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1 Introduction

Details of the numerical algorithm used to solve the rotating shallow water equations
(SWEs) in [3, 4] are recorded in this report. The scheme is a fully-implicit split-step
scheme with second order accuracy in both space and time that has been widely used
in hydraulics [5, 1, 2]. The nonlinearity is treated in the Eulerian representation using
iteration. The new features in the algorithm here are (a) the inclusion of full time-
dependent rotation due to the rigid body motion of the vessel, and (b) the use of exact
boundary conditions in both steps of the split-step scheme.

First, in §2 the algorithm for the SWEs in one space dimension is outlined. This
algorithm is a streamlined version of the algorithm used in [3]. The simplification
introduced here is that the nonlinear term Uh, + hU, is replaced by the linear term
—h; in the U—momentum equation. The algorithm in §2 is also a special case of the
algorithm for the SWEs in two space dimensions in §3 since that algorithm is based on
splitting and one-dimensional sub-integrations.

2 Sloshing SWEs in one space dimension

The governing SWEs derived in [3] are

he +Uh, +hU, = 0 )
U+ (a(z,t) — Q2h)hy + UU, — 20k, = B(x,t) + Qh, '

where h(x,t) is the depth and U(x,t) is the horizontal fluid velocity at the free surface.
The tank has length L and the only boundary conditions are

U0,t) = U(L,t) =0, Vt. (2.2)

The functions «(x,t) and ((z,t) are the terms due to the rotating-translating frame
that do not depend on either h or U,

a(z,t) = geosl+ Qa4 dy) — Q2dy — G sinf + G cos b,

. (2.3
B(z,t) = —gsinf+ Qdy+ Q*(x + dy) — Gy cos — Gosinf. )
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The various terms and parameters are defined in [3].
The x—interval 0 < x < L is split into J.J — 1 intervals of length Az = ﬁ and
SO
rj=(—1)Azx, j=1,...,JJ and t,=nAt,

with n=20,1,..., and

Ry = h(zj,t,) and U :=U(x;,t,).

The first-order space derivatives are approximated by 3— point centred differences and

the first-order time derivatives by forward difference. The scheme is fully implicit.
The discretization of the equations (2.1) is then

n+1 n+1 n+1 n+1 n+1
Wi =Ry gt —his WU S US
At J 2Ax J 2Ax ’
n+1 n n+1 n+1
Uj - Uj + (O/jwrl o (Qn+1)2h>§) hj+1 B hj—l (2‘4)
At J J 2Ax
gl gntt ol — pn .
*x _Jj+1 =1 5on+1% J  _  pgnitl n+1pn+l
+U; - 20 ~ Bt Qritprtt,

where
n

of = alry,t,) and G = B(x),t,).

The starred variables are intermediate values for nonlinear coefficients. In order to treat
the nonlinearity, an iteration scheme is used. First, the above equations are solved for
one time step with hj = A’ and US = U} producing an approximation for h}”’l and
U ]“1. The equations are then solved again with the starred variables replaced by the
updates. This iteration step is repeated until the previous and current values of h and
U are within a prescribed tolerance at all points.

The discrete system (2.4) can be put into block tridiagonal form. Setting

h’?}
A= 2N
! [Ua’

equation (2.4) can be expressed in the form

n+1,_n+1 n+1_n+1 n+1_n+1 _2Qn+1 1 1
—*Aj z;") +B z; —i—*Aj Z =

= [T m el e

for j=2,...,JJ —1, with

At a1 — (Y2 hr U?
LA = Y i Y 9.
I T Az { U h;] ! (2:6)
and +1 yn+1



The x left-subscript on A} is a reminder that the entries depend on nonlinear
*—terms. The equations at j = 1 and 7 = JJ are obtained from the boundary
conditions. The only boundary condition at x = 0 is U = 0. The discrete version of
this is

Uy +Uy
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where U] is a ficticious point Az to the left of x = 0. To obtain a boundary condition
for h, use the mass equation at x =0

ht+h*U$:0,

U=0 and =0, forall neN, (2.8)

with discretization . .
n n
hl - hTL * U2

+ h} =0. 2.9
At Az (2.9)
Combining (2.8) and (2.9) gives the equation for j =1
hi At [0 1 10
n+1 1 n+l n
7 [0 0] [0 0] . (2.10)
Similarly at x = L,
Uy Uy
U?, =0 and —L- O _ 0, forall neN, (2.11)
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where U7, is a ficticious point Az to the right of x = 0. The discrete mass equation
at g =JJ is

[ Uyt
At Ax
Combining these two equations gives the discretization at j = JJ,
hy, At {0 1], n 1 0 ,
- X$ |:O O:| J}rll +z +1 - |:0 0:| Zyy- (2'13)

Hence, for fixed h* and U* the following block linear system of equations is to be
solved,

20 Nz = (1) 8] 7y
— AT+ BT AT T = __Q?nﬂ (ﬂ zy + Aty H :
— ATz BT AT = __Q?nﬂ (ﬂ 7y + At H :
— AL 2 + B+ AT = {_Q?HH (1)] 2,y + ALBT [(1)] )
N et = [ o



where

At |0 1
N= A {0 o} '
The unknown vector is Z = (21, 2o, ...,2575_1,277) € R’/ x R7/. Tts coefficient matrix

is a block tridiagonal matrix. It is also diagonally dominant, since the norm of B"*!
is of order 1 and the norm of *A;‘J’l is of order At when Az is fixed. For fixed h*
and U* this is just a linear system and can be solved by standard algorithms. We
used both MATLAB and FORTRAN in order to double check the results. MATLAB is
quicker to program and has a built in block-tridiagonal solver. FORTRAN is more work
to program but executes faster.

The coefficient matrices in the block-tridiagonal system are dependent upon A* and
U~* so an iterative process is added to the solution procedure. At the beginning of a
time step 1} is set equal to A7 and Ur = U for each j. Then the linear system
is solved, giving new values for h* and U* which are used to update the coefficient
matrices. This process is repeated until max;{|hy —h*! |+ |Ur = U+ |} is below some
tolerance, typically taken to be 107%. We have not studied the convergence properties
of this iteration, but away from criticality and severe hydraulic jumps the convergence
is quick (typically 2-5 iterations). Moreover, according to [1] and [2], this type of
iteration is widely used in the computational hydraulics community.

The initial conditions for the fluid velocity and height at ¢ = 0 are typically taken
to be

U(z,0) =0 and h(x,0) = hg, (2.14)

where hg is the still water level.
Numerical results using this scheme are reported in [3].

2.1 Conservative versus non-conservative differencing

The SWEs (2.1) can be expressed in conservation form (see §4.1 of [3]), and so it
is tempting to use conservative difference formulae. However the conservative form
does not carry over to the SWEs in two horizontal space dimensions. The momentum
equations in two horizontal space dimensions have non-trivial source terms. So for
consistency throughout we have used the same non-conservative differencing for all the
equations.

To see the effect on conservative differencing, consider the mass equation in one
horizontal space dimension,

he + (WU), = 0.

The implicit, forward in time, centred in space, discretization leads to

n+1 n n+lrm+1 n+lym+1
hj _hj + (hj+1Uj+1 _hj—lUj—l)

=0.
At 2Ax
But the second term can be written in the form
L e g W et Ve WS
2Ax J 2Ax J 2Ax ’



where (et " (v o)
R+ R v+ Ut
* Nl Jj—1 * _ N gtl Jj—1
h; = — 5 and U; = 5 .

Hence the conservative discretization of the mass equation is

R e W e O
At J 2Ax J 2Azx '

This equation has exactly the same form as the mass equation with non-conservative
differencing (2.4). The only difference between the two is the definition of the starred
variables. Hence the error in using non-conservative differencing is precisely determined
by

(Ui + U
2

n+1 n+1
(hj-l—l + hj—l) N hT-H—l

+1
9 J - U;'Z :

Numerical experiments have shown this quantity to be exceedingly small. Neverthe-
less, there is some interest in experimenting with conservative versus non-conservative
differencing, particularly in one space dimension when the momentum equation can
also be differenced conservatively.

2.2 Structure of the numerical dissipation

The fully implicit scheme is dissipative. The dissipation eliminates transients and
smooths the high-frequency oscillations near hydraulic jumps. In this subsection, the
form of the numerical dissipation is identified. The form of the dissipation is similar to
the action of viscosity, in that it is wavenumber dependent. An interesting feature of
the dissipation is that it is Froude number dependent and becomes directional in the
limit as the Froude number approaches unity.

To compute the truncation error, take the simplest case, where the SWEs are linear
and the vessel is stationary,

hy + uohy, + hou, =0 and  w; + ugu, + gh$ =0. (215)

The fully implicit scheme is

+1 n n+1 +1 n+1 n+1
hj™ — hj oy hir — bt I e - H e N R
At 0 2AT 0 2AT ’

n+1 n+1 n+1 n+1 n+1
uit — tu Ui — Uity iy hily — bty —0
At 0 2Az 2AT '

Expand each term in a Taylor series, e.g.

and

R = R (R A+ 3 (R 4 -



and
Wi = B (W) A+ (R )u AP + -

= B0+ (h)oAx + (M) gn A2
FAL () + ()i Az + L (D) e A2?)
+3 A8 (W) + (B ) Az) + - -

Substitution of these expressions into (2.15) gives the leading order “modified equa-

tions”
hy + uohy + hou, = —At (uohm + hougy + %htt) e

Uy + ugy + gh, = —At (uoum + ghys + %Utt) 4o

Background theory on “modified equations” and truncation error can be found in §11.1
of [6].

Use the leading order equation (2.15) to express hgy, Uz, hy and uy in terms of
her and gy,

he + uohy + houy = $AE((ud + gho)hus + 2hotigUag) + -+ -
U + Uty + ghy = %At ((ud 4+ gho)tzs + 2guchy,) + -+ - .

The leading order dissipation has the viscous form; that is, the dissipation is of the
same form as the heat equation,

() L5 2 ) 2 ()~

where D is the dissipation matrix

29ug  ud + gho

The eigenvalues of D are

Ao = LA (ug+ gh0>2 = LAt ghg(F £ 1)?,
where F' = ug/v/gho. The eigenvalues are of order At and the dissipation matrix
is positive definite away from criticality. This analysis shows that the leading order
truncation error is dissipation.
In the limit as F' — 1 one of the eigenvalues of D vanishes. The eigenvector in
this case is

since



The eigenvector £ is also an eigenvector of the Jacobian when F' =1 since

() = (7).

Hence the dissipation matrix resonates with the structure of the SWEs; that is, the
Jacobian and the dissipation matrix are both singular at criticality (F? = 1).

Carrying the modified equation analysis to the next order will reveal dispersive
truncation error. By including dissipation and dispersion through truncation error,
rather than explicitly, higher-order boundary conditions need not be imposed explicitly
at r=0 and x = L.

3 Sloshing SWEs in two space dimensions
The SWEs for fluid sloshing in a rotating vessel derived in [4] are

hi + hU, +Uhy + hV,+Vh, = 0
U, + UU, + VU, + 29,V hy + 2Qsh, — 203V

+ oz, y,t) + 20,V — (2 + Q2) b hy = — (92 + 9193) h+ B(z,y,t)
Vi+ UV, +VV, =20Uh, — 2Qhy + 203U

+ la(z,y, t) — 20U — (0 + ) k| by, = (Ql — QQQ?,) h+ B(z,y,t),
(3.1)
where h(z,y,t) is the fluid depth and (U(z,y,t),V(x,y,t)) is the horizontal velocity
field. The tank has length L; in the z—direction and length Ly in the y— direction
and the only boundary conditions are

U0,y,t) =U(Ly,y,t) = 0, for 0<y<Ly and Vt,
V(z,0,t) =U(x,Lyyt) = 0, for 0<x<L; and Vt.

The functions a(z,y,t), B(x,y,t) and B(x, y,t) contain the terms from the rotating
coordinate system that are independent of h, U,V ,

alz,y,t) = (91 + 9293) (y+do) + (ng - QQ) (¢ + dy)
— (U +23)ds +Qez - d+gQe;z - e

Blayt) = (O - 0) (y+do) + (B +9B) (z+dy)
— (Qg + Qng> dz — Qe - q— gQe; - e3

Bz, y,t) = — (Qg + QIQQ> (z+dy) + (2 +Q2) (y + dy)

+ <Ql — QQQ3> d3 —Qez-q—gQe;y -e3.
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Figure 1: Schematic of the grid layout for the discretization.

The terms and parameters are defined in [4].

An alternating direction implicit algorithm is used to solve this system of nonlinear
equations numerically. The time step is split into two half steps, and in each half step
the equations are solved in one-dimensional strips as shown in Figure 1. In the step
n—n-+ % the equations are solved in horizontal z—strips for fixed y (the green lines
in Figure 1) and in the step n+ % — n—+ 1 the equations are solved in vertical y— strips
for fixed x (the blue lines in Figure 1). Each of the one-dimensional systems has the
form of linear equations with a block tridiagonal coefficient matrix as in §2.

The r—interval 0 < x < L; is split into I1 — 1 intervals

Ly
=0 —10D)Ax, i=1,.... 1], Ax= ,
x (i— DAz, i T=
and the y—interval 0 <y < Ly is split into JJ — 1 intervals
= (G —DAy, j=1,....JJ, Ay= :
yj'_ ] y7 ]_ 7ty 9 y_JJ_17

and the discretized values of h, U,V are represented by
h?:j = h(xza Ys, tn)v UZ}] = U(‘Ilu Ys, tn) and ‘/’LZ = V(‘IZ? Yjs tn) )

where t,, = nAt with At the fixed time step.

Derivatives are discretized using centred difference. In the step n +— n + % the
xr—derivatives are treated implicitly and the y—derivatives are treated explicitly, and in
the step n+ % — n+1 the y—derivatives are treated implicitly and the x— derivatives
are treated explicitly.



4 Algorithmic details for the half step n +— n + %
Rewrite the governing equations in a form that emphasizes the nonlinearity
h + U, + U hy + bWV, +Vh, = 0
U+ UU, + VU, + 20,V hy, + 2Qhy — 2Q3V
+ la(z,y, t) + 20,V — (Q] + Q3) h*] by = — (Qg + Qng> h+ B(z,y,t)
Vi+ UV, +VV, —20Uh, — 201 hy + 2Q3U

+ [a(z,y,t) — 22U — (Q] + Q3) h] b, = + (Ql — 9293> h+ B(x,y,t),
(4.1)
where h*, U* and V* are the current intermediate values of h, U and V. Note that
only nonlinearites associated with z—derivatives are starred, as the nonlinear terms
with y—derivatives are treated explicitly.

The discretization of the mass equation is

1 il il ol ol

hiyt = hi e ‘Uz’++1,2j ~U LU by — Wi
%At I 2Ax I 2Ax (4.2)

_i_hn‘/Z?JJrl B ‘/Z'Z'*l +yn thJrl hri] 1 _ 0.
2Ay e 2Ay

The discretizations of the equations for U,V are

vty urE gt [y

—U.
7,] i,j * i+l i—1,5 n z]+ ’L] 1 2 n i+l -1
2 + U 2Azx + V 2Ay + 2Q V 2Ay

n+i n+i n12 nl2 hn_‘_ih_‘_7
+ [%,;r? +291+2Vz‘,*j - (<91+2) + <Q2+2> )h:]] B va—

n+< h+2 —hm 1

1 1 ol il il
=20V - (07 QRO T - 20 Pl Bt

1 1
Vn+ 2 _yn n+ 2 ntg 2 —yn hn+ 2 nt3y

ez —h. )
i, 1,7 * z+l ,J i—1,7 n z ]+1 ij—1 2 * i+1,7 i—1,5
1At + U 2Ax + V 2Ay 291 UZJ 2Ax

1\2 na 1\ 2 no_pn
+ [ n+2 — 29n+2 Un ((Q’f*?) + <QQ+2) ) h?,j] .hZ7J+;AZ%J—1

b T2 g Sn+d

1 pal
= 200U 4 (O] - TRl TE) plE 4 p0p et T o s
2

Y

where

~

Q= OC(ZEZ, Ys» tn)7 ZT?] = 6(1’27 Y tn) and ~’Z}J = g(xu Ys» tn) :



By setting

equations (4.2)-(4.3) can be written in block tridiagonal form

1 1 1 1 1 1
ntg nts nt+i nts ntsy nts . o"taon n+i n
= Az B 0 A Ry = Gyt o+ DY (4.4)
Cn+% n n+3 ‘
=Gy, 28+ By

Matrices with a % left-subscript depend on h*, U* and V*. The entries of the matrices
are

Uu;  hi 0 1 00
At _ ’
*Ai,j:m 1*04?,j UZJ 0 ’ D" = 292 Lo
20007, 0 Uy, =207 0 1
1 0 0

Br = | 208 + 1At (Qg - Q?ng) 1 —AQ
—o0n — LA (Q’; - QgQg) AlQE 1

1 1

n—3 —3
Vi 0 hyy 0
1 1 ~
no— At ny"T2 TR no_— At [ 3n
Ci,j 1Ay 292‘/;,]' V” 0 ’ .3 2 2%
—~ 0y ar
25 i ”

and

—_~—

Wl = a4 200V — () + (98)") ki,

n—

205 = Qg — QQSUZJ'ii - ((Q?)Q + (93)2> hi,j
For fixed j = 2,...,JJ — 1 the equations (4.4) are applied for i = 2,..., 1] — 1.

To complete the tridiagonal system equations are needed (for each fixed j) at i = 1
and ¢ = I1.

1
2

4.1 The equations at 1t =1 and 1 =1/ for j=2,...,JJ —1

The equations at ¢ = 1 and ¢ = [I are obtained from the boundary conditions at
x =0 and x = L; (3.2). The only boundary condition at =z =0 is U(0,y,t) = 0. The
discrete version of this is

Ur + U
Up'; =0 and %:O, for each j, and forall n€N. (4.6)

To obtain a boundary condition for h, use the mass equation at x =0

h + WUy + hV, + Vh, =0,
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with discretization

hn (Vn' o Vlr,ljfl) 4AAtyVn (h?,jJrl o h?,jfl) :

1,7+1
(4.7)

”+% At 7% ”"'% _ n
hl,j +2Axh UQJ - hl 4Ay

To obtain a boundary condition for V', use the y—momentum equation at z = 0

Vi + V'V, — 20 hy + [az,y,t) — (QF + Q2) h] by = (Ql _ 9293) h+ Bz, y, 1),

with discretization

n+3 n+3 nti n+i n+3 nts n At T n .
ViE = 20077+ Lar (017 - oRITE) | TE = v = ALV (Vi - V)
At ntg n n
4Aty 1y (A g+l hl,j—l)
nt3 g
=20y *hi; + %Atﬂu ;
(4.8)
where 1
no_ n n\2 n\2\ "2
Qo = Qy— ((Ql) + (€23) )hz‘,j
Combining equations (4.6), (4.7) and (4.8) gives the equation for i = 1
n ”+% n nt+i_n ”+% n ”+%
E + Z —|— *FL]ZQJ = lej Zl,j*l +H JFQZL]. — Gl,j Zl,jJrl +1 ﬁLj , (49)
with
1 0 0
En+2 _ 0 ]. 0
n+i n+3 nt+d an+l ’
207 LA (Ql — Q] ) 0 1
n_1l n_1l
Vii? 0 hy;” 1 0
n A nts A .
G ,J 4Aty /O\l 0 0 ) ) lﬁi,j — 7t ~n0_|_l (4 10)
o vy %
1 00 0 A 0O
H'ts = 0 00 F;=AL10 0 0
—207"2 0 1 0 0 0
= L. The

A similar strategy is used to construct the discrete equations at x

velocity boundary condition is

Ufr_1; Ul
Urp; =0 and & 1’32 T+ — 0, foreach j, andforall neN. (4.11)

The discrete mass equation is
n+t3 At ”+_ _ n At n n
hirf —sashinUnsiy; = by 4AthIj (VH,j+1 - VII,j—l) (4.12)
n
— 12, Vi (Wi jia = B )
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and the discrete y—momentum equation is

n+y nty 1 Yty ortionta )] sy n
Vit _[291 + AL (7 -0, 7y hirng = Virg— 4AyVHJ(VHJ+1 Vitia)

/\
At n+§ n n
1Ay Arj (hII g+l h; j—l)

n+i
_291 ’ ?I] 1Atﬂ[[] :

(4.13)
Combining equations (4.11), (4.12) and (4.13) gives the equation for i = I]
n+3% el nts n+3 n+3 n+3
FH,JZU 213 +E +2ZH S GIIJQZII] , +H" +2ZH] GII]2Z11]+1 +1 511,]'2 .
(4.14)

This completes the construction of the block tridiagonal system at j—interior
points. For each fixed 7 = 2,...,JJ — 1, and fixed h*, U* and V*, we solve the
following system

ntsg "'_ — ”"' n+3
n+2 n+2
_Gl,j Zl J+1 +1 ﬁ )
A”""% ”+% BnJrl ”+% An'i'% ”+% _ C”""% n ]:)nJrl n
Tl T2y BT, Ay T2y = Gyt 0 229,
n+2 n+%
_CQJ 2]—1—1 +/82,g 9
nt3 ”+2 n+— "+2 "Jr% _ ”+2 n+3
_*ABJ +B 3,J + Ay 24,5 = Gy Z3J 1 +D 223] (4'15)
n+ n+—
C3g Z3 ,J+1 + /63,J 9
+ _|_l n‘i‘ o T'L-I— T'L-I—
—Fr 2y 5, v E g 2= Gyplag o, + HY g

n+ i n+—
GH] 27541 1 ﬁ[[,] :

1 1
This system is iterated until 2* — h""2 and U* — U""2 . The equations along the
grid lines j =1 and j = JJ, highlighted in Figure 2, are solved separately.

4.2 Grid lines (i,1) and (i, JJ) for i =1,... 11

The equations for grid lines (i,1) and (i, .JJ) are obtained from the boundary con-
ditions. The only boundary condition at grid line (i,1) is V (i,1) = 0. The discrete
version of this is

n n
0t Via

Vii=0 d

=0, foreachi, andforall neN. (4.16)
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Figure 2: The grid layout with the horizontal lines 7 = 1 and 7 = JJ highlighted.

To obtain a boundary condition for A, use the mass equation at (i, 1)
he + U, +U*h, +hV, =0,

with discretization
n+i At n+3 n+i At n+3 n+3 At
hi,l *+ mhf,l (Ui+1,21 - Ui71,21> + mUz‘fl <hi+1?1 - hi71?1> = <1 T 2Ay zn2> hfﬁ .
(4.17)
To obtain a boundary condition for U, use the —momentum equation at (7, 1)

U + U U, + 2k + [o(2,0,t) — (QF + Q3) h*] by = — <Q2 + 9193) h+ B(z,0,t),

with discretization

Ui,1+2 + ﬁ_txUz?tl (Ui++1,21 - Uij1,21> + [29;2 + %At <Q2+2 + Ql+2Q3+2>] hi,;FQ

—

1 1 1 1 1
At nhgx (o nts nts\ _ rm nt3n 1 AR T2
Taas M <hi+1,1 - hi—l,l = Ui,l + 20, hm + iAtﬁm )

(4.18)
where
o _ n n\2 n\2\ 7%
Q5 = Q= ((Ql) + (€23) ) hj ;.
Combining equations (4.16), (4.17) and (4.18) gives the equation for (i, 1)
nt+i ntld n+l n+i n+id nt+l n+l
— M 722 N M e = 00,72 e B (4.19)
with
* o pE At 113
n At U/Z# hlij ! n L= ﬁ‘/i’j 00
*Mi,j = 1Az |*%j Ui,j 01, Oi,j = 208 1 0]
0 0 0 0 0 0
1 00 0 (4.20)
N™ = 200 + %At <Q§ + Q?Qg) 10|, 28= % [ﬂinj
0 01 0
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The mass equation at grid point (1,1) is
hy + WU, +hV, =0,
with discretization

n+2 n
hl +2§$h Upi* = ( 2Ayv12>h 1,1 (4.21)

1 1
Combining equation (4.21) with V1nl+2 =0 and Uﬁ—Q =0 gives

nt1 n+1
Izl,—;2+*Q1,lzgj2 = Rj,z7,, (4.22)
with
0 h; 0 — eV 000
Q=550 0 0|, RY= 0 0 0], (4.23)
0 0 0 0 00

and I is a 3 x 3 identity matrix. Similarly the discrete mass equation at grid point
(I1,1) is

n4 n4
hn,f gitxh 1U11721,1 = < szVIm)hI (4-24)

Combining equation (4.24) with VH 2 =0 and Un1 =0 gives

n—l—% n—l—% _ n n
_*QHJZHfl,l—i_IZH,l = RII,QZII,I' (4.25)

For fixed h* and U* the following block linear system of equations is to be solved
along the grid line (i,1) for i =1,...,1]

Y

1

nty +_ _ n N
IZ1,1 +.Qq, 1Z91° = R1,2Z1,1 )
nty ntj ntl ntsg +3 n+ A3 n+t3
_*M2,1 Zy +N 2Z2,1 + M21 = 022 221+2 /321 )
n+3 n+2 il nts +3 n+% At
—Mj, %2 + N""2z5, % + M31 z,;° = 035%23; +9 /331 ; (4.26)
n+3 I nt+d R"
_*QII,IZH—m +lz;, 7 = 1122711 -

A similar system is derived along the upper boundary grid line (i,J.J) for i =
1,..., 11,

Vit Vi
2

777 =0 and =0, foreachi, andforall neN. (4.27)
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The discrete mass equation is
B3+ ALht (USRS, — U,) + A5y (W, — h)
i,JJ T aaz Yi,g0 \Yit1,00 i—1,JJ 1az Vi, g7 \ it g i—1,JJ
= (1 + Q%Tty i?JJA) hZJJ’
and the discrete x—momentum equation is

n+3 n+3 n+3

7 7 7

—_—
1 1 1
n+3 n+3 n+3 n

At m
taas+ Qg <hi+1,JJ - hz;uJ) = Uiy + 28y

~n+l

+%hn lA
A B TAC IR

Combining equations (4.27), (4.28) and (4.29) gives the equation for (i,.J.J)

nbdonth el ntd L apetdoedd _gntd . anid
_*Mi,JJ Z, 155t N 2Z; 57 Tt *Mi,JJ Z, 1y — Si,JJAZi,JJ +2 /Bi,JJ )
where )
At 173
: 1+ 3Ap Vi, 0 0
Si; = 20 10
0 00

The discrete mass equation at grid point (1,JJ) is

thr% + At B UnJr% _ 1+ At Y/n Ao
1,77 T aazM,00Y2, 05 = 28y V1,00-1) N1

n+i n+2 .
Combining equation (4.32) with Vl;rf =0 and Ul:,rj =0 gives

ntg s m n
Iz, ;5 +.Quuszo ;5 = TV 0210,
with N
Qb n
T, = 0 00

0 0 0
Similarly the discrete mass equation at grid point (17, .J.J) is

n—l—% At 1% ”+% _ At 1/n n
hirgs = sashinssUniss = \L+5a;Vinoo—1) M-
Combini fion (4.35) with V"2 — 0 and U™ 2, = 0 gi
ombining equation (4.35) with V;; 2 =0 and U, 7, =0 gives

_ Q Z”"'% +IZ”+§ . 7
w1, JJEAT1—1.JJ 11,JJ — 11,JJ-1%11,JJ *

15

a1 L 1ol
UisJ zﬁ—tin*,JJ <U‘+1,JJ - U‘—l,JJ) + [29;2 + 5At <Q2+2 + Q?JFQQ;Q)] hi 17

(4.28)

1
n+3

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)



For fixed h* and U* the following block linear system of equations is to be solved for
the grid line (i, JJ),

1 1
IZ?:FJ; + *QLJJZZ:FLET = T?,JJAZ?,JJ )
widonkh | npontd d ek gntd e
_*M2,JJZ1,JJ +N 229 g7 T *MQ,JJZ3,JJ = SQ,JJ71Z2,JJ +2 ﬁZ,JJ )
wbdoned | pnonth | qmtbonkd _gnid o oned
_*M3,JJZ2,JJ +N 223 57 T *M3,JJZ4,JJ = S3,JJ71Z3,JJ +2 ﬁS,JJ ) (4.37)
wti et "
—Qurauz 2 g1z 5 = T aZir -

This completes the algorithm details for the first half step n +— n+ % . For each fixed
h* and U™, it involves solving a linear block tridiagonal system for each j =1,...,JJ.

1
Then the process is repeated with updates of h* and U* till convergence h* — h"" 2

1
and U* — U""2 .

5 Algorithmic details for the half step n + % —n+1
Rewrite the governing equations in a form that emphasizes the nonlinearity

hi + Uy, + Uhy + h*V, +V*h, = 0

Uy + UU, + V*U, + 20V *h, + 205k, — 203V
+ oz, y,t) + 20,V — (2 + Q2) ] h, = _@%+Q@gh+a@%w

V, + UV, + V*V, — 20,Uh, — 201 hy + 2Q3U

+ [a(z,y, t) — 20U — (] + Q3) h*] by, = + (Ql — QQQ?,) h+ Bz, y,t),
(5.1)
where h* and V* are the current intermediate values of A and V. In the second half
step the y—derivatives are discretized implicitly and the x— derivatives are discretized
explicitly. Only implicit nonlinear terms are starred.
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The discretizations of the equations (5.1) for the second half of the time step is

1 *n.-‘—l n-‘,—l *n.-‘—l n-‘,—l n-‘,—l
M i pnte Ui Ui e Pyt
1At i, 2Ax i,j 2Ax
+1 +1 +1 +1
+h* 'Viily#l*vitljfl + V*.hZHl*h?,jfl =0
2y 2Ay 2%) 2Ay
1 1 1
+1_ 3 nty ot +1 +1 +1 +1
Ui Uiy * n U”*% Uir1=Vio13 Loy Y Uiy ganety hlgei—hiog
N (5 2Az i,j 2Ay 2 i,j 2Ay
1 1
1 1 nty _,nt3y
n+1 n+ly, 3 . n+1)2 n+1)2 n+3 hi+1,j_hi—1,j
T [%j +2077V; <(Ql )+ (BT)7) gt | 65:2)
5.2
1y Y+l +1on+l) pntl +1h"+1*hn+% D+l
_ n n . n n n n o n i i,j n
2
e+l _ymts npd vyt vl _yndl bl R _prth
i,J () + U. "2 itl,yg  i—1,j + V>, ig4+1" Vig—1 QQTH—IU- Tolipr o1
N i,J 2Az i,j 2Ay 1 i,J 2Ax
—+1 n+1
n+1 n+177% n+1)2 n+1)2 * h;l,j+1_hi,j—1
+ [O‘i,j — 2L U - ((Ql )+ (257 )hm} TRy
1
— _oQntlntl + Ontl _ rtiqntt prtl + o+l h?,;ﬂ* :LjQ + an+1
= 3 UYij 1 2 %3 irj 1 TAL ij o
Equation (5.2) can be expressed in block tridiagonal form
_ Qntlgntl +Bn+1zn+1+ Cntlgntl - An-l—lZ”Jr% +Dn+1zn+%
_AnJrlZ”'i’% n+1
i, “i+lyg J
with ) )
n—g n—3
Ui,j hi,] 0
no_ At v n—3
j T 4Ax 105 5 Um’ 0 )
1 1
nyr" T2 n—3
—207U;, 0 Uy (5.4)
* *
N V;J 0 hi,j
n _ n * *
Oy =1y |2V Vi 0,
n *
a0 Vi
and ) .
n n ny/"2 n\2 n\2\ "3
1055 = o+ 291‘/;,]' - ((Ql) + (923) )hi,j
— 2 2
n — n n * n n *
20, = Qg5 — 2005 Ui,j - ((Ql) + (23) ) hi,j'

For fixed i = 2,...,II — 1 the equations (5.3) are applied for j =2,...,JJ —1. To
complete the tridiagonal system equations are needed (for each fixed i) at 7 = 1 and
j=JJ.
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5.1 The equations at j=1and j=.JJ for 1=2,..., [ —1

The equations at j = 1 and j = JJ are obtained from the boundary conditions at
y =0 and y = Ly. The only boundary condition at y = 0 is V' = 0. The discrete
version of this is equation (4.16). To obtain a boundary condition for h, use the mass
equation evaluated at y = 0

hy + hU, + Uhg + h*V, =0,

with discretization

1 1 1 1
n+1 At px 4l g3 At 3 nt3 n+sz n+3z
hi,l —gAyhmV;g = hi,l - —4Axhi,1 Ui—l—l,l - Ui—l,l 55
At UnJr% thr% thr% ( ’ )
T 4Az Vi1 i+1,10  Thi—11 ) -

To obtain a boundary condition for U, use the x—momentum equation at y = 0
Uy + UU, + 20k + [a(z,y,t) — (9 +Q3) h] hy = — (QZ + 9193) h+ Bz, y,t),

with discretization
n+%

URt+ 2087 4 Sae (gt ottt | et = O

1 1 1
At prts (rts nt3
—ia:Uin <Uz‘+1,1 - U143

—_—
n+1

1 1
At nt3 nt3
1Az %1 (hi+1,1 —hi_

oIS L LA
2 Iy B il -

(5.6)
Combining equations (4.16), (5.5) and (5.6) gives the equation for j = 1
ntl il ntl
Pzl Tzt = Kz E Lt - K e B, (B)
with
1. 0 0 1 0 0
pr — 293+§At(93+9mg> 10| L= |200 1 0],
0 0 1 0 00
U Rt 00 1
K». = At Z/’J\ ZT’ZJ_l J. . = At h* 000
T dae | ap, U o0f < di = aaghi
0 0 0 000

A similar strategy is used to construct the discrete equations at y = L. The
velocity boundary condition is V' = 0, with discretization given in (4.27). The discrete
mass equation is

1 1 1 1
n+1 At 7% n+1 _ gnts3 At 3 nt3 n+3 n+sz
hi,JJ ~ 2Ay i,JJV;,JJfl = hi,JJ - 4Axhi,JJ Ui+1,JJ - UF1,JJ

2.9
At UnJr% thr% . thr% ( )
N i+1,JJ i—=1,JJ ) -

18



and the discrete x—momentum equation is
n+%

Ui+ 205t S (gt artapt ) s = Ul

1 1 1
At 735 n+3 n+s5
_4Ain,JJ (Uz’+1,JJ - Uifl,JJ

+1
JJ

—_— 1 1
_ At oAl gty s
Az %, 7 \ i1 g i—1,JJ
oIS LA B
2 Ny T3 i, JJ -
(5.10)
Combining equations (4.27), (5.9) and (5.10) gives the equation for j = JJ
)
1 1 1
_ 7. n+1 n+l n+l  _ n+l nt3 n+1,7T5 _ gen+l T3 n+1
*Jz,JJZi,JJA“‘P Z, 55 — Ki,JJZifl,JJ—i_L Z;5j Ki,JJZiJrl,JJ +20; 77
(5.11)
For fixed h*, U* and V* the following block linear system of equations is to be solved
along vertical grid lines at interior lines ¢ =2,..., 11 — 1,
1 1 1
nt1,n+1 Coontl nt+1,"t3 n+1,"t3 _ gent1 nt3 n+1
P Z;, +*Jz,1zz‘,2 = Km Zi—1,1+L Z;4 Km Zi111 +2ﬁi,1 )
1 1 1
L, ntl n+1,n+1 ntl_n+l ntl, "t3 n+1,"t3 _ An+l "3 n+1
*Ci,Q Z;1 +B Z;o +*Ci,2 Z;3 = Az‘,2 Zi—1,2+D Z; o Ai,2 Zi+1,2+16i,2 )
1 1 1
_ (ntl n+l n+1,n+1 ntl n+l n+1,t3 n+1,"T2 _ An+l "3 n+1
Ci5zly + Bzl +,.Cl5 2z = Az 5+ D"z Al3z %+ B
1 1 1
_ 7. n+1 n+l n+l  _ n+l nt3 n+1, T3 _ gen+l T3 n
*Jz,JJZi,JJAWLP Z, 55 — Kz’,JJZFLJJ"‘L Z;1j Ki,JJZiJrl,JJ +2 /Bi,
(5.12)

This system is iterated until h* — A""1 and V* — V™. The equations along the
grid lines 7 =1 and ¢ = I1, highlighted in Figure 3, are solved separately.

5.2 Grid lines (1,j) and (I/,j) for j=1,...,JJ

The equations for grid lines ¢ = 1 and ¢ = I] are obtained by the boundary conditions
and restriction of the governing equations to the boundary. The boundary conditions
at x =0 is U(0,y,t) = 0. The discrete version of this is equation (4.6). To obtain a
boundary condition for A, use the mass equation at x =0

hy +hU, + B*V, +V*h, =0,
with discretization
1, A 1 1 A 1 1 At 75 0t
WS ety (VI = VT + a3V (W — hiGh) = (1 — 5as U2, 2) h® -

(5.13)
To obtain a boundary condition for V', use the y—momentum equation at (1, 7)

Vi + V'V, — 200k, + [a(z,y,t) — (92 + Q2) ] by = (Ql _ 9293) ht Bla,y,t),
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Figure 3: The grid layout with the vertical lines + = 1 and ¢ = I1 highlighted.

with discretization

VI Vi (VI - Vi) = [2et e g (@ - o) [
AL (T — W) = W 20t A,

Combining equations (4.6), (5.13) and (5.14) gives the equation for (1, 7)

—M; ; z 71#;11 +N" n+1 + *Ml,j Z?j}rl = 02] +2
with
Veo0 ks, L
i i.J _ 2Aa: ij
*Mi,j — 1Ay 9\ 0 0* ) Oi,j = 0
n
*Q 0 V;J —2971Z
1 0 0
N" — 0 10
—29?——%At<Q?——Q§Q§> 01

The mass equation at grid point (1,1) is
he + hU, + h*V, = 0,

with discretization

hn+1+ At hy Vn+1 — < At U )hﬁ%

27y 2Az

Combining equation (5.17) with V{"{" =0 and U'{" = 0 gives
—n+i pal
IZ?Jld + *Q1 1Zn+]L = Rg,l 2ZT,1 ’,

20
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(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



with

o o 0 01 . QA;BUT,ZJ 0 0
*Qi,j - QAyh’L] 00 0], Ri,j = 0 0 0f . (5.19)
0 00 0 0 0

Similarly the discrete mass equation at grid point (1,.JJ) is
Wy = ALV = (1= AL ) RS (5.20)
Combining equation (5.20) with V"7 =0 and U'}} = 0 gives
~QuA T = Raia (5.21)

For fixed h* and V* the following block linear system of equations is to be solved for
the grid line (1, j),

1 1

ntl | n+l1 _ |tz nt3

IZ1,1 *Ql 1212 = R2,1 Zy117,
W n-l—l n-l—l it o+l . /ntl nts n+1
_*M1,2 +N +*M1,2 Zy3 = 022 Zy5" t1 /31,2 )
~rtl n-l—l n-l—l it o1 . [/ntl ”JF% n+1

_*M1,3 1,2 +N +*M Z14 = 02,3 Zy3° +1 /31,3 ) (5.22)
7t — I—{”Jr% n+y
*Q1 Jle JJ 1tz = 2,07%1,77 -

A similar strategy is used along the right boundary ¢ = I'I. The boundary condition
is U(Ly,y,t) =0, with discretization (4.11). The discrete mass equation at (I7,7) is

n-l—l At n+1 n+1 n+1 n+1 _
h’II] 4AthI] (‘/}Ij+1 - ‘/Iljfl) 4Ay‘/11] (h’II]Jrl h’II] 1) -
At ”+2
( sz Urr 1;) hirg

and the discrete y—momentum equation is

(5.23)

Vi 4 ALV, (Vi — Vi) — 200 + dae (ot — agtoptt) | mpgd

At /7-1? thrl thrl _ V”"’% 2Qn+1h”+% 1At an+1
+4Ay* 11,5 ( I1,5+1 I1,5— 1) — VIrj; 1 11,5 ﬂII] .

(5.24)
Combining equations (4.11), (5.23) and (5.24) gives the equation for (/1,j)
A+l _ 2" ~—n+1 2" —n+1 n-l— n
=My I;ral 1 +N I;ral +Mpp IIJr]lJrl = Si- 152115 1 BUJF;, (5.25)
with
1+ 520,72 00
= n QA:B 2%
Sij = 0 00 (5.26)
20 01
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The discrete mass equation at lower right corner grid point (I7,1) is
hy +hU, + "V, =0,
with discretization
n+% n+%

h?1+11 + QAA—ty 71,1‘/17};1 = <1 + 2AA—t;pUIIfl,1> hII,l : (5'27)

Combining equation (5.27) with V7' =0 and U}/ = 0 gives

- n =+l ntl
Iz?ﬁ +*QH,1ZIFL,21 = T 41217, (5.28)
with N
T, = 0 0 0] . (5.29)

0 0 0
Similarly the discrete mass equation at upper right cornder grid point (117, .J.J) is

1 At 1% n+1 A ntg n+ty
Wi sy — ﬁhII,JJVII—,’—JJ—I = <1 + ﬁUH—ﬁ,JJ) hiy g (5.30)
Combining equation (5.30) with V}77/; = 0 and U},';, = 0 gives

1 1
~-Q gzl LI = T 2 s (5.31)
eI, JILI1,7]-1 g = *tr-1,J7%11,7 -

For fixed h* and V* the following block linear system of equations is to be solved along
the right boundary grid line ¢ = IT,

1 1
nt3 n+3

n+1 0 n+l
12777 +4Quaziis = Trria201
ot on41 ~ntl pa1 gt ont1 . gntl n+% n-+1
_*MII,2ZII,1 + N Ziro T *MII,2ZII,3 = SII—LZZII,Q +1 ﬂII,Q )
ot on41 ~ntl pa1 gt ont1 . gntl n+% n-+1
_*MII,?)ZII,Q + N Zirz T+ *MII,BZIIA = SII—1,3ZH,3 +1 ﬂII,3 ) (5.32)
o) n+1 LIz = TWF% Z"Jr%
*Rrr.g52r1,99-1 v Y2155 = Lg%,

This completes the algorithm details for the second half step n + % —n 4+ 1.
For each fixed h* and V*, it involves solving a linear block tridiagonal system for each
1 =1,...,11. Then the process is repeated with updates of h* and V* till convergence
h* — R and V* — Vntt,

Numerical results using this scheme are reported in [4].
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