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1 Introduction

Details of the numerical algorithm used to solve the rotating shallow water equations
(SWEs) in [3, 4] are recorded in this report. The scheme is a fully-implicit split-step
scheme with second order accuracy in both space and time that has been widely used
in hydraulics [5, 1, 2]. The nonlinearity is treated in the Eulerian representation using
iteration. The new features in the algorithm here are (a) the inclusion of full time-
dependent rotation due to the rigid body motion of the vessel, and (b) the use of exact
boundary conditions in both steps of the split-step scheme.

First, in §2 the algorithm for the SWEs in one space dimension is outlined. This
algorithm is a streamlined version of the algorithm used in [3]. The simplification
introduced here is that the nonlinear term Uhx + hUx is replaced by the linear term
−ht in the U−momentum equation. The algorithm in §2 is also a special case of the
algorithm for the SWEs in two space dimensions in §3 since that algorithm is based on
splitting and one-dimensional sub-integrations.

2 Sloshing SWEs in one space dimension

The governing SWEs derived in [3] are

ht + Uhx + hUx = 0

Ut + (α(x, t) − Ω2h)hx + UUx − 2Ωht = β(x, t) + Ω̇h ,
(2.1)

where h(x, t) is the depth and U(x, t) is the horizontal fluid velocity at the free surface.
The tank has length L and the only boundary conditions are

U(0, t) = U(L, t) = 0 , ∀ t . (2.2)

The functions α(x, t) and β(x, t) are the terms due to the rotating-translating frame
that do not depend on either h or U ,

α(x, t) = g cos θ + Ω̇(x + d1) − Ω2d2 − q̈1 sin θ + q̈2 cos θ,

β(x, t) = −g sin θ + Ω̇d2 + Ω2(x + d1) − q̈1 cos θ − q̈2 sin θ .
(2.3)
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The various terms and parameters are defined in [3].
The x− interval 0 ≤ x ≤ L is split into JJ − 1 intervals of length ∆x = L

JJ−1
and

so
xj := (j − 1)∆x , j = 1, . . . , JJ and tn = n∆t ,

with n = 0, 1, . . ., and

hn
j := h(xj , tn) and Un

j := U(xj , tn) .

The first-order space derivatives are approximated by 3−point centred differences and
the first-order time derivatives by forward difference. The scheme is fully implicit.

The discretization of the equations (2.1) is then

hn+1
j − hn

j

∆t
+ U⋆

j

hn+1
j+1 − hn+1

j−1

2∆x
+ h⋆

j

Un+1
j+1 − Un+1

j−1

2∆x
= 0 ,

Un+1
j − Un

j

∆t
+
(
αn+1

j − (Ωn+1)2h⋆
j

) hn+1
j+1 − hn+1

j−1

2∆x

+U⋆
j

Un+1
j+1 − Un+1

j−1

2∆x
− 2Ωn+1

hn+1
j − hn

j

∆t
= βn+1

j + Ω̇n+1hn+1
j ,

(2.4)

where
αn

j := α(xj , tn) and βn
j := β(xj, tn) .

The starred variables are intermediate values for nonlinear coefficients. In order to treat
the nonlinearity, an iteration scheme is used. First, the above equations are solved for
one time step with h⋆

j = hn
j and U⋆

j = Un
j producing an approximation for hn+1

j and

Un+1
j . The equations are then solved again with the starred variables replaced by the

updates. This iteration step is repeated until the previous and current values of h and
U are within a prescribed tolerance at all points.

The discrete system (2.4) can be put into block tridiagonal form. Setting

zn
j =

[
hn

j

Un
j

]
,

equation (2.4) can be expressed in the form

−⋆A
n+1
j zn+1

j−1 + Bn+1zn+1
j + ⋆A

n+1
j zn+1

j+1 =

[
−2Ωn+1 1

1 0

]
zn

j + ∆t βn+1
j

[
1
0

]
, (2.5)

for j = 2, . . . , JJ − 1, with

⋆A
n+1
j =

∆t

2∆x

[
αn+1

j − (Ωn+1)2h⋆
j U⋆

j

U⋆
j h⋆

j

]
, (2.6)

and

Bn+1 =

[
−2Ωn+1 − Ω̇n+1∆t 1

1 0

]
. (2.7)
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The ⋆ left-subscript on ⋆A
n
j is a reminder that the entries depend on nonlinear

⋆−terms. The equations at j = 1 and j = JJ are obtained from the boundary
conditions. The only boundary condition at x = 0 is U = 0. The discrete version of
this is

Un
1 = 0 and

Un
0 + Un

2

2
= 0 , for all n ∈ N , (2.8)

where Un
0 is a ficticious point ∆x to the left of x = 0. To obtain a boundary condition

for h , use the mass equation at x = 0

ht + h⋆Ux = 0 ,

with discretization
hn+1

1 − hn
1

∆t
+ h⋆

1

Un+1
2

∆x
= 0 . (2.9)

Combining (2.8) and (2.9) gives the equation for j = 1

zn+1
1 +

h⋆
1 ∆t

∆x

[
0 1
0 0

]
zn+1

2 =

[
1 0
0 0

]
zn

1 . (2.10)

Similarly at x = L ,

Un
JJ = 0 and

Un
JJ−1 + Un

JJ+1

2
= 0 , for all n ∈ N , (2.11)

where Un
JJ+1 is a ficticious point ∆x to the right of x = 0. The discrete mass equation

at j = JJ is
hn+1

JJ − hn
JJ

∆t
− h⋆

JJ

Un+1

JJ−1

∆x
= 0 . (2.12)

Combining these two equations gives the discretization at j = JJ ,

−h⋆
JJ ∆t

∆x

[
0 1
0 0

]
zn+1

JJ−1 + zn+1

JJ =

[
1 0
0 0

]
zn

JJ . (2.13)

Hence, for fixed h⋆ and U⋆ the following block linear system of equations is to be
solved,

zn+1
1 + h⋆

1Nzn+1
2 =

[
1 0
0 0

]
zn

1

−⋆A
n+1
2 zn+1

1 + Bn+1zn+1
2 + ⋆A

n+1
2 zn+1

3 =

[
−2Ωn+1 1

1 0

]
zn

2 + ∆t βn+1
2

[
1
0

]
,

−⋆A
n+1
3 zn+1

2 + Bn+1zn+1
3 + ⋆A

n+1
3 zn+1

4 =

[
−2Ωn+1 1

1 0

]
zn

3 + ∆t βn+1
3

[
1
0

]
,

...
...

−⋆A
n+1

JJ−1z
n+1

JJ−2 + Bn+1zn+1

JJ−1 + ⋆A
n+1

JJ−1z
n+1

JJ =

[
−2Ωn+1 1

1 0

]
zn

JJ−1 + ∆t βn+1

JJ−1

[
1
0

]
,

−h⋆
JJNzn+1

JJ−1 + zn+1

JJ =

[
1 0
0 0

]
zn

JJ .
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where

N :=
∆t

∆x

[
0 1
0 0

]
.

The right-hand side of the system is known, and for fixed h∗ and U∗ the system is a
block tridiagonal linear system.

Numerical results using this scheme are reported in [3].

2.1 Structure of the numerical dissipation

The fully implicit scheme is dissipative. The dissipation eliminates transients and
smooths the high-frequency oscillations near hydraulic jumps. In this subsection, the
form of the numerical dissipation is identified. The form of the dissipation is similar to
the action of viscosity, in that it is wavenumber dependent. An interesting feature of
the dissipation is that it is Froude number dependent and becomes directional in the
limit as the Froude number approaches unity.

To compute the truncation error, take the simplest case, where the SWEs are linear
and the vessel is stationary,

ht + u0hx + h0ux = 0 and ut + u0ux + ghx = 0 . (2.14)

The fully implicit scheme is

hn+1
j − hn

j

∆t
+ u0

(
hn+1

j+1 − hn+1
j−1

2∆x

)
+ h0

(
un+1

j+1 − un+1
j−1

2∆x

)
= 0 ,

and
un+1

j − un
j

∆t
+ u0

(
un+1

j+1 − un+1
j−1

2∆x

)
+ g

(
hn+1

j+1 − hn+1
j−1

2∆x

)
= 0 .

Expand each term in a Taylor series, e.g.

hn+1
j = hn

j + (hn
j )t∆t + 1

2
(hn

j )tt∆t2 + · · · ,

and
hn+1

j+1 = hn
j+1 + (hn

j+1)t∆t + 1

2
(hn

j+1)tt∆t2 + · · · ,

= hn
j + (hn

j )x∆x + 1

2
(hn

j )xx∆x2

+∆t
(
(hn

j )t + (hn
j )tx∆x + 1

2
(hn

j )xxt∆x2
)

+1

2
∆t2

(
(hn

j )tt + (hn
j )ttx∆x

)
+ · · · .

Substitution of these expressions into (2.14) gives the leading order “modified equa-
tions”

ht + u0hx + h0ux = −∆t
(
u0htx + h0utx + 1

2
htt

)
+ · · · ,

ut + u0ux + ghx = −∆t
(
u0utx + ghtx + 1

2
utt

)
+ · · · .

Background theory on “modified equations” and truncation error can be found in §11.1
of [6].
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Use the leading order equation (2.14) to express hxt , uxt , htt and utt in terms of
hxx and uxx ,

ht + u0hx + h0ux = 1

2
∆t ((u2

0 + gh0)hxx + 2h0u0uxx) + · · · ,

ut + u0ux + ghx = 1

2
∆t ((u2

0 + gh0)uxx + 2gu0hxx) + · · · .

The leading order dissipation has the viscous form; that is, the dissipation is of the
same form as the heat equation,

(
h
u

)

t

+

[
u0 h0

g u0

](
h
u

)

x

= D

(
h
u

)

xx

= · · · ,

where D is the dissipation matrix

D = 1

2
∆t

[
u2

0 + gh0 2h0u0

2gu0 u2
0 + gh0

]
.

The eigenvalues of D are

λ± = 1

2
∆t
(
u0 ±

√
gh0

)2

= 1

2
∆t gh0(F ± 1)2 ,

where F = u0/
√

gh0 . The eigenvalues are of order ∆t and the dissipation matrix
is positive definite away from criticality. This analysis shows that the leading order
truncation error is dissipation.

In the limit as F → 1 one of the eigenvalues of D vanishes. The eigenvector in
this case is

ξ =

(
h0

−u0

)
,

since

Dξ = (gh0 − u2
0)

(
h0

u0

)
.

The eigenvector ξ is also an eigenvector of the Jacobian when F = 1 since

[
u0 h0

g u0

](
h0

−u0

)
= (gh0 − u2

0)

(
0
1

)
.

Hence the dissipation matrix resonates with the structure of the SWEs; that is, the
Jacobian and the dissipation matrix are both singular at criticality (F 2 = 1).

Carrying the modified equation analysis to the next order will reveal dispersive
truncation error. By including dissipation and dispersion through truncation error,
rather than explicitly, higher-order boundary conditions need not be imposed explicitly
at x = 0 and x = L .
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3 Sloshing SWEs in two space dimensions

The SWEs for fluid sloshing in a rotating vessel derived in [4] are

ht + hUx + Uhx + hVy + V hy = 0

Ut + UUx + V Uy + 2Ω2V hy + 2Ω2ht − 2Ω3V

+
[
α(x, y, t) + 2Ω1V −

(
Ω2

1 + Ω2
2

)
h
]
hx = −

(
Ω̇2 + Ω1Ω3

)
h + β̂(x, y, t)

Vt + UVx + V Vy − 2Ω1Uhx − 2Ω1ht + 2Ω3U

+
[
α(x, y, t) − 2Ω2U −

(
Ω2

1 + Ω2
2

)
h
]
hy =

(
Ω̇1 − Ω2Ω3

)
h + β̃(x, y, t) ,

(3.1)
where h(x, y, t) is the fluid depth and (U(x, y, t), V (x, y, t)) is the horizontal velocity
field. The tank has length L1 in the x−direction and length L2 in the y−direction
and the only boundary conditions are

U(0, y, t) = U(L1, y, t) = 0 , for 0 ≤ y ≤ L2 and ∀ t ,

V (x, 0, t) = U(x, L2, t) = 0 , for 0 ≤ x ≤ L1 and ∀ t .
(3.2)

The functions α(x, y, t) , β̂(x, y, t) and β̃(x, y, t) contain the terms from the rotating
coordinate system that are independent of h, U, V ,

α(x, y, t) =
(
Ω̇1 + Ω2Ω3

)
(y + d2) +

(
Ω1Ω3 − Ω̇2

)
(x + d1)

− (Ω2
1 + Ω2

2) d3 + Qe3 · q̈ + gQe3 · e3

β̂(x, y, t) =
(
Ω̇3 − Ω1Ω2

)
(y + d2) + (Ω2

2 + Ω2
3) (x + d1)

−
(
Ω̇2 + Ω1Ω3

)
d3 − Qe1 · q̈ − gQe1 · e3

β̃(x, y, t) = −
(
Ω̇3 + Ω1Ω2

)
(x + d1) + (Ω2

1 + Ω2
3) (y + d2)

+
(
Ω̇1 − Ω2Ω3

)
d3 − Qe2 · q̈ − gQe2 · e3 .

(3.3)

The terms and parameters are defined in [4].
An alternating direction implicit algorithm is used to solve this system of nonlinear

equations numerically. The time step is split into two half steps, and in each half step
the equations are solved in one-dimensional strips as shown in Figure 1. In the step
n 7→ n + 1

2
the equations are solved in horizontal x−strips for fixed y (the green lines

in Figure 1) and in the step n+ 1

2
7→ n+1 the equations are solved in vertical y−strips

for fixed x (the blue lines in Figure 1). Each of the one-dimensional systems has the
form of linear equations with a block tridiagonal coefficient matrix as in §2.

The x− interval 0 ≤ x ≤ L1 is split into II − 1 intervals

xi := (i − 1)∆x , i = 1, . . . , II , ∆x =
L1

II − 1
,
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1

2

Figure 1: Schematic of the grid layout for the discretization.

and the y− interval 0 ≤ y ≤ L2 is split into JJ − 1 intervals

yj := (j − 1)∆y , j = 1, . . . , JJ , ∆y =
L2

JJ − 1
,

and the discretized values of h, U, V are represented by

hn
i,j := h(xi, yj, tn), Un

i,j := U(xi, yj, tn) and V n
i,j := V (xi, yj, tn) ,

where tn = n∆t with ∆t the fixed time step.
Derivatives are discretized using centred difference. In the step n 7→ n + 1

2
the

x−derivatives are treated implicitly and the y−derivatives are treated explicitly, and in
the step n+ 1

2
7→ n+1 the y−derivatives are treated implicitly and the x−derivatives

are treated explicitly.

4 Algorithmic details for the half step n 7→ n +
1
2

Rewrite the governing equations in a form that emphasizes the nonlinearity

ht + h⋆Ux + U⋆hx + hVy + V hy = 0

Ut + U⋆Ux + V Uy + 2Ω2V hy + 2Ω2ht − 2Ω3V

+
[
α(x, y, t) + 2Ω1V

⋆ −
(
Ω2

1 + Ω2
2

)
h⋆
]
hx = −

(
Ω̇2 + Ω1Ω3

)
h + β̂(x, y, t)

Vt + U⋆Vx + V Vy − 2Ω1U
⋆hx − 2Ω1ht + 2Ω3U

+
[
α(x, y, t)− 2Ω2U −

(
Ω2

1 + Ω2
2

)
h
]
hy = +

(
Ω̇1 − Ω2Ω3

)
h + β̃(x, y, t) ,

(4.1)

7



where h⋆ , U⋆ and V ⋆ are the current intermediate values of h , U and V . Note that
only nonlinearites associated with x−derivatives are starred, as the nonlinear terms
with y−derivatives are treated explicitly.

The discretization of the mass equation is

h
n+ 1

2

i,j − hn
i,j

1

2
∆t

+ h⋆
i,j

U
n+ 1

2

i+1,j − U
n+ 1

2

i−1,j

2∆x
+ U⋆

i,j

h
n+ 1

2

i+1,j − h
n+ 1

2

i−1,j

2∆x

+hn
i,j

V n
i,j+1 − V n

i,j−1

2∆y
+ V n

i,j

hn
i,j+1 − hn

i,j−1

2∆y
= 0 .

(4.2)

The discretizations of the equations for U, V are

U
n+1

2
i,j

−Un
i,j

1

2
∆t

+ U⋆
i,j

U
n+1

2
i+1,j

−U
n+ 1

2
i−1,j

2∆x
+ V n

i,j

Un
i,j+1

−Un
i,j−1

2∆y
+ 2Ω

n+ 1

2

2 V n
i,j

hn
i,j+1

−hn
i,j−1

2∆y

+

[
α

n+ 1

2

i,j + 2Ω
n+ 1

2

1 V ⋆
i,j −

((
Ω

n+ 1

2

1

)2

+
(
Ω

n+ 1

2

2

)2
)

h⋆
i,j

]
h

n+1
2

i+1,j
−h

n+1
2

i−1,j

2∆x

= 2Ω
n+ 1

2

3 V
n+ 1

2

i,j −
(
Ω̇

n+ 1

2

2 + Ω
n+ 1

2

1 Ω
n+ 1

2

3

)
h

n+ 1

2

i,j − 2Ω
n+ 1

2

2

h
n+1

2
i,j

−hn
i,j

1

2
∆t

+ β̂
n+ 1

2

i,j

V
n+ 1

2
i,j

−V n
i,j

1

2
∆t

+ U⋆
i,j

V
n+ 1

2
i+1,j

−V
n+ 1

2
i−1,j

2∆x
+ V n

i,j

V n
i,j+1

−V n
i,j−1

2∆y
− 2Ω

n+ 1

2

1 U⋆
i,j

h
n+1

2
i+1,j

−h
n+1

2
i−1,j

2∆x

+

[
α

n+ 1

2

i,j − 2Ω
n+ 1

2

2 Un
i,j −

((
Ω

n+ 1

2

1

)2

+
(
Ω

n+ 1

2

2

)2
)

hn
i,j

]
hn

i,j+1
−hn

i,j−1

2∆y

= −2Ω
n+ 1

2

3 U
n+ 1

2

i,j +
(
Ω̇

n+ 1

2

1 − Ω
n+ 1

2

2 Ω
n+ 1

2

3

)
h

n+ 1

2

i,j + 2Ω
n+ 1

2

1

h
n+1

2
i,j

−hn
i,j

1

2
∆t

+ β̃
n+ 1

2

i,j ,

(4.3)

where

αn
i,j := α(xi, yj, tn), β̂n

i,j := β̂(xi, yj, tn) and β̃n
i,j := β̃(xi, yj, tn) .

By setting

zn
i,j =




hn
i,j

Un
i,j

V n
i,j


 ,

equations (4.2)-(4.3) can be written in block tridiagonal form

−⋆A
n+ 1

2

i,j z
n+ 1

2

i−1,j + Bn+ 1

2z
n+ 1

2

i,j + ⋆A
n+ 1

2

i,j z
n+ 1

2

i+1,j = C
n+ 1

2

i,j zn
i,j−1 + Dn+ 1

2zn
i,j

−C
n+ 1

2

i,j zn
i,j+1 + β

n+ 1

2

i,j .
(4.4)

Matrices with a ⋆ left-subscript depend on h⋆ , U⋆ and V ⋆ . The entries of the matrices
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are

⋆A
n
i,j =

∆t

4∆x




U⋆
i,j h⋆

i,j 0

1̃⋆α
n
i,j U⋆

i,j 0

−2Ωn
1U

⋆
i,j 0 U⋆

i,j


 , Dn =




1 0 0

2Ωn
2 1 0

−2Ωn
1 0 1




Bn =




1 0 0

2Ωn
2 + 1

2
∆t
(
Ω̇n

2 + Ωn
1Ωn

3

)
1 −∆tΩn

3

−2Ωn
1 − 1

2
∆t
(
Ω̇n

1 − Ωn
2Ωn

3

)
∆tΩn

3 1




Cn
i,j = ∆t

4∆y




V
n− 1

2

i,j 0 h
n− 1

2

i,j

2Ωn
2V

n− 1

2

i,j V
n− 1

2

i,j 0

2̃α
n
i,j 0 V

n− 1

2

i,j


 , βn

i,j = ∆t
2




0

β̂n
i,j

β̃n
i,j


 ,

(4.5)

and
1̃⋆αn

i,j = αn
i,j + 2Ωn

1V
⋆
i,j −

(
(Ωn

1 )2 + (Ωn
2 )2
)
h⋆

i,j

2̃αn
i,j = αn

i,j − 2Ωn
2U

n− 1

2

i,j −
(
(Ωn

1 )2 + (Ωn
2 )2
)
h

n− 1

2

i,j .

For fixed j = 2, . . . , JJ − 1 the equations (4.4) are applied for i = 2, . . . , II − 1.
To complete the tridiagonal system equations are needed (for each fixed j ) at i = 1
and i = II .

4.1 The equations at i = 1 and i = II for j = 2, . . . , JJ − 1

The equations at i = 1 and i = II are obtained from the boundary conditions at
x = 0 and x = L1 (3.2). The only boundary condition at x = 0 is U(0, y, t) = 0. The
discrete version of this is

Un
1,j = 0 and

Un
0,j + Un

2,j

2
= 0 , for each j , and for all n ∈ N . (4.6)

To obtain a boundary condition for h , use the mass equation at x = 0

ht + h⋆Ux + hVy + V hy = 0 ,

with discretization

h
n+ 1

2

1,j + ∆t
2∆x

h⋆
1,jU

n+ 1

2

2,j = hn
1,j − ∆t

4∆y
hn

1,j

(
V n

1,j+1 − V n
1,j−1

)
− ∆t

4∆y
V n

1,j

(
hn

1,j+1 − hn
1,j−1

)
.

(4.7)
To obtain a boundary condition for V , use the y−momentum equation at x = 0

Vt + V Vy − 2Ω1ht +
[
α(x, y, t) −

(
Ω2

1 + Ω2
2

)
h
]
hy =

(
Ω̇1 − Ω2Ω3

)
h + β̃(x, y, t) ,

9



with discretization

V
n+ 1

2

1,j −
[
2Ω

n+ 1

2

1 + 1

2
∆t
(
Ω̇

n+ 1

2

1 − Ω
n+ 1

2

2 Ω
n+ 1

2

3

)]
h

n+ 1

2

1,j = V n
1,j − ∆t

4∆y
V n

1,j

(
V n

1,j+1 − V n
1,j−1

)

− ∆t
4∆y

̂
α

n+ 1

2

1,j

(
hn

1,j+1 − hn
1,j−1

)

−2Ω
n+ 1

2

1 hn
1,j + 1

2
∆tβ̃

n+ 1

2

1,j ,
(4.8)

where

α̂n
i,j = αn

i,j −
(
(Ωn

1 )2 + (Ωn
2 )2
)
h

n− 1

2

i,j .

Combining equations (4.6), (4.7) and (4.8) gives the equation for i = 1

En+ 1

2 z
n+

1

2

1,j + ⋆F1,jz
n+

1

2

2,j = G
n+

1

2

1,j zn
1,j−1 + Hn+ 1

2 zn
1,j − G

n+
1

2

1,j zn
1,j+1 +1 β

n+
1

2

1,j , (4.9)

with

En+ 1

2 =




1 0 0
0 1 0

−2Ω
n+ 1

2

1 − 1

2
∆t
(
Ω̇

n+ 1

2

1 − Ω
n+ 1

2

2 Ω
n+ 1

2

3

)
0 1


 ,

Gn
i,j = ∆t

4∆y



V

n− 1

2

i,j 0 h
n− 1

2

i,j

0 0 0
̂
α

n+ 1

2

i,j 0 V
n− 1

2

i,j


 , 1β

n+ 1

2

i,j = ∆t
2




0
0

β̃
n+ 1

2

i,j




Hn+ 1

2 =




1 0 0
0 0 0

−2Ω
n+ 1

2

1 0 1




⋆Fi,j = ∆t
2∆x




0 h⋆
i,j 0

0 0 0
0 0 0


 .

(4.10)

A similar strategy is used to construct the discrete equations at x = L1 . The
velocity boundary condition is

Un
II,j = 0 and

Un
II−1,j + Un

II+1,j

2
= 0 , for each j , and for all n ∈ N . (4.11)

The discrete mass equation is

h
n+

1

2

II,j − ∆t
2∆x

h⋆
II,jU

n+
1

2

II−1,j = hn
II,j − ∆t

4∆y
hn

II,j

(
V n

II,j+1 − V n
II,j−1

)

− ∆t
4∆y

V n
II,j

(
hn

II,j+1 − hn
II,j−1

)
,

(4.12)

and the discrete y−momentum equation is

V
n+ 1

2

II,j −
[
2Ω

n+ 1

2

1 + 1

2
∆t
(
Ω̇

n+ 1

2

1 − Ω
n+ 1

2

2 Ω
n+ 1

2

3

)]
h

n+ 1

2

II,j = V n
II,j − ∆t

4∆y
V n

II,j

(
V n

II,j+1 − V n
II,j−1

)

− ∆t
4∆y

̂
α

n+ 1

2

II,j

(
hn

II,j+1 − hn
II,j−1

)

−2Ω
n+ 1

2

1 hn
II,j + 1

2
∆tβ̃

n+ 1

2

II,j .
(4.13)
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y

x

Figure 2: The grid layout with the horizontal lines j = 1 and j = JJ highlighted.

Combining equations (4.11), (4.12) and (4.13) gives the equation for i = II

−⋆FII,jz
n+

1

2

II−1,j + En+ 1

2 z
n+

1

2

II,j = G
n+

1

2

II,j zn
II,j−1 + Hn+ 1

2 zn
II,j − G

n+
1

2

II,j zn
II,j+1 +1 β

n+
1

2

II,j .
(4.14)

This completes the construction of the block tridiagonal system at j− interior
points. For each fixed j = 2, . . . , JJ − 1, and fixed h⋆ , U⋆ and V ⋆ , we solve the
following system

En+ 1

2z
n+

1

2

1,j + ⋆F1,jz
n+

1

2

2,j = G
n+

1

2

1,j zn
1,j−1 + Hn+ 1

2zn
1,j

−G
n+

1

2

1,j zn
1,j+1 +1 β

n+
1

2

1,j ,

−⋆A
n+ 1

2

2,j z
n+ 1

2

1,j + Bn+ 1

2z
n+ 1

2

2,j + ⋆A
n+ 1

2

2,j z
n+ 1

2

3,j = C
n+ 1

2

2,j zn
2,j−1 + Dn+ 1

2zn
2,j

−C
n+ 1

2

2,j zn
2,j+1 + β

n+ 1

2

2,j ,

−⋆A
n+ 1

2

3,j z
n+ 1

2

2,j + Bn+
1

2z
n+ 1

2

3,j + ⋆A
n+ 1

2

3,j z
n+ 1

2

4,j = C
n+ 1

2

3,j zn
3,j−1 + Dn+

1

2zn
3,j

−C
n+ 1

2

3,j zn
3,j+1 + β

n+ 1

2

3,j ,

...
...

−⋆FII,jz
n+ 1

2

II−1,j + En+ 1

2 z
n+ 1

2

II,j = G
n+ 1

2

II,j zn
II,j−1 + Hn+ 1

2 zn
II,j

−G
n+ 1

2

II,j zn
II,j+1 +1 β

n+ 1

2

II,j .

(4.15)

This system is iterated until h⋆ → hn+
1

2 and U⋆ → Un+
1

2 . The equations along the
grid lines j = 1 and j = JJ , highlighted in Figure 2, are solved separately.
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4.2 Grid lines (i, 1) and (i, JJ) for i = 1, . . . , II

The equations for grid lines (i, 1) and (i, JJ) are obtained from the boundary con-
ditions. The only boundary condition at grid line (i, 1) is V (i, 1) = 0. The discrete
version of this is

V n
i,1 = 0 and

V n
i,0 + V n

i,2

2
= 0 , for each i , and for all n ∈ N . (4.16)

To obtain a boundary condition for h , use the mass equation at (i, 1)

ht + h⋆Ux + U⋆hx + hVy = 0 ,

with discretization

h
n+ 1

2

i,1 + ∆t
4∆x

h⋆
i,1

(
U

n+ 1

2

i+1,1 − U
n+ 1

2

i−1,1

)
+ ∆t

4∆x
U⋆

i,1

(
h

n+ 1

2

i+1,1 − h
n+ 1

2

i−1,1

)
=

(
1 − ∆t

2∆y
V n

i,2

)
hn

i,1 .

(4.17)
To obtain a boundary condition for U , use the x−momentum equation at (i, 1)

Ut + U⋆Ux + 2Ω2ht +
[
α(x, 0, t) −

(
Ω2

1 + Ω2
2

)
h⋆
]
hx = −

(
Ω̇2 + Ω1Ω3

)
h + β̂(x, 0, t) ,

with discretization

U
n+ 1

2

i,1 + ∆t
4∆x

U⋆
i,1

(
U

n+ 1

2

i+1,1 − U
n+ 1

2

i−1,1

)
+
[
2Ω

n+ 1

2

2 + 1

2
∆t
(
Ω̇

n+ 1

2

2 + Ω
n+ 1

2

1 Ω
n+ 1

2

3

)]
h

n+ 1

2

i,1

+ ∆t
4∆x

̂
α

n+ 1

2
⋆

i,1

(
h

n+ 1

2

i+1,1 − h
n+ 1

2

i−1,1

)
= Un

i,1 + 2Ω
n+ 1

2

2 hn
i,1 + 1

2
∆tβ̂

n+ 1

2

i,1 ,

(4.18)
where

⋆α̂n
i,j = αn

i,j −
(
(Ωn

1 )2 + (Ωn
2 )2
)
h⋆

i,j.

Combining equations (4.16), (4.17) and (4.18) gives the equation for (i, 1)

−⋆M
n+ 1

2

i,1 z
n+ 1

2

i−1,1 + Nn+ 1

2z
n+ 1

2

i,1 + ⋆M
n+ 1

2

i,1 z
n+ 1

2

i+1,1 = O
n+ 1

2

i,2 zn
i,1 +2 β

n+ 1

2

i,1 , (4.19)

with

⋆M
n
i,j = ∆t

4∆x




U⋆
i,j h⋆

i,j 0

⋆α̂n
i,j U⋆

i,j 0
0 0 0


 , On

i,j =




1 − ∆t
2∆y

V
n− 1

2

i,j 0 0

2Ωn
2 1 0

0 0 0


 ,

Nn =




1 0 0

2Ωn
2 + 1

2
∆t
(
Ω̇n

2 + Ωn
1Ωn

3

)
1 0

0 0 1


 , 2β

n
i,j = ∆t

2




0

β̂n
i,j

0


 .

(4.20)

The mass equation at grid point (1, 1) is

ht + h⋆Ux + hVy = 0 ,
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with discretization

h
n+

1

2

1,1 + ∆t
2∆x

h⋆
1,1U

n+
1

2

2,1 =
(
1 − ∆t

2∆y
V n

1,2

)
hn

1,1 . (4.21)

Combining equation (4.21) with V
n+ 1

2

1,1 = 0 and U
n+ 1

2

1,1 = 0 gives

Iz
n+ 1

2

1,1 + ⋆Q1,1z
n+ 1

2

2,1 = Rn
1,2z

n
1,1 , (4.22)

with

⋆Qi,j = ∆t
2∆x




0 h⋆
i,j 0

0 0 0
0 0 0


 , Rn

i,j =




1 − ∆t
2∆y

V n
i,j 0 0

0 0 0
0 0 0


 , (4.23)

and I is a 3 × 3 identity matrix. Similarly the discrete mass equation at grid point
(II, 1) is

h
n+ 1

2

II,1 − ∆t
2∆x

h⋆
II,1U

n+ 1

2

II−1,1 =
(
1 − ∆t

2∆y
V n

II,2

)
hn

II,1 . (4.24)

Combining equation (4.24) with V
n+ 1

2

II,1 = 0 and U
n+ 1

2

II,1 = 0 gives

−⋆QII,1z
n+ 1

2

II−1,1 + Iz
n+ 1

2

II,1 = Rn
II,2z

n
II,1 . (4.25)

For fixed h⋆ and U⋆ the following block linear system of equations is to be solved
along the grid line (i, 1) for i = 1, . . . , II ,

Iz
n+ 1

2

1,1 + ⋆Q1,1z
n+ 1

2

2,1 = Rn
1,2z

n
1,1 ,

−⋆M
n+ 1

2

2,1 z
n+ 1

2

1,1 + Nn+ 1

2 z
n+ 1

2

2,1 + ⋆M
n+ 1

2

2,1 z
n+ 1

2

3,1 = O
n+ 1

2

2,2 zn
2,1 +2 β

n+ 1

2

2,1 ,

−⋆M
n+ 1

2

3,1 z
n+ 1

2

2,1 + Nn+
1

2 z
n+ 1

2

3,1 + ⋆M
n+ 1

2

3,1 z
n+ 1

2

4,1 = O
n+ 1

2

3,2 zn
3,1 +2 β

n+ 1

2

3,1 ,

...
...

−⋆QII,1z
n+ 1

2

II−1,1 + Iz
n+ 1

2

II,1 = Rn
II,2z

n
II,1 .

(4.26)

A similar system is derived along the upper boundary grid line (i, JJ) for i =
1, . . . , II ,

V n
i,JJ = 0 and

V n
i,JJ−1 + V n

i,JJ+1

2
= 0 , for each i , and for all n ∈ N . (4.27)

The discrete mass equation is

h
n+ 1

2

i,JJ + ∆t
4∆x

h⋆
i,JJ

(
U

n+ 1

2

i+1,JJ − U
n+ 1

2

i−1,JJ

)
+ ∆t

4∆x
U⋆

i,JJ

(
h

n+ 1

2

i+1,JJ − h
n+ 1

2

i−1,JJ

)

=
(
1 + ∆t

2∆y
V n

i,JJ−1

)
hn

i,JJ ,
(4.28)
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and the discrete x−momentum equation is

U
n+ 1

2

i,JJ + ∆t
4∆x

U⋆
i,JJ

(
U

n+ 1

2

i+1,JJ − U
n+ 1

2

i−1,JJ

)
+
[
2Ω

n+ 1

2

2 + 1

2
∆t
(
Ω̇

n+ 1

2

2 + Ω
n+ 1

2

1 Ω
n+ 1

2

3

)]
h

n+ 1

2

i,JJ

+ ∆t
4∆x⋆

̂
α

n+ 1

2

i,JJ

(
h

n+ 1

2

i+1,JJ − h
n+ 1

2

i−1,JJ

)
= Un

i,JJ + 2Ω
n+ 1

2

2 hn
i,JJ + 1

2
∆tβ̂

n+ 1

2

i,JJ .

(4.29)
Combining equations (4.27), (4.28) and (4.29) gives the equation for (i, JJ)

−⋆M
n+

1

2

i,JJ z
n+

1

2

i−1,JJ + Nn+ 1

2 z
n+

1

2

i,JJ + ⋆M
n+

1

2

i,JJ z
n+

1

2

i+1,JJ = S
n+

1

2

i,JJ−1z
n
i,JJ +2 β

n+
1

2

i,JJ , (4.30)

where

Sn
i,j =




1 + ∆t
2∆y

V
n− 1

2

i,j 0 0

2Ωn
2 1 0

0 0 0


 . (4.31)

The discrete mass equation at grid point (1, JJ) is

h
n+ 1

2

1,JJ + ∆t
2∆x

h⋆
1,JJU

n+ 1

2

2,JJ =
(
1 + ∆t

2∆y
V n

1,JJ−1

)
hn

1,JJ . (4.32)

Combining equation (4.32) with V
n+ 1

2

1,JJ = 0 and U
n+ 1

2

1,JJ = 0 gives

Iz
n+ 1

2

1,JJ + ⋆Q1,JJz
n+ 1

2

2,JJ = Tn
1,JJ−1z

n
1,JJ , (4.33)

with

Tn
i,j =




1 + ∆t
2∆y

V n
i,j 0 0

0 0 0
0 0 0


 . (4.34)

Similarly the discrete mass equation at grid point (II, JJ) is

h
n+ 1

2

II,JJ − ∆t
2∆x

h⋆
II,JJU

n+ 1

2

II−1,JJ =
(
1 + ∆t

2∆y
V n

II,JJ−1

)
hn

II,JJ . (4.35)

Combining equation (4.35) with V
n+ 1

2

II,JJ = 0 and U
n+ 1

2

II,JJ = 0 gives

−⋆QII,JJz
n+ 1

2

II−1,JJ + Iz
n+ 1

2

II,JJ = Tn
II,JJ−1z

n
II,JJ . (4.36)

For fixed h⋆ and U⋆ the following block linear system of equations is to be solved for
the grid line (i, JJ) ,

Iz
n+ 1

2

1,JJ + ⋆Q1,JJz
n+ 1

2

2,JJ = Tn
1,JJ−1z

n
1,JJ ,

−⋆M
n+ 1

2

2,JJz
n+ 1

2

1,JJ + Nn+
1

2z
n+ 1

2

2,JJ + ⋆M
n+ 1

2

2,JJz
n+ 1

2

3,JJ = S
n+ 1

2

2,JJ−1z
n
2,JJ +2 β

n+ 1

2

2,JJ ,

−⋆M
n+ 1

2

3,JJz
n+ 1

2

2,JJ + Nn+ 1

2z
n+ 1

2

3,JJ + ⋆M
n+ 1

2

3,JJz
n+ 1

2

4,JJ = S
n+ 1

2

3,JJ−1z
n
3,JJ +2 β

n+ 1

2

3,JJ ,

...
...

−⋆QII,JJz
n+ 1

2

II−1,JJ + Iz
n+ 1

2

II,JJ = Tn
II,JJ−1z

n
II,JJ .

(4.37)
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This completes the algorithm details for the first half step n 7→ n+ 1

2
. For each fixed

h⋆ and U⋆ , it involves solving a linear block tridiagonal system for each j = 1, . . . , JJ .

Then the process is repeated with updates of h⋆ and U⋆ till convergence h⋆ → hn+
1

2

and U⋆ → Un+
1

2 .

5 Algorithmic details for the half step n+
1
2 7→ n+ 1

Rewrite the governing equations in a form that emphasizes the nonlinearity

ht + hUx + Uhx + h⋆Vy + V ⋆hy = 0

Ut + UUx + V ⋆Uy + 2Ω2V
⋆hy + 2Ω2ht − 2Ω3V

+
[
α(x, y, t) + 2Ω1V −

(
Ω2

1 + Ω2
2

)
h
]
hx = −

(
Ω̇2 + Ω1Ω3

)
h + β̂(x, y, t)

Vt + UVx + V ⋆Vy − 2Ω1Uhx − 2Ω1ht + 2Ω3U

+
[
α(x, y, t) − 2Ω2U

⋆ −
(
Ω2

1 + Ω2
2

)
h⋆
]
hy = +

(
Ω̇1 − Ω2Ω3

)
h + β̃(x, y, t) ,

(5.1)
where h⋆ and V ⋆ are the current intermediate values of h and V . In the second half
step the y−derivatives are discretized implicitly and the x−derivatives are discretized
explicitly. Only implicit nonlinear terms are starred.

The discretizations of the equations (5.1) for the second half of the time step is

h
n+1

i,j
−h

n+ 1
2

i,j
1

2
∆t

+ h
n+ 1

2

i,j

U
n+ 1

2
i+1,j

−U
n+ 1

2
i−1,j

2∆x
+ U

n+ 1

2

i,j

h
n+1

2
i+1,j

−h
n+ 1

2
i−1,j

2∆x

+h⋆
i,j

V
n+1

i,j+1
−V

n+1

i,j−1

2∆y
+ V ⋆

i,j

h
n+1

i,j+1
−h

n+1

i,j−1

2∆y
= 0

U
n+1

i,j
−U

n+1
2

i,j
1

2
∆t

+ U
n+ 1

2

i,j

U
n+1

2
i+1,j

−U
n+ 1

2
i−1,j

2∆x
+ V ⋆

i,j

U
n+1

i,j+1
−U

n+1

i,j−1

2∆y
+ 2Ωn+1

2 V ⋆
i,j

h
n+1

i,j+1
−h

n+1

i,j−1

2∆y

+
[
αn+1

i,j + 2Ωn+1
1 V

n+
1

2

i,j −
((

Ωn+1
1

)2
+
(
Ωn+1

2

)2)
h

n+
1

2

i,j

]
h

n+ 1
2

i+1,j
−h

n+ 1
2

i−1,j

2∆x

= 2Ωn+1
3 V n+1

i,j −
(
Ω̇n+1

2 + Ωn+1
1 Ωn+1

3

)
hn+1

i,j − 2Ωn+1
2

hn+1

i,j
−h

n+ 1
2

i,j
1

2
∆t

+ β̂n+1
i,j

V
n+1

i,j
−V

n+ 1
2

i,j
1

2
∆t

+ U
n+

1

2

i,j

V
n+ 1

2
i+1,j

−V
n+1

2
i−1,j

2∆x
+ V ⋆

i,j

V
n+1

i,j+1
−V

n+1

i,j−1

2∆y
− 2Ωn+1

1 U
n+

1

2

i,j

h
n+1

2
i+1,j

−h
n+ 1

2
i−1,j

2∆x

+
[
αn+1

i,j − 2Ωn+1
2 U⋆

i,j −
((

Ωn+1
1

)2
+
(
Ωn+1

2

)2)
h⋆

i,j

]
hn+1

i,j+1
−hn+1

i,j−1

2∆y

= −2Ωn+1
3 Un+1

i,j +
(
Ω̇n+1

1 − Ωn+1
2 Ωn+1

3

)
hn+1

i,j + 2Ωn+1
1

hn+1

i,j
−h

n+ 1
2

i,j
1

2
∆t

+ β̃n+1
i,j .

(5.2)
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Equation (5.2) can be expressed in block tridiagonal form

−⋆C
n+1
i,j zn+1

i,j−1 + Bn+1zn+1
i,j + ⋆C

n+1
i,j zn+1

i,j+1 = An+1
i,j z

n+
1

2

i−1,j + Dn+1z
n+

1

2

i,j

−An+1
i,j z

n+ 1

2

i+1,j + βn+1
i,j ,

(5.3)

with

An
i,j = ∆t

4∆x




U
n− 1

2

i,j h
n− 1

2

i,j 0

1̃αn
i,j U

n− 1

2

i,j 0

−2Ωn
1U

n− 1

2

i,j 0 U
n− 1

2

i,j


 ,

⋆C
n
i,j = ∆t

4∆y




V ⋆
i,j 0 h⋆

i,j

2Ωn
2V ⋆

i,j V ⋆
i,j 0

2̃⋆αn
i,j 0 V ⋆

i,j


 ,

(5.4)

and

1̃α
n
i,j = αn

i,j + 2Ωn
1V

n− 1

2

i,j −
(
(Ωn

1 )2 + (Ωn
2 )2
)
h

n− 1

2

i,j

2̃α
n
i,j = αn

i,j − 2Ωn
2U

⋆
i,j −

(
(Ωn

1 )2 + (Ωn
2 )2
)
h⋆

i,j .

For fixed i = 2, . . . , II − 1 the equations (5.3) are applied for j = 2, . . . , JJ − 1. To
complete the tridiagonal system equations are needed (for each fixed i) at j = 1 and
j = JJ .

5.1 The equations at j = 1 and j = JJ for i = 2, . . . , II − 1

The equations at j = 1 and j = JJ are obtained from the boundary conditions at
y = 0 and y = L2 . The only boundary condition at y = 0 is V = 0. The discrete
version of this is equation (4.16). To obtain a boundary condition for h , use the mass
equation evaluated at y = 0

ht + hUx + Uhx + h⋆Vy = 0 ,

with discretization

hn+1
i,1 + ∆t

2∆y
h⋆

i,1V
n+1
i,2 = h

n+ 1

2

i,1 − ∆t
4∆x

h
n+ 1

2

i,1

(
U

n+ 1

2

i+1,1 − U
n+ 1

2

i−1,1

)

− ∆t
4∆x

U
n+ 1

2

i,1

(
h

n+ 1

2

i+1,1 − h
n+ 1

2

i−1,1

)
.

(5.5)

To obtain a boundary condition for U , use the x−momentum equation at y = 0

Ut + UUx + 2Ω2ht +
[
α(x, y, t) −

(
Ω2

1 + Ω2
2

)
h
]
hx = −

(
Ω̇2 + Ω1Ω3

)
h + β̂(x, y, t) ,

with discretization

Un+1
i,1 +

[
2Ωn+1

2 + 1

2
∆t
(
Ω̇n+1

2 + Ωn+1
1 Ωn+1

3

)]
hn+1

i,1 = U
n+ 1

2

i,1

− ∆t
4∆x

U
n+ 1

2

i,1

(
U

n+ 1

2

i+1,1 − U
n+ 1

2

i−1,1

)

− ∆t
4∆x

α̂n+1
i,1

(
h

n+
1

2

i+1,1 − h
n+

1

2

i−1,1

)

+2Ωn+1
2 h

n+
1

2

i,1 + 1

2
∆tβ̂n+1

i,1 .
(5.6)
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Combining equations (4.16), (5.5) and (5.6) gives the equation for j = 1

Pn+1zn+1
i,1 + ⋆Ji,1z

n+1
i,2 = Kn+1

i,1 z
n+ 1

2

i−1,1 + Ln+1z
n+ 1

2

i,1 − Kn+1
i,1 z

n+ 1

2

i+1,1 +2 βn+1
i,1 , (5.7)

with

Pn =




1 0 0

2Ωn
2 + 1

2
∆t
(
Ω̇n

2 + Ωn
1Ωn

3

)
1 0

0 0 1


 Ln =




1 0 0
2Ωn

2 1 0
0 0 0


 ,

Kn
i,j = ∆t

4∆x




U
n− 1

2

i,j h
n− 1

2

i,j 0

α̂n
i,j U

n− 1

2

i,j 0
0 0 0


 , ⋆Ji,j = ∆t

2∆y
h⋆

i,j




0 0 1
0 0 0
0 0 0


 .

(5.8)

A similar strategy is used to construct the discrete equations at y = L2 . The
velocity boundary condition is V = 0, with discretization given in (4.27). The discrete
mass equation is

hn+1

i,JJ − ∆t
2∆y

h⋆
i,JJV n+1

i,JJ−1 = h
n+ 1

2

i,JJ − ∆t
4∆x

h
n+ 1

2

i,JJ

(
U

n+ 1

2

i+1,JJ − U
n+ 1

2

i−1,JJ

)

− ∆t
4∆x

U
n+ 1

2

i,JJ

(
h

n+ 1

2

i+1,JJ − h
n+ 1

2

i−1,JJ

)
.

(5.9)

and the discrete x−momentum equation is

Un+1

i,JJ +
[
2Ωn+1

2 + 1

2
∆t
(
Ω̇n+1

2 + Ωn+1
1 Ωn+1

3

)]
hn+1

i,JJ = U
n+ 1

2

i,JJ

− ∆t
4∆x

U
n+ 1

2

i,JJ

(
U

n+ 1

2

i+1,JJ − U
n+ 1

2

i−1,JJ

)

− ∆t
4∆x

α̂n+1

i,JJ

(
h

n+ 1

2

i+1,JJ − h
n+ 1

2

i−1,JJ

)

+2Ωn+1
2 h

n+ 1

2

i,JJ + 1

2
∆tβ̂n+1

i,JJ .
(5.10)

Combining equations (4.27), (5.9) and (5.10) gives the equation for j = JJ

−⋆Ji,JJz
n+1

i,JJ−1 + Pn+1zn+1

i,JJ = Kn+1

i,JJz
n+ 1

2

i−1,JJ + Ln+1z
n+ 1

2

i,JJ − Kn+1

i,JJz
n+ 1

2

i+1,JJ +2 βn+1

i,JJ .
(5.11)

For fixed h⋆ , U⋆ and V ⋆ the following block linear system of equations is to be solved
along vertical grid lines at interior lines i = 2, . . . , II − 1,

Pn+1zn+1
i,1 + ⋆Ji,1z

n+1
i,2 = Kn+1

i,1 z
n+ 1

2

i−1,1 + Ln+1z
n+ 1

2

i,1 − Kn+1
i,1 z

n+ 1

2

i+1,1 +2 βn+1
i,1 ,

−⋆C
n+1
i,2 zn+1

i,1 + Bn+1zn+1
i,2 + ⋆C

n+1
i,2 zn+1

i,3 = An+1
i,2 z

n+ 1

2

i−1,2 + Dn+1z
n+ 1

2

i,2 −An+1
i,2 z

n+ 1

2

i+1,2 + βn+1
i,2 ,

−⋆C
n+1
i,3 zn+1

i,2 + Bn+1zn+1
i,3 + ⋆C

n+1
i,3 zn+1

i,4 = An+1
i,3 z

n+ 1

2

i−1,3 + Dn+1z
n+ 1

2

i,3 −An+1
i,3 z

n+ 1

2

i+1,3 + βn+1
i,3 ,

...
...

−⋆Ji,JJz
n+1

i,JJ−1 + Pn+1zn+1

i,JJ = Kn+1

i,JJz
n+ 1

2

i−1,JJ + Ln+1z
n+ 1

2

i,JJ −Kn+1

i,JJz
n+ 1

2

i+1,JJ +2 βn+1

i,JJ .
(5.12)
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y

x

Figure 3: The grid layout with the vertical lines i = 1 and i = II highlighted.

This system is iterated until h⋆ → hn+1 and V ⋆ → V n+1 . The equations along the
grid lines i = 1 and i = II , highlighted in Figure 3, are solved separately.

5.2 Grid lines (1, j) and (II, j) for j = 1, . . . , JJ

The equations for grid lines i = 1 and i = II are obtained by the boundary conditions
and restriction of the governing equations to the boundary. The boundary conditions
at x = 0 is U(0, y, t) = 0. The discrete version of this is equation (4.6). To obtain a
boundary condition for h , use the mass equation at x = 0

ht + hUx + h⋆Vy + V ⋆hy = 0 ,

with discretization

hn+1
1,j + ∆t

4∆y
h⋆

1,j

(
V n+1

1,j+1 − V n+1
1,j−1

)
+ ∆t

4∆y
V ⋆

1,j

(
hn+1

1,j+1 − hn+1
1,j−1

)
=

(
1 − ∆t

2∆x
U

n+ 1

2

2,j

)
h

n+ 1

2

1,j .

(5.13)
To obtain a boundary condition for V , use the y−momentum equation at (1, j)

Vt + V ⋆Vy − 2Ω1ht +
[
α(x, y, t) −

(
Ω2

1 + Ω2
2

)
h⋆
]
hy =

(
Ω̇1 − Ω2Ω3

)
h + β̃(x, y, t) ,

with discretization

V n+1
1,j + ∆t

4∆y
V ⋆

1,j

(
V n+1

1,j+1 − V n+1
1,j−1

)
−
[
2Ωn+1

1 + 1

2
∆t
(
Ω̇n+1

1 − Ωn+1
2 Ωn+1

3

)]
hn+1

1,j

+ ∆t
4∆y

̂
⋆α

n+1
1,j

(
hn+1

1,j+1 − hn+1
1,j−1

)
= V

n+ 1

2

1,j − 2Ωn+1
1 h

n+ 1

2

1,j + 1

2
∆tβ̃n+1

1,j .

(5.14)
Combining equations (4.6), (5.13) and (5.14) gives the equation for (1, j)

−⋆M
n+1

1,j zn+1
1,j−1 + N

n+1
zn+1

1,j + ⋆M
n+1

1,j zn+1
1,j+1 = O

n+1

2,j z
n+ 1

2

1,j +1 βn+1
1,j , (5.15)
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with

⋆M
n

i,j = ∆t
4∆y




V ⋆
i,j 0 h⋆

i,j

0 0 0

⋆α̂n
i,j 0 V ⋆

i,j


 , O

n

i,j =




1 − ∆t
2∆x

U
n− 1

2

i,j 0 0
0 0 0

−2Ωn
1 0 1


 ,

N
n

=




1 0 0
0 1 0

−2Ωn
1 − 1

2
∆t
(
Ω̇n

1 − Ωn
2Ωn

3

)
0 1


 .

(5.16)

The mass equation at grid point (1, 1) is

ht + hUx + h⋆Vy = 0 ,

with discretization

hn+1
1,1 + ∆t

2∆y
h⋆

1,1V
n+1
1,2 =

(
1 − ∆t

2∆x
U

n+ 1

2

2,1

)
h

n+ 1

2

1,1 . (5.17)

Combining equation (5.17) with V n+1
1,1 = 0 and Un+1

1,1 = 0 gives

Izn+1
1,1 + ⋆Q1,1z

n+1
1,2 = R

n+ 1

2

2,1 z
n+

1

2

1,1 , (5.18)

with

⋆Qi,j = ∆t
2∆y

h⋆
i,j




0 0 1
0 0 0
0 0 0


 , R

n

i,j =




1 − ∆t
2∆x

Un
i,j 0 0

0 0 0
0 0 0


 . (5.19)

Similarly the discrete mass equation at grid point (1, JJ) is

hn+1

1,JJ − ∆t
2∆y

h⋆
1,JJV n+1

1,JJ−1 =
(
1 − ∆t

2∆x
U

n+ 1

2

2,JJ

)
h

n+ 1

2

1,JJ . (5.20)

Combining equation (5.20) with V n+1

1,JJ = 0 and Un+1

1,JJ = 0 gives

−⋆Q1,JJz
n+1

1,JJ−1 + Izn+1

1,JJ = R
n+ 1

2

2,JJz
n+ 1

2

1,JJ . (5.21)

For fixed h⋆ and V ⋆ the following block linear system of equations is to be solved for
the grid line (1, j),

Izn+1
1,1 + ⋆Q1,1z

n+1
1,2 = R

n+ 1

2

2,1 z
n+ 1

2

1,1 ,

−⋆M
n+1

1,2 zn+1
1,1 + N

n+1
zn+1

1,2 + ⋆M
n+1

1,2 zn+1
1,3 = O

n+1

2,2 z
n+ 1

2

1,2 +1 βn+1
1,2 ,

−⋆M
n+1

1,3 zn+1
1,2 + N

n+1
zn+1

1,3 + ⋆M
n+1

1,3 zn+1
1,4 = O

n+1

2,3 z
n+

1

2

1,3 +1 βn+1
1,3 ,

...
...

−⋆Q1,JJz
n+1

1,JJ−1 + Izn+1

1,JJ = R
n+ 1

2

2,JJz
n+ 1

2

1,JJ .

(5.22)
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A similar strategy is used along the right boundary i = II . The boundary condition
is U(L1, y, t) = 0, with discretization (4.11). The discrete mass equation at (II, j) is

hn+1

II,j + ∆t
4∆y

h⋆
II,j

(
V n+1

II,j+1 − V n+1

II,j−1

)
+ ∆t

4∆y
V ⋆

II,j

(
hn+1

II,j+1 − hn+1

II,j−1

)
=

(
1 + ∆t

2∆x
U

n+
1

2

II−1,j

)
h

n+
1

2

II,j ,
(5.23)

and the discrete y−momentum equation is

V n+1

II,j + ∆t
4∆y

V ⋆
II,j

(
V n+1

II,j+1 − V n+1

II,j−1

)
−
[
2Ωn+1

1 + 1

2
∆t
(
Ω̇n+1

1 − Ωn+1
2 Ωn+1

3

)]
hn+1

II,j

+ ∆t
4∆y

̂
⋆α

n+1

II,j

(
hn+1

II,j+1 − hn+1

II,j−1

)
= V

n+ 1

2

II,j − 2Ωn+1
1 h

n+ 1

2

II,j + 1

2
∆tβ̃n+1

II,j .

(5.24)
Combining equations (4.11), (5.23) and (5.24) gives the equation for (II, j)

−⋆M
n+1

II,j z
n+1

II,j−1 + N
n+1

zn+1

II,j + ⋆M
n+1

II,j z
n+1

II,j+1 = S
n+1

II−1,jz
n+ 1

2

II,j +1 βn+1

II,j , (5.25)

with

S
n

i,j =




1 + ∆t
2∆x

U
n− 1

2

i,j 0 0
0 0 0

−2Ωn
1 0 1


 . (5.26)

The discrete mass equation at lower right corner grid point (II, 1) is

ht + hUx + h⋆Vy = 0 ,

with discretization

hn+1

II,1 + ∆t
2∆y

h⋆
II,1V

n+1

II,2 =
(
1 + ∆t

2∆x
U

n+ 1

2

II−1,1

)
h

n+ 1

2

II,1 . (5.27)

Combining equation (5.27) with V n+1

II,1 = 0 and Un+1

II,1 = 0 gives

Izn+1

II,1 + ⋆QII,1z
n+1

II,2 = T
n+ 1

2

II−1,1z
n+ 1

2

II,1 , (5.28)

with

T
n

i,j =




1 + ∆t
2∆x

Un
i,j 0 0

0 0 0
0 0 0


 . (5.29)

Similarly the discrete mass equation at upper right cornder grid point (II, JJ) is

hn+1

II,JJ − ∆t
2∆y

h⋆
II,JJV n+1

II,JJ−1 =
(
1 + ∆t

2∆x
U

n+ 1

2

II−1,JJ

)
h

n+ 1

2

II,JJ . (5.30)

Combining equation (5.30) with V n+1

II,JJ = 0 and Un+1

II,JJ = 0 gives

−⋆QII,JJz
n+1

II,JJ−1 + Izn+1

II,JJ = T
n+ 1

2

II−1,JJz
n+

1

2

II,JJ . (5.31)
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For fixed h⋆ and V ⋆ the following block linear system of equations is to be solved along
the right boundary grid line i = II ,

Izn+1

II,1 + ⋆QII,1z
n+1

II,2 = T
n+ 1

2

II−1,1z
n+

1

2

II,1 ,

−⋆M
n+1

II,2z
n+1

II,1 + N
n+1

zn+1

II,2 + ⋆M
n+1

II,2z
n+1

II,3 = S
n+1

II−1,2z
n+ 1

2

II,2 +1 βn+1

II,2 ,

−⋆M
n+1

II,3z
n+1

II,2 + N
n+1

zn+1

II,3 + ⋆M
n+1

II,3z
n+1

II,4 = S
n+1

II−1,3z
n+ 1

2

II,3 +1 βn+1

II,3 ,

...
...

−⋆QII,JJz
n+1

II,JJ−1 + Izn+1

II,JJ = T
n+ 1

2

II−1,JJz
n+ 1

2

II,JJ .

(5.32)

This completes the algorithm details for the second half step n + 1

2
7→ n + 1.

For each fixed h⋆ and V ⋆ , it involves solving a linear block tridiagonal system for each
i = 1, . . . , II . Then the process is repeated with updates of h⋆ and V ⋆ till convergence
h⋆ → hn+1 and V ⋆ → V n+1 .

Numerical results using this scheme are reported in [4].
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