should be discretized using the trapezoidal
rule. Although, since δxn

1 and δxn
N+1 both vanish, one could equally well use a left or right

Riemann sum.
Since wn

1 = wn
N+1 for all n , the integrand in σn will be periodic when χ1 = χN+1 .

This is the case for example when the initial condition is the flat state, h = h0 . Hence the
integrand can be extended to all a as a periodic function. The trapezoidal rule is known
to have excellent properties for periodic functions [3]. However, although the integrand is a
continuous periodic function, it may not be a smooth periodic function.
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