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1 Introduction

Details of the numerical algorithm used to solve the rotating shallow water equations
(SWEs) in [3, 4] are recorded in this report. The scheme is a fully-implicit split-step
scheme with second order accuracy in both space and time that has been widely used
in hydraulics [5, 1, 2]. The nonlinearity is treated in the Eulerian representation using
iteration. The new features in the algorithm here are (a) the inclusion of full time-
dependent rotation due to the rigid body motion of the vessel, and (b) the use of exact
boundary conditions in both steps of the split-step scheme.

First, in §2 the algorithm for the SWEs in one space dimension is outlined. This
algorithm is a streamlined version of the algorithm used in [3]. The simplification
introduced here is that the nonlinear term Uh, + hU, is replaced by the linear term
—h; in the U—momentum equation. The algorithm in §2 is also a special case of the
algorithm for the SWEs in two space dimensions in §3 since that algorithm is based on
splitting and one-dimensional sub-integrations.

2 Sloshing SWEs in one space dimension

The governing SWEs derived in [3] are

he +Uh, +hU, = 0 )
U+ (a(z,t) — Q2h)hy + UU, — 20k, = B(x,t) + Qh, '

where h(x,t) is the depth and U(z,t) is the horizontal fluid velocity at the free surface.
The tank has length L and the only boundary conditions are

U0,t) =U(L,t) =0, Vt. (2.2)

The functions «(x,t) and ((z,t) are the terms due to the rotating-translating frame
that do not depend on either h or U,

a(z,t) = geosl+ Qa4 dy) — Q2dy — Gy sinf + G cos b,

. (2.3
B(z,t) = —gsinf+ Qdy+ Q*(x + dy) — Gy cosl — Gosinf. )
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The various terms and parameters are defined in [3].
The x—interval 0 < x < L is split into J.J — 1 intervals of length Az = ﬁ and
SO
rj=(—1)Azx, j=1,...,JJ and t,=nAt,

with n=20,1,..., and

Ry = h(zj,t,) and U :=U(x;,t,).

The first-order space derivatives are approximated by 3— point centred differences and

the first-order time derivatives by forward difference. The scheme is fully implicit.
The discretization of the equations (2.1) is then

n+1 n+1 n+1 n+1 n+1
Wi =Ry gt —his WU S US
At J 2Ax J 2Ax ’
n+1 n n+1 n+1
Uj - Uj + (O/jwrl o (Qn+1)2h>§) hj+1 B hj—l (2‘4)
At J J 2Ax
gl gntt ol — pn .
*x _Jj+1 =1 5on+1% J  _  pgnitl n+1pn+l
+U; - 20 ~ Bt Qritprtt,

where
n

of = alry,t,) and G = B(x),t,).

The starred variables are intermediate values for nonlinear coefficients. In order to treat
the nonlinearity, an iteration scheme is used. First, the above equations are solved for
one time step with hj = A’ and US = U} producing an approximation for h}”’l and
U ]“1. The equations are then solved again with the starred variables replaced by the
updates. This iteration step is repeated until the previous and current values of h and
U are within a prescribed tolerance at all points.

The discrete system (2.4) can be put into block tridiagonal form. Setting

h’?}
A= 2N
! [Ua’

equation (2.4) can be expressed in the form

n+1,_n+1 n+1_n+1 n+1_n+1 _2Qn+1 1 1
—*Aj z;") +B z; —i—*Aj Z =

= [T m el e

for j=2,...,JJ —1, with

At a1 — (Y2 hr U?
LA = Y i Y 9.
I T Az { U h;] ! (2:6)
and +1 yn+1



The x left-subscript on A} is a reminder that the entries depend on nonlinear
*—terms. The equations at j = 1 and 7 = JJ are obtained from the boundary
conditions. The only boundary condition at x = 0 is U = 0. The discrete version of
this is

Uy +Uy
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where U] is a ficticious point Az to the left of x = 0. To obtain a boundary condition
for h, use the mass equation at x =0

ht+h*U$:0,

U=0 and =0, forall neN, (2.8)

with discretization . .
n n
hl - hTL * U2

+ h} =0. 2.9
At Az (2.9)
Combining (2.8) and (2.9) gives the equation for j =1
hi At [0 1 10
n+1 1 n+l n
7 [0 0] [0 0] . (2.10)
Similarly at x = L,
Uy Uy
U?, =0 and —L- O _ 0, forall neN, (2.11)
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where U7, is a ficticious point Az to the right of x = 0. The discrete mass equation
at g =JJ is

[ Uyt
At Ax
Combining these two equations gives the discretization at j = JJ,
hy, At {0 1], n 1 0 ,
- X$ |:O O:| J}rll +z +1 - |:0 0:| Zyy- (2'13)

Hence, for fixed h* and U* the following block linear system of equations is to be
solved,

20 Nz = (1) 8] 7y
— AT+ BT AT T = __Q?nﬂ (ﬂ zy + Aty H :
— ATz BT AT = __Q?nﬂ (ﬂ 7y + At H :
— AL 2 + B+ AT = {_Q?HH (1)] 2,y + ALBT [(1)] )
N et = [ o



where

Az [0 0

The right-hand side of the system is known, and for fixed A* and U* the system is a
block tridiagonal linear system.
Numerical results using this scheme are reported in [3].

N;:ﬁ{o 1].

2.1 Structure of the numerical dissipation

The fully implicit scheme is dissipative. The dissipation eliminates transients and
smooths the high-frequency oscillations near hydraulic jumps. In this subsection, the
form of the numerical dissipation is identified. The form of the dissipation is similar to
the action of viscosity, in that it is wavenumber dependent. An interesting feature of
the dissipation is that it is Froude number dependent and becomes directional in the
limit as the Froude number approaches unity.

To compute the truncation error, take the simplest case, where the SWEs are linear
and the vessel is stationary,

hi + uohy + hou, =0 and  u; + uguy, + ghy, = 0. (2.14)

The fully implicit scheme is

ntl _ 1n n+l _ pntl ntl g ntl
N (e ) g (e )
At 0 2Ax 0 2Ax 7

and

n+1 n+1 n+1 n+1 n+1
o A + g Y — W) p hiie — iy 0
At 2Ax 2Ax )

Expand each term in a Taylor series, e.g.
P = R (RO g () -
and
h?jrrll = N+ (A )AL+ %(h;‘H)ttAtQ +.
= W+ (WD) Az + 3(hD) A2
+AE((B)+ (W) Az + 5 (] )eAa?)
5 A8 () + (B s D) + -

Substitution of these expressions into (2.14) gives the leading order “modified equa-

tions”
hy + uohy + hou, = —At (uohm + hougy + %htt) e

Uy + uotty + gh, = —At (uoum + ghys + %Utt) 4o

Background theory on “modified equations” and truncation error can be found in §11.1
of [6].



Use the leading order equation (2.14) to express hy, Uz, hy and uy in terms of
hye and Uz

U + ugty + ghy = AL ((uf + gho)use + 2guohy,) + - - -

The leading order dissipation has the viscous form; that is, the dissipation is of the
same form as the heat equation,

(). + L5 2 () 2 ()~

where D is the dissipation matrix

D=1

U(Q) + gho Zh()UO
At 2 .
2guog  ug + gho

The eigenvalues of D are

2
)‘:I: = %At <UO + gho) = %Atgho(F + 1)2 s
where F' = ug/+/gho. The eigenvalues are of order At and the dissipation matrix
is positive definite away from criticality. This analysis shows that the leading order
truncation error is dissipation.
In the limit as F' — 1 one of the eigenvalues of D vanishes. The eigenvector in

this case is
_( ho
6 - (_uo) )

D¢ = (gho — up) (Zz) :

The eigenvector £ is also an eigenvector of the Jacobian when F' =1 since

() = (7).

Hence the dissipation matrix resonates with the structure of the SWEs; that is, the
Jacobian and the dissipation matrix are both singular at criticality (F? = 1).

Carrying the modified equation analysis to the next order will reveal dispersive
truncation error. By including dissipation and dispersion through truncation error,
rather than explicitly, higher-order boundary conditions need not be imposed explicitly
at r =0 and x = L.
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3 Sloshing SWEs in two space dimensions
The SWEs for fluid sloshing in a rotating vessel derived in [4] are

hi + hU, +Uhy +hV,+Vh, = 0
Uy + UU, + VU, + 29,V hy + 2Qsh; — 2Q3V

+ oy, )+ 200V — (B +B) ke = = (% + ) b+ Bla,y,t)
Vi + UV, + V'V, = 20,Uh, — 20k, + 203U

+ [alw,y 1) = 205U — (B + ) b by = (0 = 00 ) b+ Bla,p. 1),
(3.1)
where h(z,y,t) is the fluid depth and (U(z,y,t),V(x,y,t)) is the horizontal velocity
field. The tank has length L; in the z—direction and length Ly in the y— direction
and the only boundary conditions are

U0,y,t) =U(Ly,y,t) = 0, for 0<y<Ly and Vt,
V(z,0,t) =U(x,Lyyt) = 0, for 0<x<L; and Vt.

The functions a(z,y,t), B(x,y,t) and B(x, y,t) contain the terms from the rotating
coordinate system that are independent of h, U,V ,

Oé(l‘,y,t) - <Ql + QZQB) (y + d2) + <9193 — Qg) (1‘ + Cll)
— (0 +Q3)ds + Qes - G+ gQe; - e

~

Blayt) = (O =) (y+do) + (B +9B) (z+dy)

- (92 + 9193) ds — Qey - G — gQe; - e
Bz,y,t) = — (Qg + 9192> (2 +dy) + (92 + Q2) (y + do)
+ <§21 - 9293) ds — Qes - 4 — gQes - .

The terms and parameters are defined in [4].

An alternating direction implicit algorithm is used to solve this system of nonlinear
equations numerically. The time step is split into two half steps, and in each half step
the equations are solved in one-dimensional strips as shown in Figure 1. In the step
n—n-+ % the equations are solved in horizontal z— strips for fixed y (the green lines
in Figure 1) and in the step n+ % — n—+1 the equations are solved in vertical y— strips
for fixed = (the blue lines in Figure 1). Each of the one-dimensional systems has the
form of linear equations with a block tridiagonal coefficient matrix as in §2.

The r—interval 0 < x < L; is split into I1 — 1 intervals

Ly
I7—1’

ri=0—1D)Ax, i=1,...,11, Azx=



y
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Figure 1: Schematic of the grid layout for the discretization.

and the y—interval 0 <y < Lo is split into JJ — 1 intervals

o JJ -1

yi =G —-1Ay, j=1,...,JJ, Ay
and the discretized values of h, U,V are represented by
hi'y = h(xi, y5,t0), U= Ui, y;,t,) and V= V(zg,y;,t0),

where t,, = nAt with At the fixed time step.

Derivatives are discretized using centred difference. In the step n +— n + % the
xr—derivatives are treated implicitly and the y—derivatives are treated explicitly, and in
the step n+ % — n+1 the y—derivatives are treated implicitly and the x—derivatives
are treated explicitly.

4 Algorithmic details for the half step n— n + %

Rewrite the governing equations in a form that emphasizes the nonlinearity
hi + WUy +U*hy +hV, +Vh, = 0
U+ U U, + VU, + 2Q5V hy, + 2Q5hy — 2Q3V
+a(wy t) + 20V — (B2 + 02 hh, = — (s'22 v 9193) h+ Bz, y, 1)
Vi+ UV, +VV, =20,U*h, — 2 hy + 2Q3U

+ la(z,y,t) — 20U — (B + B) k] b, = + <Ql - Q293) h + 5(957%15),
(4.1)



where h*, U* and V* are the current intermediate values of h, U and V. Note that
only nonlinearites associated with z—derivatives are starred, as the nonlinear terms
with y—derivatives are treated explicitly.

The discretization of the mass equation is

ntg n+3 n+i n+i n+3
hij* = hi; e Ui — Ui N Uf'hi+1?j — iy
1 2, 2,

LN V) h. . — R
+hT 4,j+1 5,j—1 +Vn 4,j+1 -1l 0.
b 2Ay bl 2Ay

The discretizations of the equations for U,V are

"+ 3 ntg ontg
U UE +,U% UHJJ Uzly +@vn zg+1 zy 1%_2§YHE‘/n zHﬂthT%
;At 2Az 2Ay 2Ay

2 1\ 2 ntg g ntg
nt3 g1k nts n+3 x| Pigalh S
+ [az‘,j + 20, 2V = (& + (2 hig| = oz

1 1 sl 1 1 h”+2 —h? +1
=205 VI - (T Qe T 20t g+ B
(4.3)
*n.-‘—l n+ n+ n n+ n+l
V'iﬂ- 12At i + U* Z+12AZZ l? + vn Z]+;A‘y/i’j 2Qn+2 UZ*] hz+12%AZZ 1?]'
1 1 1\ 2 1\ 2 Sy N0
e N (G R R e
1 1 h T2 _pp
= 200U 4 (O - aptrapte) Bl 4 20) 72 by e
where
O‘Zj = a(xivyjatn)u ﬁfj = 5(%7%7%) and Z}] = 6(x27yjatn)
By setting
hi;
zi; = Uiyl
Vi
equations (4.2)-(4.3) can be written in block tridiagonal form
+3 +3 +3 nts +3 1
A7 7—1; +Biz) AL P = Ctal D3z, (1.4)

”+2 Zn ”+2
_C 1]+1+/8 .

Matrices with a % left-subscript depend on h*, U* and V*. The entries of the matrices



are

Uz, hi, 0 1 00
At —
Al =qag | wel Uy 0|, DU=1205 10
20007, 0 Uy =207 0 1
1 0 0

B" = | 205 + 1At (Qg - Q?ng) 1 —AQ
—20p — LAt (Q’; - Qgﬂg) At 1

n—3 !

n _ _At n n—1 n—3 n _ At | 2an
Cz,J - m 292‘/17] 2 ‘/Z,] 2 O ) IB'L] 7 /62] )
— n—1i Bn
2005 0 Vi’ o
and o ) ,
w0 = a4+ 200V — ((QF)° + (93)°) by,
n n n n—j n\2 n\2 n—j
2y = iy, — 205U, % — ((Ql) + (923) )hi,j :

For fixed j = 2,...,JJ — 1 the equations (4.4) are applied for i = 2,..., 11 — 1.
To complete the tridiagonal system equations are needed (for each fixed j) at i = 1
and ¢ = I1.

4.1 The equations at 1 =1 and 1 =1/ for j=2,...,JJ—1

The equations at © = 1 and ¢ = I are obtained from the boundary conditions at
x =0 and x = Ly (3.2). The only boundary condition at x =0 is U(0,y,t) = 0. The
discrete version of this is

Usy + Uz

Uﬁj =0 and 5

=0, foreachj, andforall néeN. (4.6)

To obtain a boundary condition for h, use the mass equation at x =0
hi + WUy +hV, +Vh, =0,

with discretization

n+% _ n At 1n n n At 1 n n n
2Ax ' "L,57 2,5 o hl,j hl,j (‘/Lﬂ'l B ‘/1,j—1) - 4Ay‘/17j ( 1,j4+1 hl,j—l) :

T 4Ay
(4.7)
To obtain a boundary condition for V', use the y—momentum equation at x =0

n4++
YL+ ALk U

Vi + VV;/ — 20y + [06(37, Y, t) - (Q% + Q%) h] hy - <Ql B QQQB) ht g(x’ v t) ’



with discretization

n+3 n+3 e+ n+3 ~n+3 n+3
Vl,j - [291 + %At (Ql - Q2 Q3 )] hl,] - Vl; 4AyV13 <V1 J+1 Vl,; 1)
A ntg n n
—ﬁo‘l,jg (P340 — B 1)
n+3: 1 A, on+s
=20 *hy; + A6, ; %,
(4.8)
where )
“n n n\2 n\2\ 1,32
Q;; = Q5 — ((Ql) + (€23) )hz‘,j
Combining equations (4.6), (4.7) and (4.8) gives the equation for i = 1
En+2z + F17]z2j7 = Grlljizrf,jfl + HnJr%ZTf,j - G?}—EZ?J’H +1 ﬁ?ja ) (4.9)
with
1 00
En+— — 0 1 0
n+i n+3d n+d ntl ’
207 LA (Ql — Q] ) 0 1
ol 1
iy 2 0 hi,j 2 ) O
n nty; _ A
Gi; 4Ay /0\ 0 0 , 187 = Tt ~O+; (4.10)
n+% 0 anl ﬂzn 2
i i J
1 00 0 hy; O
n+i _ A '
H"2 = 0n+1 00 Fy=x210 0 0
—20,72 0 1 0 0 0

A similar strategy is used to construct the discrete equations at x = L;. The
velocity boundary condition is

n n
Ulr—1j + Ul

5 =0, foreachj, andforall neN. (4.11)

Urp ;=0 and

The discrete mass equation is
ntg At n+y _ n At n n
hird = sachin Uy = Wiy — daghing (Vinn = Vit ) (412)
n
4AyVHJ (W1 e — M)

and the discrete y—momentum equation is

n+l n+4 nti n+d n+i n+i n n
an [29 2+1At (Q 2_92 2Q3 2)] hH,j2 = VH,j 4AyVH](VHJ+1 ‘/H,jfl>

/\

ﬁtyo‘na (hHg+1 M)
n+i n n+
(4.13)
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Figure 2: The grid layout with the horizontal lines 7 = 1 and 7 = JJ highlighted.

Combining equations (4.11), (4.12) and (4.13) gives the equation for i = I'1
1 1 1
_*Fllvjz?;;2l,j + EnJr%Z?;L,jQ = G?;—] zir - +H" +2ZII] G?;tf Zirj+1 T /8?1—’,—]'2 :
(4.14)
This completes the construction of the block tridiagonal system at j—interior
points. For each fixed 5 = 2,...,JJ — 1, and fixed h*, U* and V*, we solve the
following system

n+— ”+2 _ "+2 n+1
E + K2y, = Gy %2y, +H" 22y
n+3 n nt3
G20 h 51,j )
A""’% ntg Bt ""' A"+1 nty o _ C""’% n D" tagn
e 72yt H B2y 0 Ay Rt = Gyt + DRz
"+2 n n+3
=Gz, + 857
ntz ”+2 ntl nts "+2 ”+% _ ”+2 n+2
— Ay %2y 2 + B 22y 7 + Ay 72,7 = Cyitzy, D gy (4.15)
nt3 ntg
=Gy 250 B
n+2 n+i n+2 _ n+2 nt =
— Kz B2y po= Gy fag o - HT Ry

n4 n+%
GII] z7; g1 Tt ﬁH,j .

1 1
This system is iterated until 2* — h""2 and U* — U""2 . The equations along the
grid lines j =1 and j = JJ, highlighted in Figure 2, are solved separately.
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4.2 Grid lines (i,1) and (i, JJ) for i =1,... 11

The equations for grid lines (i,1) and (i,.JJ) are obtained from the boundary con-
ditions. The only boundary condition at grid line (i,1) is V (i,1) = 0. The discrete
version of this is

Vio + Vil

V=0 and — 5 = 0, foreachi, andforall neN. (4.16)

To obtain a boundary condition for A, use the mass equation at (7, 1)
hi + WUy +U*hy + RV, =0,
with discretization
n+3 A n+3s n+: A n+i n+s A
P AL (USE - UE) + AL (R - hE) = (1 ALV e
(4.17)
To obtain a boundary condition for U, use the z—momentum equation at (i, 1)

Uy + UU, + 20k, + a2, 0,1) — (92 + Q2) h*] hy = — (QZ n 9193) h+ B(z,0,1),
with discretization

1 1 1 1 il 1 1 1
U+ ALUn (U - U + [2057F - dae (05T o el [

1 1 ntd 1 1
+ALar ™ (R — W) = Uy 205 T+ S
(4.18)
where
/7’? _ n n 2 2
*Qy s = Qs ((Ql) + (€23) )h:,j'
Combining equations (4.16), (4.17) and (4.18) gives the equation for (i, 1)
nt+i nti n+l n+l pal ntl ntl
_*Mi,iFQZijlfl + NnJr%Zi,;rQ + *Mi,;FQZiJ:rl?l = OZEQZ?J +2 ﬁz;FQ ) (4.19)
with
* * n—i
N U/i,i hi; 0 1— QAA—';V;J 200
M =ag |«aiy Uy 0] Oy = 208 10| -
0 0 O 0 0 0
. 00 0 (4.20)
N" = | 208 + 1At (Qg +Q’;Qg) 10|, 8,=4 [ngj
0 0 1 0

The mass equation at grid point (1,1) is

hy + WUy + hV, =0,

12



with discretization

PR ALRL UL = (1- ALV ) B (4.21)

1 1
Combining equation (4.21) with Vlnf_Q =0 and Uﬁ_Q =0 gives

1z, 1% +.,Quizy, . = RI,z},, (4.22)
with
0 Rt 0 — ALV 000
Q=550 0 0|, RY= 0 0 0], (4.23)
0 0 0 0 0 0

and I is a 3 x 3 identity matrix. Similarly the discrete mass equation at grid point
(I1,1) is

n+2 n+3
hII,12 gitxhn 1WUr 211 = < sz VH 2) hi 17,1 (4.24)

L n+5 .
Combining equation (4.24) with VInIJrl2 =0 and U IIJ,F 2 =0 gives

n—l—% n—l—% _ n n
_*QHJZHfl,l—i_IZH,l = RH,2ZU,1- (4.25)

For fixed h* and U* the following block linear system of equations is to be solved
along the grid line (i,1) for i =1,..., 11,

1

n+g +_ n o,n
IZ1,1 +.Qq, 1Z91° = R1,2zl,1 )
n+% n+% n+a n+f n+2 n+2 o n+ n+2
_*M271 Zl,l + N 2Z2’1 + M — O 2,2 Z2 1 +2 ,8 9
nt3 "+2 ntl ntz ”+2 ”Jr% _ nt3
=My, %2y, " + N"225,% +, My, 7°2.," = Oy’ Z31+2/331 ; (4.26)
+l ”+_ n n
= Qurazr 5y 1z 7 = Ryp,zi;.

A similar system is derived along the upper boundary grid line (i,JJ) for i =
1,..., 11,

V% + Vil
2

777=0 and =0, foreachi, andforall neN. (4.27)

The discrete mass equation is
n+2 At 7 n+% n+% At 77% n+% n+%
higi + 1a:li 00 \Uisias = Uisalys ) + 3a:Usss (hisilss — Ricilss
(4.28)
n
(1 + 2Ay s 1) Wy
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and the discrete x—momentum equation is

ntl At (s n+} 1A (O L ontEontE)] et
Ui,JJ + 4Ain,JJ Ui+1,JJ - Uifl,JJ + 292 + §At Q2 + Q1 Q3 hz’,JJ
—_—

1 1 1 1 1
At ntg (gntg n+3 _ 77 nt31n 1AL 3
tine+Q g <hz‘+1,JJ —h, ) = U, 20 2h 4 A8 7

7

(4.29)
Combining equations (4.27), (4.28) and (4.29) gives the equation for (i, J.J)
n+i ntl 1 nti nt+i nti n+3 n n+i
=Mz 2+ N2z 2 M 3 2 = SUE et 4 By, (430)
where )
L4+ 52EV % 00
SZJ- = 20 1 0ol - (4.31)
0 0 0
The discrete mass equation at grid point (1,.J.J) is
n+i +1 n
hy ;7 + zi—t;chT,JJU;,Jf = (1 + QAA—tny}JJA) hY ;. (4.32)
.. . . n-l—% n-l—% .
Combining equation (4.32) with V] ;7 =0 and U, ;7 =0 gives
nty nty n n
Iz, ;5 + . Quus2zy 5 = T1 5027 5, (4.33)
with
L+ 25V 00
Ty, — 0 0 0. (4.34)
0 0 0
Similarly the discrete mass equation at grid point (I7,.J.J) is
ntg * ntg n n
hirgr = sashinssUnr g = <1 + QAA—ty‘/II,JJ—l) Wit (4.35)
.. . . n-l—% n+% .
Combining equation (4.35) with V;; 7 =0 and U;; 7, =0 gives
nti nti n
= Qurasz 2 gtz 5 = Ti a2t (4.36)

For fixed h* and U* the following block linear system of equations is to be solved for
the grid line (i, JJ),

1 1
IZ?:;?] + *Ql,JJZZ:;?] = TV ;427 s,
T N s N s
=M, ;52 ;5 + N"2zy )5+ M,y 525 ;5 = Sy 5512555 28557,
T R S s
_*M3,JJZ2,JJ +N 223 57 T *M3,JJZ4,JJ = S3,JJ71Z3,JJ +2 ﬁg,JJ ; (4.37)
n+g ntg n n
_*QH,JJZUA,JJ + IZH,JJ = TH,JJAZU,JJ .

14



This completes the algorithm details for the first half step n +— n+ % . For each fixed
h* and U™, it involves solving a linear block tridiagonal system for each j =1,...,JJ.

1
Then the process is repeated with updates of h* and U* till convergence h* — h"" 2

1
and U* — U""2 .

5 Algorithmic details for the half step n + % —n+1
Rewrite the governing equations in a form that emphasizes the nonlinearity

hi + Uy, + Uhy + h*V, +V*h, = 0

U, + UU, + VU, + 20V *hy, + 2Qsh; — 205V
+ oz, y ) + 20,V — (2 + Q2) b hy = — (92 + 9193) h+ B(z,y,1)

V, + UV, + V*V, — 20,Uh, — 20 hy + 2Q3U

+ [a(z,y,t) — 20U — (] + Q3) h*] by, = + (Ql - QQQ?,> h+ Bz, y,t),
(5.1)
where h* and V* are the current intermediate values of A and V. In the second half
step the y—derivatives are discretized implicitly and the x— derivatives are discretized
explicitly. Only implicit nonlinear terms are starred.
The discretizations of the equations (5.1) for the second half of the time step is
h?*lfh?f% n+l U:+_%.7U:j%_ ntl hf*%,h?j%_
rae byt T Uy T e
Vn+1 n+1 h?"L-‘,—l _h*(z+1

* i,5+1 i,j—1 * i,5+1 =1
thi =5 TV~ =0

1 1 1
+ + +
Uin;-l_U_n' 2 n+i uttz _pttz pntl n+1 n+l _pnetl

i,j 2 Zitlj Ci—1,j * g+l Zig—1 n+ly/+ Mig+1" "1
%At + Ui,j 2Ax + ‘/Z'J 2Ay + 292 ‘/Z'J 2Ay

nt+d  ntd
+ an+1+29n+1vn+% _ (Qn+1)2+ (Qn+1>2 h”+% hir—hi
. (5.2)
ntl_pnty

_ n+1y,n+1 yn+1 n+lon+1 n+1 n+1hi; Qg an+l

1 1 1 1 1

nt+l_y, 3 Lyt _ynts nt+l el 1t nts

Vii —Vij + U.”‘JFE Vier; —Vic1j + V*"/i,j-ﬁ-l_‘/i,j—l _ QQn-i—lUﬁfE iy —hi—v;
%At 2,] 2Ax 2, 2Ay 1 2, 2Ax

n+1 n+1
4 anJrl _QQnJrlU* o (Qn+1)2+ (Qn+1)2 h* hi,;brl*hi,jfl
B

_ n+17rn+1 yn+1 n+1cyn+1 n+1 n+1" 4 i,d 2 an+1
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Equation (5.2) can be expressed in block tridiagonal form

1 1
(A1, 4l n+1,n+1 ntl_n+l n+l, nt3 n+1,"F3
SOz + B .G i = Az D
N (5.3)
n+l_NT35 n+1
—AL i T B
with ) )
Uij hi
n At — n—1
Alj = as 107 Uj;* 0 |
1 1
nyrT3 n—3
200U, ; 0 Ui (5.4)
* *
Vi, 0 hi
n _ _At ny/* *
*Ciyj T 4Ay 2%,3 ‘/Z,J 0 ’
n *
awaiy 0V
and 1 1
n n ny/" 2 n\2 n\2\ 1,2
g = ol 201V % — ((Ql) + (€23) )hi,j
“n n nyT* n\2 n\2 *
20y = aj; — 2Q3UF; — ((Ql) + (923) )hi,j'

For fixed i = 2,...,II — 1 the equations (5.3) are applied for j =2,...,JJ —1. To
complete the tridiagonal system equations are needed (for each fixed i) at 7 = 1 and
jg=JJ.

5.1 The equations at j=1and j=.JJ for 1=2,... .11 -1

The equations at j = 1 and j = JJ are obtained from the boundary conditions at
y =0 and y = Ly. The only boundary condition at y = 0 is V = 0. The discrete
version of this is equation (4.16). To obtain a boundary condition for A, use the mass
equation evaluated at y = 0

hy + hU, + Uhg + h*V, =0,

with discretization

1 1 1 1
n+1 At 1% /bl pntg At pnt3 n+sy nty
hi,l + 2Ay z‘,lv;,Z - hi,l - 4A;chi,1 Ui+1,1 - Ui71,1 55
At Un-l—% hn—l—% hn-l—% ( ’ )
T AAz Vil i+1,1 — Thi—11) -

To obtain a boundary condition for U, use the z—momentum equation at y = 0
with discretization
n+%

URt 2087+ Sae (gt orragt) | et = o
At pEs [ mts n+s
- Ui,l : <U‘+1,21 - Ui—1,21)

YN ?
_ At /nﬁ h”"'% _ hn'i'%
4Az 1,1 i+1,1 i—1,1
1 ~
n+1nts3 1 n+1
(5.6)
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Combining equations (4.16), (5.5) and (5.6) gives the equation for j = 1

Prtign 4 J, 20 = Kl s +L”“zr-l+% K 4+, B! (5.7)
i1 *J3,145 9 7,1 i—1,1 2,1 2,1 i+1,1 T2Mi1 >
with
1 0 0 1 0 0
P = | 208 + LAt <Q§+Q?Qg> 10| L= [293 10|,
0 0 1 0 00
n— n—1 (58)
U.? h.? 0 001
K». = At ﬁj\ ZT’ZJ_l J. . = At 7% 000
i?j - m O[,Z] UZ,j 2 O ) * i’j o m ivj
0 0 0 000

A similar strategy is used to construct the discrete equations at y = Lo. The
velocity boundary condition is V' = 0, with discretization given in (4.27). The discrete
mass equation is

1 1 1 1

n+l At 1% n41 _ gty At gty ntg  gpntg
hz‘,JJ 24y z‘,JJVi,JJ—l = hi,JJ 4Ag;hi,JJ Uz'-l—l,JJ Ui—l,JJ (5.9
At Un-I—% hn—f—% . hn-f—% ’ )

1Az Vi JJ i+1,JJ i—1,JJ ) -

and the discrete x—momentum equation is
n+%

Ui+ [20nt 4 dae (gt artagt ) s = Ul

1 1 1
At 73 n+g n+s3
T 4Az Ui,JJ (Ui—f—l,JJ - Ui—l,JJ

—_—
At n+l h”"’% _h”"’%
2z %, 7 \ i1 g i—1,JJ
OOt E L I
2 Ny g5 T3 i, JJ -
(5.10)
Combining equations (4.27), (5.9) and (5.10) gives the equation for j = J.J
1 1 1
T n+1 n+l,n+l n+l, 3 n+1,7T5 _ gon+l 3 n+1
*Jz,JJZi,JJA“‘P Z, 55 — Ki,JJZifl,JJ—i_L Z; 5j Ki,JJZiJrl,JJ +2 077
(5.11)
For fixed h*, U* and V* the following block linear system of equations is to be solved
along vertical grid lines at interior lines ¢ =2,..., 11 — 1,
1 1 1
nt1,n+1 Coontl nt+1,"t3 n+1,"T3 _ gent1 nt3 n+1
P Z;, +*Jz,1zz‘,2 = Km Zi—1,1+L Z;4 Km Ziiq 2P0
Cn+1 n+1 Bn+1 n+1 Cn+1 n+l __ AnJrl ”+% Dn+1 ”+% An+1 ”+% n+1
—Ci2 21 + Z,5 +.U0 2,3 = i2 Zi—12 T Zio” — o Zi st Pig
CnJrl n+1 Bn+1 n+1 Cn+1 n+l AnJrl ”+% Dn+1 ”+% An+1 ”+% n+1
—Ui3 2,0 + ziz +.xU32;4 = i3 Zi—13 T Zizg~ — A3 Zi 31T Pi3,
1 1 1
_ T, n+1 ntl n+l n+1, 3 n+1, T3 _ gen+l, 13 n+1
WJigaz , + P2l = Kz, 2, + Lz, 0 — Kz, 2, 2 Bl
(5.12)
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Figure 3: The grid layout with the vertical lines + = 1 and ¢ = I1 highlighted.

This system is iterated until h* — A" and V* — V™. The equations along the
grid lines 7 = 1 and ¢ = 11, highlighted in Figure 3, are solved separately.

5.2 Grid lines (1,j) and (//,j) for j=1,...,JJ

The equations for grid lines ¢ = 1 and ¢ = I] are obtained by the boundary conditions
and restriction of the governing equations to the boundary. The boundary conditions
at © =0 is U(0,y,t) = 0. The discrete version of this is equation (4.6). To obtain a
boundary condition for A, use the mass equation at x = 0

hi +hU, + R*V, +V*h, =0,
with discretization
W R (Vi — Vi) + A0V (i — i) = (1 ALUL )
To obtain a boundary condition for V', use the y—momentum equation at (1, )(
Vit V2V, = 2hy + o, y,0) — (0 +93) 1] by = (90— 9:05) b+ Bl 1)
with discretization

Vn+1 4Ayv1] (Wn;;ll Vvln;rll) B |:29n+1 lAt (QnJrl - Qn+1Qg+1)i| h?jl

+4AAty*O‘111Jgrl (h?jil - h?j%) = V1n]+ Qn+1hn+2 + 1Atﬂ"+1.
(5.14)
Combining equations (4.6), (5.13) and (5.14) gives the equation for (1, 7)
At n+1 —n+1 n n
S M e N M = 05 s *2 B (5.15)
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with

* x At 73
. V(Z)J 8 hf)’J N RV
*Mivj:m b ) Oi,j: 0 0
a0V 20
1 0 0
N 0 10
208 - JA¢ (O - g08) 0 1

The mass equation at grid point (1,1) is
hy +hU, + "V, =0,

with discretization

1
ntl | At g ekl At n+sz
h 2Ayh V - < 2AxU ) hl,l

Combining equation (5.17) with V{"{" =0 and U}'{" = 0 gives

—ntl ol
IZ?,H *Qllzn+1 = RQ,?ZLJ{??
with
B 00 1] 1—2LUr 000
Qi = Ehi |00 0, Ry = 0 0 0
000 0 00

Similarly the discrete mass equation at grid point (1,.J.J) is

n+1

n+1 At n+1 _ At 2
hy JT T szh Jvl,JJfl = < 2Ach2 JJ)hl,JJ'

Combining equation (5.20) with V{"J; =0 and U'}; = 0 gives

o n+1 n+l n+2 n—l——
= Q021 551 1275, = Ry 52y 7.

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

For fixed h* and V* the following block linear system of equations is to be solved for

the grid line (1, ),

1 1
n+1 nt+l _ J|ntta ntsz
IZ1,1 *Ql 1212 = R2,1 Z117
Vi n-l—l n-l—l Nt on+1 . A/ntl ”+2 n+1
—M 5 277 + N +. M, 77y = 055 215" +18]5,
~atl n+1 n+1 ot a1 . ~ntl ”+% n+1
—M 5 215 + N +. M3 z7, = 05327 3° +108]5,

ntl  _ Jits, nts
*QIJleJJ 1+IZ1JJ = R2JJ 1JJ'
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A similar strategy is used along the right boundary ¢ = I'1. The boundary condition
is U(Ly,y,t) = 0, with discretization (4.11). The discrete mass equation at (I1,7) is
* A *
Wity + anging (Virie = Viritd) + i35 Ving (05 = i) =
At 11 F3 n+y (5.23)
<1 + EUHA,J') hH,j )

and the discrete y—momentum equation is

Vit 4+ B Vin (Viitha = Virhy) — 2000 + dae (05 — gy | myg)

4Ay
A atl n ntg ntg ot
+ﬁ*a?ﬁ (h?;:}-i—l - h[?:;—l) =Vt = QQ?HhH,f + %Atﬂ?;,rjl-
(5.24)
Combining equations (4.11), (5.23) and (5.24) gives the equation for (I1,7)
<~ ntl o, ~ntl 5 ~+tl =n+1 nti n
—M;; ZI;T}A + N ZI;C; + .My ZHJC;Jrl = S;1%11; +H1 an;a (5.25)
with
. 1+A2L072 00
Sij = 0 0 0] - (5.26)
o 0 1
The discrete mass equation at lower right corner grid point (I7,1) is
hy +hU, + 1"V, =0,
with discretization
n At 7 x n ntg ntg
h11+,11 + ﬁhn,ﬂfnff = <1 + QAA—txUHfm) hn,f : (5'27)
Combining equation (5.27) with V7' =0 and U}/ = 0 gives
. il oyl
Iz?ﬁ +*QII,1ZI;:21 = THfl,lZII,le (5.28)
with At

0 0 0
Similarly the discrete mass equation at upper right cornder grid point (117, .J.J) is
1 A 1 At prnts nts
Wi sy — ﬁhFI,JJ‘GTJJq = (1 + ﬁUH—ﬁ,JJ) hip g (5.30)

Combining equation (5.30) with V}77/; = 0 and U},';, = 0 gives

1 1
ra) n+1 ntl  _ mtta nt3
—Qurys2i g5 1217 5 = T2 025 (5.31)
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For fixed h* and V* the following block linear system of equations is to be solved along
the right boundary grid line ¢ = IT,

n+1 n+l —n-l—— ”+’
Iz, + Qi 122 = Traz7,
Mt e ST v s e R <UL n+3 n+1
MH 2271 T N Zrro t+ *MH,2ZU,3 = S 2Zr79 1 ﬁn,z ;
At n+1 n+1 ~avtl n+1 _ gntl ”+ n+1
— My 327; 2t N"" Zipz T+ «Mpp 527 4 = Sir— 3Zrr3 T B 30 (5.32)
ray n+1 nbl ot ntg
_*QII,JJZII,JJ—I + IZH,JJ = T3 02 JJ

This completes the algorithm details for the second half step n + % —n+ 1.
For each fixed h* and V™, it involves solving a linear block tridiagonal system for each
1 =1,...,11. Then the process is repeated with updates of h* and V* till convergence
h* — h"t!t and V* — VL

Numerical results using this scheme are reported in [4].
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