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Abstract

New shallow-water equations, for sloshing in two dimensions (one horizontal and
one vertical) in a vessel which is undergoing rigid-body motion in the plane, are
derived. The planar motion of the vessel (pitch-surge-heave or roll-sway-heave) is
exactly modelled and the only approximations are in the fluid motion. The flow is
assumed to be inviscid but vortical, with approximations on the vertical velocity
and acceleration at the surface. These equations improve previous shallow water
models for sloshing. The model also contains the essence of the Penney-Price-
Taylor theory for the highest standing wave. The surface shallow water equations
are simulated using an implicit finite-difference scheme. Numerical experiments
are reported, including comparisons with existing results in the literature. The
extension to shallow-water flow in three dimensions and the coupled vessel slosh
dynamics are also discussed.
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1 Introduction

The theoretical and experimental study of fluid sloshing has a long history and continues
to attract considerable attention because of its importance in applications: the shipping
of liquid natural gas, sloshing of trapped water on the deck of a ship, liquid transport
along roads, as well as unusual applications such as sloshing in a swimming pool on-
board a passenger ship (RUPONEN ET AL. [59]), sloshing in a fish tank on deck (LEE ET
AL. [42]), sloshing in automobile fuel tanks (WIESCHE [65]), and transport of liquids by
robots in industrial applications (TzAMTZI & KOUVAKAS [63]). Examples where shallow
water sloshing is predominant are sloshing of trapped water on the deck of fishing vessels
(CAGLAYAN & STORCH [16], ADEE & CAGLAYAN [4]), and on the deck of offshore supply
vessels (LARANJINHA ET AL. [41]), and sloshing in wing fuel tanks of aircraft (DISIMILE
ET AL. [24]). The recent books of IBRAHIM [35] and FALTINSEN & TIMOKHA [28] which
have over 3000 references are both testimony to the current interest in the subject, and
an encyclopedic review of existing research on sloshing.

Although there is a rich history of the study of sloshing, there remains a considerable
range of phenomena that are not understood, mainly because sloshing is driven by a free
surface motion which is highly nonlinear. In addition there are the attendant problems of
fluid-ship interaction, hydroelastic effects, bubble formation, wave breaking and impact,
and probabilisitic aspects.

The interest in this paper is in sloshing in shallow water in a vessel that is undergoing
a general rigid body motion. In this paper attention is restricted to two dimensions and
the case of three dimensions is considered in ALEMI ARDAKANI & BRIDGES [10]. The
aim is to use exact equations for the rigid body motion of the vessel but approximate the
equations for the fluid motion. The approximations should simplify the equations but
with the minimum number of hypotheses.

The results in the literature on forced (vessel motion prescribed) shallow water sloshing
fall into two categories: derive approximate partial differential equations similar to the
classical shallow water equations, or use asymptotics, based on small depth aspect ratio
and forcing amplitude, to derive approximate equations which can be analyzed more
efficiently.

The first example of the former is the work of VERHAGEN & VAN WIJNGAARDEN [64].
They write down an approximation of the shallow-water equations of the form

hi + (hu), =0 and u; + wu, + gh, = esinwt, (1.1)

where e sinwt is due to the imposed rotation of the vessel, h(x,t) is the depth, and u(x,t)
is the horizontal velocity. The tilde is used to distinguish this choice of velocity from other
velocities used in this paper. A fixed frame is used so time-dependent boundary conditions
are imposed at the endwalls, * = 0, L. They solved the equations approximately using
a form of the method of characteristics. The principle observation is the formation of
a travelling hydraulic jump, and its characteristics were shown to be in agreement with
experiments. In followup work by CHESTER [19], the effect of dispersion and dissipation is
included in the shallow water model, showing improved comparison with the experiments
of CHESTER & BONES [20]. JONES & HULME [37] start with the full equations relative to
a rotating frame and give a new derivation of (1.1); they study the equations numerically
and with the use of a multi-scale perturbation expansion.



The first work using asymptotics to study forced sloshing in shallow water is OCK-
ENDON & OCKENDON [50]. The forcing is simplified to a harmonic horizontal translation,
and the small parameters are the depth aspect ratio, the amplitude of the forcing and the
frequency detuning. Rather than start with the shallow water equations, they start with
the full equations for irrotational flow and derive an integrodifferential equation for the
surface motion of the form

~9 +7
k) = Ny S Zeost = =3 [T gtas, (1.2
3 2 s 2 ) .
where K and A\ are parameters, related to the dispersion and frequency detuning respec-
tively, and n(t) is required to be a 2w— periodic function of ¢. In the limit K — 0 and
A — 0 this equation simplifies to an algebraic equation for 7. From this algebraic equa-
tion it can be deduced that there are three regions in the frequency-amplitude plane. For
fixed amplitude there is an interval around the natural frequency where (the hydraulic
analogy of) compressive shocks can be found, and outside this region the solutions are
regular periodic standing waves. Experiments of KOBINE [39] showed excellent agree-
ment with these results (see Figure 7 of [39]). In further work OCKENDON ET AL. [51]
it is shown that this equation has a wide range of exotic solutions. It has since inspired
study from a dynamical systems perspective (e.g. [31, 38, 30]). The equation (1.2) has
an infinite number of periodic and subharmonic solutions. These works show how forced
shallow water sloshing can lead to very complicated fluid motion through a cascade of
subharmonic solutions.

The range of validity of the asymptotic approach was extended by FALTINSEN & T1M-
OKHA [27] using modal expansion combined with asymptotics. They examine resonant
waves in shallow water (depth to width ratios between % and i) forced by surge & pitch
excitation at frequencies in the vicinity of the lowest natural frequency. The principal
small parameter is forcing amplitude which is of order €. The depth aspect ratio, velocity
potential and wave height are then all required to be of order €'/*. This scaling brings
in nonlinearity to fourth order and dispersion. The dispersion gives the theory a modal
form of Boussinesq equation, and no additional boundary conditions at the endwalls are
required. Secondary resonances are included. This theory allows for large dimension
modal expansion and they include up to 20 coupled modes. The large modal system of
coupled ODEs is then integrated numerically. They emphasize the role of dissipation and
validation by comparison with experiments. They show how modal truncation and choice
of dissipation influence the comparison with experiments.

The advantage of asymptotic methods is that detailed studies within the range of
validity are possible, leading to fundamental observations, and integration of a system of
ODEs will in general be much faster than integration of PDEs. However, the disadvantage
is the limited range of validity, requiring the depth aspect ratio, forcing amplitude and
frequency all to remain within a certain asymptotic range.

In this paper the first approach will be followed: derive a new model PDE based on
the shallow water equations. With this model there are no restrictions on the forcing
amplitude or frequency, and the vessel can undertake any rotation and translation, with
the full generality of the vessel motion retained. Viscosity is neglected but vorticity is
retained in the fluid motion and the only further approximations on the fluid are on the
vertical velocity and acceleration — at the free surface only. The retention of vorticity is
more important in 3D but still plays a role in 2D. For example Figures 14-15 of CHEN [18]
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show a non-trivial free surface vorticity for a class of 2D sloshing flows, although viscosity
is included in [18].

The key to retaining exact motion of the vessel is to use a body-fitted moving coor-
dinate system. The first work in this direction — in the context of shallow water — is the
paper of DILLINGHAM [22]. Starting with the full Euler equations in two-dimensions, a
set of shallow water equations for (h,u), where h(x,t) is the fluid depth and w(z,t) is
the depth-averaged horizontal velocity,

1 b
u = _/ U({L‘,y,t) dyv (13)
h Jo
of the following form, were derived
hi + (hu), =0 and @ + 0w, + a(x,t)’h, = b(z, )", (1.4)

where the terms a(z,t)” and b(x,t)P contain the vertical and horizontal accelerations
of the moving vessel (precise expressions are given in §9). The boundary conditions are
u =0 at the sidewalls.

With the choice of mean velocity w(x,t) the mass equation is exact in (1.4). How-
ever, the derivation of the momentum equation requires a number of assumptions. The
derivation in DILLINGHAM [22] is somewhat ad hoc, in that terms are neglected without
clear implications. A more careful derivation of the equations (1.4) is given by ARMENIO
& LA Rocca [12]. Their derivation leads to an equation of the same form as (1.4) but
their coefficients, denoted a(z,t)*® and b(w,t;y)A*", are very different from those in
(1.4). Both derivations will be reviewed in §9.

In constructing a shallow-water approximation, the velocity can be chosen to be the
horizontal velocity at any point between the bottom and the surface, or it can be an
average velocity. In principle, within the shallow-water approximation, all these velocities
should give the same equation, and that is the case — without rotation. With rotation,
different choices of horizontal velocity lead to different shallow water equations. Our orig-
inal intention was to use the depth-averaged velocity and precisely itemize the assump-
tions involved. The depth-averaged velocity seems most natural because the equation
h: + (hw), = 0 is then exact.

We discovered however that using the horizontal surface velocity,

h
U(‘/L‘7t> = u(x7 y’ t) Y (1'5)
where the surface notation is defined by
h
flo= oy t) = flzh(zt),1), (1.6)
y=h

leads to equations with some surprising and useful properties.

In two-dimensions (one vertical and one horizontal space direction), consider the
inviscid — but retaining vorticity — sloshing problem, with fluid occupying the region
0 <y < h(z,t) with 0 < < L. The governing equations are the Euler equations rela-
tive to a moving frame of reference, and conservation of mass, with the usual boundary



conditions (the details are recorded in §2). Remarkably, the horizontal surface velocity
satisfies the exact equation

Dol"
Ut—i‘UUx—i‘ (CL(SL’,t)—f—F: > hw :b(:c,t)—l—mim, (17)
h
where %‘ is the Lagrangian vertical acceleration at the free surface, a(x,t) is vertical

acceleration due to the rotating frame, and reduces to ¢, the gravitational constant,
when the reference frame is stationary, and b(x,t) is a horizontal acceleration due to the
rotating frame (derivation given in §3).

The term ok, is a curvature term and appears only when surface tension is present,
with o > 0 the coefficient of surface tension. The curvature term is of the form

O-erzo-hmmm—i_"'v

where the dots represent terms nonlinear in h (see equation (6.4)), and so surface tension
provides a form of dispersive regularization.

The equation (1.7) is not closed since it requires the vertical acceleration at the surface,
but the form is illuminating, and neglect of the Lagrangian vertical acceleration gives a
closed system. On the other hand, equation (1.7) shows how the Lagrangian vertical
acceleration drives the surface dynamics. In the case where tank is fixed, the acceleration
term reduces to

L Dvl"
a’ =g+ Dt
According to early work of PENNEY & PRICE [56] and TAYLOR [62], a” is precisely the
term that drives breaking of standing waves. They argue that a’ ~ 0 is the condition
for the highest standing wave. Experiments of TAYLOR [62] confirmed the importance of
this quantity. In this paper we will be primarily interested in the case of shallow water
where the Lagrangian vertical accelerations at the surface are small, but some comments
about the case a” ~ 0 are in Appendix C.
The kinematic condition at the free surface is

hi+Uhy =V or h+ (hU), =V + hU, , (1.8)

where V' = v(z, h(z,t),t) is the vertical velocity at the surface. Hence, it is clear from
(1.7) and (1.8) that a closed system of shallow water equations is obtained by making the
following assumptions on the vertical velocity and acceleration — at the surface,

h

‘V+hU$ << Uy, and FZ << lal, (1.9)

where Uy is a reference order one velocity. When the amplitude of rotation is small the
second condition requires the magnitude of the vertical acceleration at the surface to be
small compared with g.

It is equations (1.7) and (1.8), with the two assumptions (1.9) which are the basis for
the analysis and numerics in this paper. This shallow-water model for sloshing is simulated



with an implicit numerical algorithm that is similar to a one-dimensional Abbott-Ionescu
scheme. This scheme and its variants are widely used in hydraulics ABBOTT [2]. A review
of other schemes that have been or could be used is given in §10. The main reason for
using this scheme is that it generalizes nicely to two-horizontal space dimensions and is
used in [10]. Secondary reasons include the form of the numerical dissipation generated
by the truncation error, the block tridiagonal structure, and its generalization to include
dynamic coupling with the vessel motion. The application of this scheme requires only
the solution of block tridiagonal coefficient matrices at each step, with an iterative process
to account for the nonlinearity.

An outline of the paper is as follows. The governing equations are recorded in §2, based
on a new derivation of the moving frame equations in ALEM1 ARDAKANI & BRIDGES [11].
In §3 a derivation of the new shallow water slosh equation (1.7) is given. In §9 a detailed
comparison of the new SWEs with previous work is presented. The numerical algorithm
is then developed in §10. The simulations based on the new algorithm are then presented
in §12. The theory and computation in this paper point to new directions for 3D sloshing
and for dynamic coupling between the vessel and fluid motion and these directions are
discussed in §15.

2 Governing equations

The configuration of the fluid in a rotating-translating vessel is shown in Figure 1. The
vessel is a rigid body and two frames of reference are used to study the motion. The
spatial (inertial) frame has coordinates X = (X,Y") and the body frame has coordinates
x = (x,y). The distance from the body frame origin to the point of rotation is denoted
by d = (dy,dy) and d is a constant. The whole system has a uniform translation q(t).
The position of a particle in the body frame is related to a point in the spatial frame by

X=Qx+d) +q,

where Q is a proper rotation (Q7 = Q™! and det(Q) = 1). The position of the rigid
body is uniquely described by the pair (q,Q) O’REILLY [53]. Let 6(t) be the angular
position between the X and z axes. The angular velocity vector is € = (0,0,€2) with
Q) = 0. The connection between 6 and Q is

: : 0 —1
Q=60JQ, J= (1 O) .
The fluid occupies the region

0<y<h(z,t) with 0<z<L.

The governing equations relative to the body frame will be used. The body (moving) frame
for sloshing has been used by a number of authors (e.g. LOU ET AL. [47], FALTINSEN ET
AL. [26], LA RoccA ET AL. [40], IBRAHIM [35], FALTINSEN & TIMOKHA [28]). There
are some subtleties, especially in 3D which will be used in [10], and so a new derivation
based on first principles is given in the technical report [11]. The momentum equations,
derived in [11], for the fluid in the vessel relative to the body coordinate system fixed to



the vessel, are

Bup i — —gsing+ 200+ Qy + dy) + Q*(x + di) — G1 cos — Gosin
Dyt %g—z = —gcosf —2Qu — Qz +dy) + Q(y + da) + G1sin 6 — G cos b, 2
where g > 0 is the gravitational constant and
Du_ou ou ow
Dt ot ox y
Conservation of mass relative to the body frame takes the usual form
Uy +v, =0. (2.2)
The boundary conditions are
u=0 at z=0 and z=L, v=0 at y=0, (2.3)
and
p=—pok, and h;+uh,=v, at y=h(zt), (2.4)

where o > 0 is the coefficient of surface tension and
hy
V1+h2

R =

The vorticity is defined by
v Ou

" Or oy

The equation governing vorticity is obtained by differentiating the x—momentum equa-
tion with respect to y and the y—momentum equation with respect to x, leading to

D 0 (Dv 0 [ Du .

with the second equality following from substitution into (2.1) and use of (2.2). This
equation is important for the derivation of the shallow water equations. The integrated
form of the vorticity equation is

%(/Oh\?dy>+§—x</ohu\7dy>:—29h. (2.6)

V= /OL /Oh(v+29) dydz . (2.7)

It follows from (2.6) that V, = 0 and so V is a constant of motion.

Let
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Figure 1: Diagram showing coordinate systems for rotating translating tank. The coor-
dinate system (X', Y”) is the translation by q of the fixed coordinate system (X,Y).

3 Reduction of the pressure gradient

The key to the derivation of the shallow water equations is the treatment of the pressure
field. Integrating the vertical momentum equation in (2.1) from any point y to the surface
h, and applying the pressure free-surface boundary condition gives the following exact
equation for the pressure field,

h h
Dv
1 = [ ZUis+20
pp(x,y,t) | Dt ds /y uds

(3.1)
+(gcosf + Qx4 dy) — Q%dy)(h —y) — %QZ(h2 — ) — Oky,

plus the terms associated with q which don’t affect the derivation and can be brought

back into the end result.

The typical strategy at this point in the derivation of the SWEs is to drop the vertical
acceleration term %. However, when we differentiate the pressure with respect to x,
and use the vorticity equation, this term simplifies, and so it can be retained exactly.

An expression for the horizontal pressure gradient can be obtained by differentiating
the exact expression for the pressure (3.1). Look at the term with the Lagrangian vertical

acceleration first, and apply the vorticity equation (2.5)

0 " Do Dvl" "o (Duv

— —d = h,— — = )d

Oz (/y Dt S) Dt +/y Dz (Dt) i
Dvl" "To (Du .

2 T (2 o)

Dt , L0y \ Dt
Dv|"  Dul"

= h=—| + = —20(h—uy).
T +Dty (h—y)




Now, for the second term

0 h " h
— (29/ uds) = 2Qhyu| +2Q [ u,ds
ox y ¥

h
= 20hgu| +2Q [ (uy +v,)ds — 2Q [ v, dy

- U(:Ev Y, t))

= —2Qh +2Qu(x,y,t).

h
= 2Qh,u|l — 29 (v

Using u, + v, = 0 and the kinematic free surface boundary condition.
Now differentiate the complete expression for p(z,y,t)

1op 0 " Du 0 h
+Q(h —y) + (geos b+ Qz + dy) — Q2dy)hy — Q2hhy — Ok,

h
Du
+ Dt

h
—2Q(h — ) — 2Qh; + 20
Yy

+Q(h —y) + (gcos O + Qx + dy) — Q2dy) hy — Q2hhy — 0Ky

_ Dv
= ho'pp

h

L (3.2)
Du
+ ot

—Q(h — y) — 2Qh, + 200

y
+(gcosO + Qx4 dy) — Q(h + dy))hy — ks
. h
- (gcos&—}-Q(:E—}-dl) — DP(h+dy) + 22 > hs
h

—Q(h—y) —2Qh + 200 — 0k, -

Y

_ o Dv
hth

Du
+ Dt

4 Reduction of the horizontal momentum equation
Now substitute (3.2) into the z—momentum equation in (2.1)
Du  Dul" : Dvl"
4= 0 — 0 -
Dt+Dty+<gCOSH+ (x+dy) (h+d2)+Dt >hx
—Q(h —y) — 2Qh, + 2Qv = —gsin + 2Qu + Qy + do) + P (z + dy) .

Du

There are convenient cancellations: Z¢,

Du
Dt

200 and Qy all cancel out, leaving
h Do
Q —Q? -
—l—<gcos€~|— (x+dy) (h+d2)~|—Dt )hx (4.1)
= 20h; — gsin @ + Q(h + do) + QD (z + dy) + g -
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Conveniently, the material derivative of u at the surface can be expressed purely in terms
of the surface horizontal velocity

h h

+ uy (hy + uhy — v)

h
= Du
~ Dt

h
— Du

Uy +UU, = [uy + uyhy + uuy +uuyh,) | = 5

Substituting into (4.1) then gives the x—momentum equation at the free surface

h
U +UU, + <a($, t)+ g—? ) hy =b(x,t) + 0Kkes (4.2)

where, after adding back in the terms with ¢; and ¢y,

a(z,t) = gcosf+ Qx+dy) — Q2 (h +dy) — Gy sinb + G cos b
| (13
b(z,t) = 2Qh; —gsind+ Q(h +da) + Q*(x + dy) — §1 cos — Gasin 6.

The equation (4.2) is exact. Note also that the assumption of finite-depth is never used in
the derivation of (4.2). It is also valid for an infinite-depth fluid. The translation vector
(q1,q2) is relative to the spatial frame. The rotation of the acceleration vector (gi, do)
that appears in (4.3) is due to the fact that these accelerations are viewed from the body
frame in (4.2). When the vessel is stationary (4.2) reduces to the surface equation for the
classical water wave problem (cf. BRIDGES [15]).

There is also an exact equation for the surface vorticity. Let

h
D(x,t) =V

Then evaluating (2.5) at y = h,
I+ UT, = —2Q.

Hence T" + 2€2 is transported by the horizontal surface velocity. However, in contrast to
conservation of V in (2.7), conservation of surface vorticity is nullified in general by the

boundary conditions
d L L
— </ Fd:c—l—QLQ) :/ I'v,dz.
dt \ J, 0

5 Conservation of mass

The vertical average of the horizontal velocity @(x,t) is defined by

_ h

u(x,t) = 1[5 ulz,y t)dy.
Differentiating
h

he 4+ (ha), = he+heu| + [ u,dy

= h+Uh,+ foh (ug + v,) dy — foh vydy

= ht+Uhx—V+U

y=0

= 0,

11



using u,+v, = 0, the bottom boundary condition and the kinematic free surface boundary
condition. Hence if @ is used for the horizontal velocity then the h—equation in the SWEs
in the form

hi+ (hu), = 0,

is exact.

However as the momentum equation is written in terms of the surface velocity U(x,t),
the h—equation should also be in terms of the surface velocity. The surface and average
velocities are related by

Uz, t) —u(x,t) = %fohyuydy. (5.1)

Use this identity to formulate the mass equation in terms of the surface velocity field.
Differentiating (5.1) and using mass conservation,

(%[h(U—ﬂ)] =V +hU, = h+ (WU), . (5.2)

The error in using the surface velocity U(z,t) in the h—equation can be characterized
two ways:

V+hU,| < U, or

2 (h(U —n)) ‘ < Uy, (5.3)

where U is a reference order one velocity.

6 SWEs for 2-D sloshing in a rotating vessel
To summarize, the pre-SWEs for (h,U) are

hi+ (WU), = V +hU,,

h (6.1)
U +UU, + | a(x,t) + % hy = b(x,t)+ 0k -
The equation for V' (x,t) can be added
Do|"
— 2
Vit UVe = — (6.2)

. . . DU . .
The system (6.1) with or without (6.2) is not closed. If Ft‘ is specified, then the system

of three equations (6.1)—(6.2) for (h,U, V) is closed. This system of three equations can
be further reduced to a system of two equations with an additional assumption on the
surface vertical velocity.

Henceforth it is assumed that the vertical velocity at the free surface satisfies

‘v +hU,| < U, (SWE-1)

12



and the Lagrangian vertical acceleration at the free surface satisfies

Dvn
’E < la(z,t)]. (SWE-2)

The assumption (SWE-1) has an alternative characterization as shown in (5.3). For
non-rotating tank, the second assumption (SWE-2) is equivalent to assuming that the
Lagrangian vertical acceleration is small compared with the gravitational acceleration

h

<q.
Dt g

Note that the coefficient of h, in (6.1) can lead to instability and loss of well-posedness.
Consider the linearized constant coefficient problem

hi + hoU, = 0,
U, +ah, = 0,

where a is a constant. Differentiating and combining gives the following wave equation
hy — ahohg, = 0.

This equation is well-posed only when @ > 0. So in order that (6.1) with the assumptions
(SWE-1) and (SWE-2) be well-posed, the third assumption is

a(z,t) >0. (SWE-3)

Under these assumptions the shallow water equations for sloshing relative to a rotating
frame are

hi+ (hU), =0 and U, 4+ UU, + a(x,t)h, = b(x,t) + 0kys , (6.3)

with a(z,t) and b(z,t) as defined in equation (4.3). The term ok,, provides dispersive
regularization since

_82 he _8_ L S R (6.4)
P\ T ) T ar \(TrRzpr) T ’ '

where the - -- are nonlinear terms. The term ok, contributes dispersive regularization at
the linear level, much like a Boussinesq term. The equations with ¢ # 0 have third-order
space derivatives and so additional boundary conditions at = = 0, L would be required
(BiLLINGHAM [14]). The primary interest in this paper is long waves, and so surface
tension effects will be henceforth neglected

o=0. (SWE-4)

13



6.1 Conservation form of the surface SWEs

Surprisingly, even though the coefficients depend on space and time, these equations can
be put into conservation form. With o = 0 the pair of equations (6.3) is equivalent to

5 (VD) + 5 (VE) =0, (6.5)

with
I(h,U) = hU — Q(h + d3)*, (6.6)

and .
E = LU?h+ 59(h+ ds)*cos0 + gzhsind + 1Q(z + di)(h + d)?

—L02(h 4 dy)? — LhQ2(x + dy)? (6.7)

—2(G1sin 0 — o cos O)(h + da)? + (G1 cos b + o sin 0)zh .

The gradient in (6.5) is with respect to h and U: VI := (%, 2L} The functional I is
a generalization of momentum of the SWEs, hU, and FE is a generalization of the energy
of the SWEs, 2 hU?+ L gh*. A derivation of this conservation form is given in Appendix

A.

6.2 Criticality

The form of the equations (6.3) suggests a generalization of criticality. Criticality occurs
when the Jacobian of the quasilinear part of (6.3) is singular,

wl, 0y 1o

When the vessel is stationary, the determinant reduces to

U h
det L] U] :gh(FQ_l),

where F? = U?/gh is the Froude number; that is, criticality corresponds to the usual
case of Froude number unity. When the vessel is undergoing forced translation and/or
rotation, the determinant equal to zero gives the condition
F2:c039+—(:(:+d1)——(h—l—dg)—@sin@—i—@cosﬁ. (6.8)
g g g g

When the vessel is rotating and or translating, the system can pass through criticality at
particular values of x and t. Numerical experiments show that the right hand side of
(6.8) can exceed unity (see Figure 14).

7 (SWE-1) and (SWE-2) in the shallow-water limit

In this section a scaling argument and asymptotics are used to analyze (SWE-1) and
(SWE-2) in the shallow-water limit. The shallowness parameter is

5—h0
=7
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where L is a representative horizontal length scale. Let Uy = \/ghy be the representative
horizontal velocity scale. Introduce the standard shallow-water scaling (e.g. p. 482 of
DINGEMANS [23] or p. 26 of JOHNSON [36]),

- % sy _y _tW
A Ty S R
(7.1)
-~ u ~ 0 ?L_h 5 P
U = —, UV=—, = — = .
Uy ely ho pgho

The scaled version of the surface velocities are denoted by U and V.

The typical strategy for deriving an asymptotic shallow-water model is to scale the
full Euler equations, and then use an asymptotic argument to reduce the vertical pressure
field and vertical velocities (e.g. §5.1 of DINGEMANS [23]). Here however we have an
advantage as the full Euler equations have been reduced to the exact surface equations
(6.1). Hence the strategy here is to start by scaling the exact equations (6.1), and then
apply an asymptotic argument. This strategy leads to a concise argument for the shallow-
asymptotic form for (SWE-1) and (SWE-2).

To check (SWE-1), start by scaling the exact mass equation in (6.1)

o (R0)s = V + s (7.2)

At first glance it appears that the left-hand side and the right-hand side are of the same
order, since £ does not appear. However, the sum of the two terms on the right-hand side
is of higher order. The fact that the right-hand side is of higher order is intuitively clear,
since it can be expressed in terms of the velocity differences U —% and in the shallow-water
approximation the horizontal surface velocity and average velocity are asymptotically
equivalent. However, to make this precise go back to the unscaled mass equation and
rewrite the right-hand side as

a h
0

using (5.1) and (5.2). Now substitute for u, using the vorticity field

b+ (hU ), = g—x (/Ohy(vx ) dy) | (7.3)

The key to showing the right-hand side is of higher order is the scaling of the vorticity.
The appropriate scaling (which leads to a uniform &? estimate of u,) is to assume that

the vorticity is of order e
Uy =
V=—eV.
L

Scaling (7.3) then gives

o o (" _[ov =\
ht~+(hU)5:€2%/O y<%—\7> dy . (7.4)

Taking the limit ¢ — 0 shows that (SWE-1) is satisfied. However, to be precise it is
essential that

o ["_(05 S\ o
A V| dy is bounded in the limit ¢ — 0. (7.5)
T /o T
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Du |l
Dt

! h) (7.6)

(a(x, t) + %

be small, relative to magnitude of a (z,t). Scaling the Lagrangian vertical acceleration
gives

Assumption (SWE-2) requires that the vertical acceleration , in

h
v = V,+ UV,
Y e
= 4% (Vg+UVg>
3
U3 Dy
T Dt
Hence N
Dvh_ 62D§h
pe| ~ % pi|

using UZ = ghy = gLe. The scaled version of (7.6) is therefore

L Doff a+€20wﬁ
a = - —~ .
Dt INg ™ i

In the shallow-water regime, the assumption (SWE-2) is satisfied if

Dv 5
— is of order one and 'ﬁ‘h‘ is bounded as ¢ — 0. (7.7)
g Dt
However, by introducing scaling and taking an asymptotic limit, other anomalies can
be introduced. Introduce the following scaled variables/parameters

_ _ ~ 4~ d
o= =2, =" d2:l72‘
0

- 7.8
L’ ho L’ (7.8)

Now using (7.1) and (7.8) and scaling the momentum equation in (6.3) considering (SWE-
4) and taking an asymptotic limit as ¢ — 0 gives

sin 6

ﬁ;—k UUs; + cos Ohy = — + 62 <f+ ci) — q1;cos b, (7.9)

€

which shows that the first term on the right-hand side is of order e~! and is unbounded

as € — 0. Hence this scaling puts a restriction on the vessel rotation angle. So in the
shallow-water regime 6 should be of order € or higher to ensure that the first term on the
right-hand side of (7.9) is consistent. In conclusion, this scaling suggest that roll/pitch
motion should be an order of magnitude smaller than q-translations in order to avoid
large fluid motions that would violate (SWE-1) and (SWE-2).
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8 Deriving the rotating SWEs using an asymptotic
argument

In this section it is shown that equations (7.4) and (7.9) which are respectively the scaled
versions of the new SWEs in (6.1) can be recovered exactly by the classical small parameter
argument, starting with the full Euler equations, that is found in most books (e.g. §2.6
of JOHNSON [36]).

Use the standard shallow water scaling introduced in (7.1) and (7.8) and nondimen-
sionalize the Euler equations in (2.1) to obtain respectively the scaled x—momentum and
y—momentum equations

i+ s + g+ B = — 320+ 20070 + 20 (5 + d
N (8.1)
—i—@% <5 + d1> — q1;c080 — €qp_sin 0,
and
€2 (Vs + W05 + 005) + Py = —cosf+ e (—29;&“ — 0 (55+ 671) + algsm)
. (52)
+e? (9% (?j+ dg) — o, COS 6> )
The mass equation scales as
ﬂg—l—f?jg =0, (8.3)
and the boundary conditions are
u=0 at =0 and z=1, v=0 at y=0, (8.4)
and B B B
p=0 and hy+uhz=7v, at @v:h(fﬁ,%) , (8.5)

where the surface tension is neglected in the boundary condition for pressure.
Taking the limit of as ¢ — 0 in (8.2) gives

g—g:—cos@,

and so N .
h o h -
/g g_;id:;: /g —cosfds, = ;'5(5, ?7,%) = cos 6 (h - ﬂ) )

using the pressure free surface boundary condition. So the horizontal pressure gradient
reads B
op oh
— =cosf—. 8.6
ox ox (8.6)
The vorticity equation is important in deriving the shallow-water equations. Scaling
the vorticity equation, V = v, — u,, gives

~ ~ L
Uy = 621]5 - 708\7
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Hence, if ULV — &%V for any P > 0 then
0

Uiy = %05 — Py = uyF— 0 as e—0. (8.7)

So in the shallow-water limit, the horizontal velocity is independent of y. This is the
usual assumption in shallow-water theory.
Now taking the limit of (8.1) as ¢ — 0 using (8.6) and (8.7) gives

U ~ sin 0
Uz + uug + cos Ohy = —

—1—9% (E—i—c?l) — q1;cos b,

which is exactly the same as (7.9). Now, assuming that

0=¢eb, (8.8)

— 0 as £—0.
€

with 6 of order one, then

And so this latter equation reduces to

U+ Utz +hy = —0—q (8.9)

noting that in (8.9), u can be interpreted as the horizontal depth-averaged scaled velocity
(see below) and in (7.9), U is the horizontal surface scaled velocity.
To recover (7.4) integrate equation (8.3) from y =0 to y = h,
o~~~
0 = fO (u;—i—vg) dy

' (8.10)

— Nz +70

= ﬁ;-i— (%ﬂ)~ ,
using the bottom boundary condition and kinematic free surface boundary condition.
Note that in the first line of (8.10), @ in huz is the horizontal velocity at any level, and

in substitution for ﬂ‘h from (8.5), w is the horizontal velocity at the free surface, but as
u is independent of y the terms on the right-hand side of (8.10) can be summed as in the
second line of (8.10). The vertical average of the horizontal scaled velocity is defined by

_ 1 (h
u= :/ u(7,9,1)dy.
h Jo
Differentiating -
(ﬁz) = 2 ("uF5,0)d7

xT

h . ~
h ~ ~ ~ h~ 1~
+ Jo (Uz +05) dy — [ vydy

— hsu

= —hg’
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using uz+vy = 0, the bottom boundary condition and the kinematic free surface boundary
condition. So

hy + (ﬁi)i —0.
From the assumption (8.7) it can be concluded that vy is independent of ¥, since
Uy =tz and u=1u(T,1) .
So B B
= g = <—hf+~ahi> 7 (8.11)
h
and this shows that the vertical velocity is a linear function of y (page 147 of JOHN-
SON [36]).

Equations (8.9) and (8.10) in terms of the original variables are
U+ utly + ghe = —g60 — qu,

This shallow-water model is the simplified version of the more precise new shallow-water
model (6.1). Is is asymptotically valid in the limit ¢ — 0.

9 Comparison with previous work on rotating SWEs

The first derivation of the SWEs for sloshing in a rotating translating vessel was given
by DILLINGHAM [22]. The SWEs are of the same form as (6.3) but the expressions for
a(x,t) and b(x,t) are different, and Dillingham uses the average velocity uw in (1.3).
Denote Dillingham’s coefficients by a(x,t)P and b(x,t)?; then (after adapting to the
notation here, and noting that Dillingham sets d; = 0)

a(z,t)? = gcosf + Qx — Q%dy + 20U — Gy sin 6 + G, cos b,
. (9.1)
bz, t)P = —gsind + Qdy + Q%*r — Gy cos — G sind.

In Dillingham’s notation, dy = z4. To see the difference with ¢ and b in (4.3) rewrite
(9.1)
a(z,t)? = a(x,t) +Qh+20u,

b(z,t)? = b(z,t) — Qh — 2Qh, .

In this comparison, the surface velocity is assumed close to the average velocity. In general
the two velocities may not be close. The precise difference is quantified in (1.3).

The terms Q2h and Qh are neglected by Dillingham as being small compared with
02d, and ng, which is reasonable for large dy but not for small dy. (See Figures 2 and
3 for numerical experiments confirming this observation.) The terms 2Qu and 2Qh, are
due to Dillingham’s neglect of the horizontal Coriolis force (2Qu) which is not justified.
Indeed, if 2Qv is retained and v is replaced by the approximate surface velocity ~ —hu, ,
then the two formulations are closer.

Since the assumptions in DILLINGHAM [22] are not precise it is not easy to see what
error is induced by the neglect of the above terms. One implication of these assumptions

(9.2)
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is that the conservation form (6.5) is lost in Dillingham’s formulation, and there isn’t a
variational formulation. We also show some numerical experiments in §12 where the two
formulations are compared and clear divergence occurs for large times.

HuANG & HSIUNG [33] give a derivation of the rotating shallow water equations, but
their final equations are almost identical to Dillingham’s SWEs. They implicitly use u for
the velocity field, and their functions are related to a and b in (4.3) by (after identifying
U and @)

a(z, )8 = a(x,t) +2Qu,

bz, t)™ = b(x,t) —20h, — Qh.

Comparison with (9.2) shows they include one additional term. However, the critical
Coriolis terms are missing. They also formulate the translations relative to the body
frame rather than the spatial frame (see discussion in §11). However, within certain
parameter regimes the numerical results obtained using the HH SWEs compare very well
with the surface SWES (see Figure 11 in §12.2). A review on derivation of HH SWEs is
given in technical report [8].

ARMENIO & LA Rocca [12] also use the average horizontal velocity but give a more
precise derivation of the SWEs. The derivation of [12] is reviewed in Appendix B. The
derivation of [12] leads to the following form for the momentum equation

Ty + Uty + a(x, ) h, = b(x, t;y) (9.3)
with ,
a(z, )M = gcosh+ Qx +dy) — Q2(h + dy) + 201,
b(z, t; )R = —gsind — 2QhT, + Qy — h + dy) + Q(z + dy) .
With appropriate change of notation, this is equation (18) in [12]. Note that the vehicle
acceleration q is absent in this derivation but it can be easily added. Henceforth the pair
of equations h; + (huw), = 0 and (9.3) are called the ALR SWEs.

With q neglected, and assuming U ~ wu, the ALR coefficients relative to a and b in
(4.3) are

(9.4)

a(z,t)ME = a(z,t)+2Qu,
bz, t; ) = b(x,t) + Qy — 2h) — 2Q(hy + h,) .

The comparison can be simplified by using the mass equation to eliminate the second
term in a(z,t)*’® and the third term in b(z,t;y)4*". After this change the two systems
are very close (assuming U ~ ). The coefficient b(z,t;y)4L% still depends on y. There
are a number of choices for y: y =0, y = %h (obtained by averaging), y = h and
y = 2h. The most natural choice is y = %h which is obtained by averaging. Another
interesting choice is ¥y = h. In this case the equations have an interesting variational
principle (ALEMI ARDAKANI & BRIDGES [6]). However, the conservation form is lost
unless y = 2h which is not physically reasonable. Henceforth in discussing the ALR
SWEs we will use the choice y = h.

It is remarkable that the ALR SWEs are very close to the surface equations, when U
and u are identified, especially since the surface equations have only two assumptions, and
the ALR SWESs have four assumptions. Although the two sets of SWEs are similar, there
are still two principal advantages to using the surface SWEs: first it is very clear what the
assumptions are in the derivation, and secondly, the derivation extends in a straightfor-
ward way to the case of three-dimensional rotating shallow-water flow, whereas deriving
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the SWEs in 3D with the average velocity is very difficult and not always unambiguous
(ALEMI ARDAKANI & BRIDGES [10]).

10 Numerical algorithm for shallow-water sloshing

Sloshing in shallow water relative to a rotating frame has been simulated numerically
using a number of different methods. A number of authors have used Glimm’s method to
simulate shallow water sloshing (e.g. [22, 43, 55, 54]). Glimm’s method is very effective in
treating a large number of travelling hydraulic jumps, but the solutions are discontinuous.
Armenio points out in the discussion of the paper by HUANG & HSIUNG [32] that Glimm’s
method also suffers from a strong mass variation over time in a simulation. JONES &
HULME [37] used Lax-Wendroff, but did not find it to be effective. Lax-Wendroff is ex-
plicit with a time step restriction and unacceptably large truncation errors (ABBOTT [2]).
ARMENIO & LA Rocca [12] have used space-time conservation elements, developed by
CHANG [17], which have excellent conservation properties. They find that the method
works very well for the simulation of both standing waves and hydraulic jumps, and the
speed of travelling hydraulic jumps is well predicted even for large amplitudes of exci-
tation. HUANG & HSIUNG [32, 33, 34] have used flux-vector splitting. This method,
which is originally due to STEGER & WARMING [61], involves computing eigenvalues of
the Jacobian matrices, and is effective for tracking multi-directional characteristics. Their
numerical results are qualitatively in agreement with DILLINGHAM [22].

Our strategy for computing shallow-water sloshing is threefold. We want a method
which extends easily to the case of two-horizontal space dimensions. Secondly, we want
a method that is both implicit and has some numerical dissipation. Thirdly, we want
a method which generalizes easily to the case of coupled vessel-fluid motion. For one
horizontal space dimension there are a number of methods that could be used. We first
implemented the Preissmann scheme (ABBOTT [2]) and found it to have excellent prop-
erties. The Preissmann scheme is also very effective for transcritical flows (FREITAG &
MORTON [29]. However, there are problems with extending the Preissmann scheme to
two horizontal space dimensions (ABBOTT & BAsco [3]).

Instead we use a fully-implicit spatially-centred finite difference scheme which leads
to a block tridiagonal coefficient matrix. It is similar to a one-dimensional version of the
Abbott-Tonescu scheme and the Leendertse scheme [44] which are both widely used in
open channel hydraulics. The representation of waves by this scheme is studied in §4.10
of [2] in one and two horizontal space dimensions.

The scheme has numerical dissipation, but the form of the dissipation is similar to
the action of viscosity. The truncation error is of the form of the heat equation and so
is strongly wavenumber dependent. Moreover the numerical dissipation follows closely
the hydraulic structure of the equations. See the technical report ALEMI ARDAKANI
& BRIDGES [9] for an analysis of the form of the numerical dissipation. The numerical
dissipation is helpful for eliminating transients and spurious high-wavenumber oscillation
in the formation of travelling hydraulic jumps.

Rewrite the governing equations (6.3) in a form suitable for the scheme,

hi + Uhy +hU, = 0,

. 10.1
U + (a(z,t) — Q*h + 2QU)h, + (U + 2Q0)U, = [B(z,t) + Qh, (10-1)
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where o and 3 are the terms that are independent of h and U,

afz,t) = geosf+ Qx+dy) — Q%dy — Gy sinb + o cos b

. 10.2
B(z,t) = —gsinf+ Qdy+ Q*(x + dy) — Gy cos — Gosinf. (10-2)

In this scheme all space derivatives are approximated by 3—point centred difference
and time derivatives by forward difference. In order to treat the nonlinearity, an iteration
scheme is used. In the first sweep, values of h,U from the previous time step are used.
These are then updated and a second sweep is implemented. This procedure is repeated
until the previous and current values of h and U are within a prescribed tolerance at all
points. Denote the current intermediate values of h,U by h* and U*.

The z—interval 0 < z < L is split into JJ — 1 intervals of length Az = ﬁ and so
rj=(—-1DAx, j=1,...,JJ,
and
by = h(zj,t,) and U} :=U(z;,t,),
where t, = nAt with At the fixed time step.
The discretization of the equations (10.1) is then
n+1 n n+1 n+1 n+1 n+1
hi™” — R +U*hj+1 —hi5 +thj+1 —US 0
At J 2Ax J 2Ax ’
yrtt —yn Rl — pntl
J J ntl _(rA2px 4 oQntl* J+1 Jj—1
At + (Oé] ( ) J + J) 2AT
TL+1 - Uﬂ+1 )
+ (U5 + 20 hy) P = g
x
(10.3)
where
of == alrj,t,) and G = B(x),t,) .
Setting
h? )
z = I
! ( Uj
equation (10.3) becomes
An+1 n+1 Bn+1 n+1 An+1 n+1l __ 0 1 n At n+1 1 104
Az zi TR % = )% T B; 0/ (10.4)
with
At ot (x4 oqrtipr —QMHIAL 1
An+1 _ o ( j + ]) BnJrl = 10.5
J 2Azx []]j* ns ’ 1 0]’ (105)
and

—_~—

n+1 __ _n+l n+1\2 7 x n+1lyr*
o =alt — ()R 4 2QT U
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The equations at j = 1 and j = JJ are obtained from the boundary conditions. The

only boundary condition at = 0 is U = 0. The discrete version of this is

Up + Uy

U=20 d

=0, forall neN.
To obtain a boundary condition for h, use the mass equation at x =0
hi + h*U, =0,

with discretization
=0.

h711+1 _ h717, U2n+1
h*
At i Ax
Combining (10.6) and (10.7) gives the equation for j =1

hr At [0 1 1 0
n+1 1 n+1 n
%1 A [0 0] R [0 0] a1

Similarly at x = L,

Usron +US0
2

Uj; =0 and =0, forall neN.

and the discrete mass equation is

n+1 n n+1
hJJ — hJJ * UJJ—I

At Y A =0

Combining these two equations gives the discretization at j = J.J,

hy Ao 1], n 1 0] ,
_JAJ—I {0 o} zZjih + 2y = {0 0} A

(10.6)

(10.7)

(10.8)

(10.9)

(10.10)

(10.11)

For fixed h* and U* the following block linear system of equations is to be solved,

n * n 1 O n
i+ Nz = 0 0] z!
_Ag+lz7l’b+1 +Bn+1z72’b+1 +A72’L+1Zg+1 — (])- é Z3+Atﬂg+1
_Agz—l—lzg—i-l _’_Bn+1zg+1 _’_Ag,—l—lzz—&-l — g.) é Zgz_’_Atﬂg-‘rl
_AJilZJiz + B szil + AJJJFQZJ}rl = L O} 25+ AtLS
* n n 1 O n
—hy Nz}t + 277 = {O O} Zjy-
where A
t (0 1
N= A [0 0] '
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The unknown vector is Z := (z1,2s, ...,257_1,257) € R/ x R/7. Tts coefficient matrix is
a block tridiagonal matrix. It is also diagonally dominant, since the norm of B"*! is of
order 1 and the norm of A}‘H is of order At when Az is fixed. For fixed A* and U* this
is just a linear system and can be solved by standard algorithms. We used both MATLAB
and FORTRAN in order to double check the results. MATLAB is quicker to program and
has a built in block-tridiagonal solver. FORTRAN is more work to program but executes
faster. A slight speedup of the algorithm can be obtained by replacing the nonlinear terms
Uh, + hU, by the linear term —h; and this modified algorithm is discussed in ALEMI
ARDAKANI & BRIDGES [9].

The coefficient matrices in the block-tridiagonal system are dependent upon h* and
U* so an iterative process is added to the solution procedure. At the beginning of a time
step R is set equal to h} and Uy = U} for each j. Then the linear system is solved,
giving new values for h* and U* which are used to update the coefficient matrices. This
process is repeated until max;{|h} —h?“ |+ |U;—U;‘+1 |} is below some tolerance, typically
taken to be 1078. We have not studied the convergence properties of this iteration, but
away from criticality and severe hydraulic jumps the convergence is quick (typically 2-5
iterations). Moreover, according to ABBOTT [2] and ABBOTT & BAsco [3], this type of
iteration is widely used in the computational hydraulics community.

The initial conditions for the fluid velocity and height at ¢ = 0 are typically taken to
be

U(z,0) =0 and h(z,0)=hg, (10.12)

where hg is the still water level.

11 Rigid body motion of the vessel

The fluid vessel is a rigid body free to undergo any motion in the plane. Every rigid body
motion in the plane is uniquely determined by (q(t), Q(t)) where q(t) is a vector in R?
and Q(¢) is an orthogonal matrix with unit determinant (O’REILLY [53]). In the plane
this reduces to two translations ¢;(t) and ¢»2(¢) and an angle 6(t).

If the translations are zero, then specifying the motion consists of specifying 6(t),
corresponding to roll or pitch motion of the vessel. Here we will restrict attention to
harmonic motion of amplitude § and frequency w,

O(t) = dsin(wt), Q=60, Q=40, (11.1)

where 0 is of order € = hy/L. It is not the value of the frequency that is important,
but its value relative to the natural frequency. In the limit of shallow water, the natural
frequencies of the fluid are

Wy = gho%, m € N. (11.2)
In the case of pure translations, § = 0 and ¢;(t) and/or g¢(t) are specified.

The case of mixed rotation/translation requires more care. From the viewpoint of a
rigid body, q(t) here is the absolute translation: translation of the origin of the body frame
as in Figure 1. However, in ship hydrodynamics spatial translations are relative to the
body motion: translation in the direction of the body azes: that is; surge, sway and heave.
Hence one must be careful in interpreting the literature. For example, DILLINGHAM [22]
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uses absolute translation as here, whereas HUANG & HSIUNG [33] and FALTINSEN &
TIMOKHA [27] use translations along the body axes. Either choice is correct, but one
must be careful in interpretation. For example, in [27], a coupled pitch-surge excitation
is proposed of the form (adjusting to the notation here)

¢ () = Avsin(wt), g (H) =0 and 6(t) = Aycos(wt),  (11.3)

where A; and A, are specified amplitudes. The surge ¢;""*°(¢) is along the x— axis which

is attached to the body. Hence the absolute acceleration vector is
Gi(t) = cosf(t) "™ (1),
G2(t) = sinf(t) G (t),

g1\ _ |cos® —sinf| (G
(qg) N [sine cos 0] (qgeaVE) '
There is an induced vertical displacement relative to the absolute frame. In other words,
to represent a pure pitch-surge excitation of the form (11.3) would require an experi-
ment which specified both vertical and horizontal displacements of the vessel relative to a
laboratory frame of reference.

Therefore the natural approach for comparison with experiments (particularly when
both rotation and translation are present) is to specify the absolute translations along with
the rotations. On the other hand, we are not aware of any experiments which combine
both. The paper of DISIMILE ET AL. [24] indicates that their experimental facility has
the capability to produce all 6 degrees of freedom in the forcing, but only planar rotations
are reported so far.

When both translations and rotations are specified and are harmonic there is the
possibility of two frequencies, resulting in quasiperiodic forcing. The simplest analogous
model is that of Duffing’s equation with quasiperiodic forcing. This problem has been
studied by WIGGINS [66] and he shows that chaos results, and experiments of MOON
& HOLMES [48] on quasiperiodic forcing also indicate chaos. In this paper, the simplest
coupled forcing is considered, where both frequencies are the same, but the phase differs
and results on this are presented in §13.

since in general

12 Numerical experiments

Our first numerical experiment is to compare the computations using the surface SWEs
with Dillingham’s SWEs. In order to facilitate comparison the same numerical method is
used for both, with the only difference being the choice of a(z,t),b(x,t) for the surface
SWEs and the choice a(z,t)?,b(x,t)P for the case of Dillingham’s SWEs. Fix data as
shown in the first row of Table 1. Then with the initial conditions (10.12) a comparison
between the two systems is shown in Figures 2 and 3. A particular value of = is chosen
(x = 0.4m) and the time dependence of h(z,t) at that location is plotted as a function
of time.

The results diverge after some time. The error is predominantly amplitude error, but
then at larger times, some phase errors appear. |dy| = 0.5m in Figure 2, and |dy| is 10
times smaller in Figure 3. The larger divergence between the two results when |ds| is
small confirms the prediction based on the analysis of the equations in §9.
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Table 1: Input data for the numerical experiments in Figures 2-14. In all cases, ¢(t) =
¢2(t) = 0 and the initial conditions are h(z,0) = hg and U(z,0) = 0. The first natural
frequency w; is listed to two significant figures using (11.2) with g = 9.81m/s?.

Figure L ho dy do ) w w1 Az At
(m) (m) (m) (m) (rad) (rad/sec) (rad/sec) (m) (sec)
2 0.5 0.075 —-0.25 £0.5 /180 10.77 5.39 0.005 0.005
3 0.5 0.075 —-0.25 £0.05 /180 10.77 5.39 0.005 0.005
4 0.5 0.025 —-0.25 0.048 varying varying 3.11 0.005 0.005
5 0.5 0.025 —0.25 0.048 0.917/180 3.98 3.11 0.005 0.005
8 0.5 0.05 =025 0.048 0.917/180 5.05 4.40 0.005 0.005
9 0.5 0.05 =025 0.048 0.917/180 5.56 4.40 0.005 0.005
10 0.5 0.025 —0.25 0.048 1.707/180 3.98 3.11 0.005 0.005
11 1 0.06 —0.5 —0.522 0.067 2.40 241 0.005 0.005
12 0.5 0.075 —0.25 varying /180 varying 5.39 0.005 0.005
13,14 | 0.5 0.075 —0.25 0.0 /180 5.0 5.39 0.005 0.005
0.1
0.075}
0.05F Dillingham'™s SWEs [{
‘ ‘ ‘ ‘Sul:face SWEs
0 5 10 15 20 25
0.09
0.075¢
0_ 06 | | | |
0 5 10 15 20 25

Figure 2: Surface elevation at z = 0.40m with parameters listed in Table 1 showing

a comparison between the surface SWEs and Dillingham’s SWEs.

ds = 0.50m and

dy = —0.50m for upper and lower figures respectively. The horizontal axis is time in sec

and the vertical axis is wave height in m.
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Figure 3: Same as Figure 2 with dy = 0.05m and dy = —0.05m for the upper and lower
figures respectively.

12.1 Comparison with the ALR SWEs

ARMENIO & LA Rocca [12] present numerical simulations using the ALR SWEs (9.3)
and they compare their results with both in house experiments and direct numerical sim-
ulations of the two-dimensional flowfield using a marker-and-cell type method including
Reynold’s averaging (called RANSE in their paper). Here we will compare numerical
simulations of the surface SWEs with the ALR SWEs simulations, and by inference also
compare with their experiments and RANSE simulations.

[12] point out that the experiments were not able to produce strictly harmonic forcing,
and so they used the experimental tank motion as input into the numerics rather than
a strict harmonic function. Here we will use a strictly harmonic forcing for the angular
motion, and this may affect the comparison.

The two graphs in Figure 4 show the computational results corresponding to Figures
13 and 14 in [12]. The parameter values are listed in the third row of Table 1. The only
difference between the upper and lower data sets is the forcing amplitude. It is 0.91° in
lower graph in Figure 4 and 1.7° in the upper graph. The figure shows the maximum wave
height (|Mmaz — Amin|/L) as a function of the forcing frequency. The natural frequency
is approximately 7, and that is typically where the maximum amplitude occurs. The
comparison is qualitatively good but the slope is much more gentle in these figures. This
difference could be due to either the change in forcing, or the effect of transients.

The time dependence of the wave height at a fixed value of x (z = 0.4m) is plotted
in Figure 5. The parameters are the same as in Figure 4 (at the lower forcing amplitude)
but with the forcing frequency fixed at w = 3.98 rad/sec. Note that there are transient
values of the wave height which exceed the steady state (periodic) maximum amplitude.
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Figure 4: Comparison of the computation with the surface SWEs with Figure 13 and
Figure 14 of [12]. The horizontal axis is time in frequency rad/sec and the vertical axis
is nondimensional wave height at * = 0.4m in m.

The appearance of large transients and eventual settling down to steady state motion is
precisely what occurs in Figure 15 of [12]. This behaviour is consistent with the RANSE
simulations although both the RANSE simulations and the experiments show the appear-
ance of additional harmonics. To see what is happening in the transient versus steady
state regimes in Figure 5, snapshots of the vessel showing the spatial dependence of the
waveheight are shown at a sequence of times in Figures 6 and 7. The initial transient re-
gion corresponds to a travelling hydraulic jump, and it settles down to a periodic standing
wave.

Figures 8 and 9 show the dramatic difference between forcing near the natural fre-
quency and forcing away from the natural frequency. Figure 8 has parameter values
corresponding to Figure 20 in [12]: ho/L = 0.10, w = 5.05rad/sec (close to resonance)
and 6 = 0.91°. The time history of the wave height is shown at x = 0.40m. The quali-
tative agreement with Figure 20 in [12] is excellent. However, their RANSE simulations
show the presence of several additional wave modes. This comparison is an example where
the SWESs capture the principal qualitative properties of the waves but not the detail.

Figure 9 shows a computation with the surface SWEs with parameter values associated
with Figure 21 in [12]. Same data as in Figure 8 but with w = 5.56 rad/sec, so it is away
from resonance. In this case the motion is much more regular. Again this simulation
compares very well with the SWE simulation in Figure 21 of [12]. In this case the RANSE
simulations and the experiments had an additional high frequency component, which gave
the appearance of beating.

Figure 10 shows spatial dependence of the wave profiles at parameter values corre-
sponding to Figure 17 in [12]. The agreement between the current simulations and [12]
in this case is excellent.

12.2 Comparison with Huang & Hsiung [33]

The SWEs used in [33] are almost the same as Dillingham’s. For pure rotation, they have
an example with a strong hydraulic jump which provides a good test of a numerical scheme.
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Figure 5: Comparison of the computation with the surface SWEs with Figure 15 of [12].
Data tabulated in Table 1. The horizontal axis is time in sec and the vertical axis is wave
height in m at x = 0.4m.

Figure 6: Wave profiles computed using the surface SWEs showing the free surface as a
function of x at t = 2.5s, t =3.0s, t =3.5s, t =4.1s, t = 4.55s for the left column
from top to bottom and at ¢ = 5.1s, t = 5.6s, t =6.0s, t = 6.4s, t = 6.9s for the
right column from top to bottom. Parameter values the same as in Figure 5.
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Figure 7: Continuation of Figure 6. Wave profiles computed using the surface SWEs
showing the free surface as a function of x. The snapshots are at t = 9.0s, t = 9.7 s,
t=10.5s,t=109s, t = 11.5s for the left column from top to bottom and at t = 12.0 s,
t=12.4s,t=129s, t =13.5s, t = 14.0 s for the right column from top to bottom.

Figure 8: Comparison of the computation with the surface SWEs with Figure 20 of [12].
Data are hg = L/10, w = 5.057rad/sec and § = 0.91°. The forcing frequency is very
close to the natural frequency. The horizontal axis is time in sec and the vertical axis is
wave height in m at x = 0.4m.
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Figure 9: Comparison of the computation with the surface SWEs with Figure 21 of [12].
The data are hy = L/10, w = 5.56rad/sec (away from natural frequency), § = 0.91°.
The horizontal axis is time in sec and the vertical axis is wave height in m at x = 0.4m.
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Figure 10: Comparison of the computation with the surface SWEs with Figure 17 of [12].
Data tabulated in Table 1.
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Figure 11: Comparison of the numerics based on the surface SWEs with Figure 6 of [33].
The horizontal axis is z in m and the vertical axis is water depth in m.

Figure 11 shows a simulation using the surface SWEs with parameter values as in Figure
6 of [33]. The frequency is very close to the first natural frequency (wy =~ 2.41rad/sec)
and, as is typically the case for forcing near the natural frequency, a travelling hydraulic
jump forms. The numerics captures the travelling hydraulic jump very well. Surprisingly
the results also are close to those of [33], particularly the phase, although the amplitudes
differ especially for later times.

12.3 Effect of centre of rotation

An advantage of the SWEs over the full equations is that parametric studies can be
carried out quickly. Here an example is shown of the effect of change of the centre of
rotation. Suppose the vessel is forced to rotate about a point which lies on the vertical
line through the centroid; that is d; = —%L and dy can vary. Taking parameter values
as indicated in Table 1, Figure 12 shows the nondimensional wave height at = 0.40m
versus ds, plotted for different frequencies. The principal trend is that when the centre of
rotation is below the tank bottom the response is higher and the farther below the larger
the amplitude. Hence tanks on the deck of a ship will have greater response than tanks
below deck (other parameters being equal), and tanks below the centre of gravity will in
general be more stable.

PANTAZOPOULOS [55] shows numerical results including the effect of centre of rotata-
tion (see Figure 6 in PANTAZOPOULOS [55] and Figure 29 in PANTAZOPOULOS [54]). His
results show monotone increase of amplitude with dy. For most frequency values the
results in Figure 12 are in qualitative agreement with [55]. However, a new phenom-
ena shows up here when the forcing frequency is at approximately the second natural
frequency (the lowest curve in Figure 12), where initially there is a decrease and then
increase.
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Figure 12: Computed nondimensional wave height versus the center of rotation for dif-
ferent frequencies for the surface SWEs with parameters § = 1.0°, L = 0.5m and
ho = 0.075m. The first natural frequency is w; =~ 5.38rad/sec. The horizontal axis
is dy in m and the vertical axis is nondimensional wave height in m at z = 0.25m.

12.4 Courant and Froude numbers

The Courant number is important for the numerical propagation of waves (ABBOTT &
BAsco [3]). It is optimal, even for an implicit scheme, to operate with a Courant number
unity, where the phase and amplitude errors are the smallest. Sloshing is a severe test of
this requirement because of the change of direction of the flow. An example to illustrate
this is shown in Figure 13. The local Courant number is

At
Cr(z,t) = E|U(x,t)| :

The Courant number is seen to have a rather significant variation over time and space.
Nevertheless, the computations using the SWEs seem to capture the qualitative properties
of the waves.

With space-time dependent SWEs, the concept of criticality is not precise. But as
noted in §6.2 one can define a notion of criticality as the values of parameters at which
the Jacobian vanishes (i.e. equation (6.8)). Based on this definition, the critical Froude
number is the right hand side of (6.8). When 6 = 0, the critical Froude number is unity.
For illustration, Figure 14 shows the variation of the critical Froude number as a function
of x at various values of time. In this case the variation with z is almost linear, but
note that the critical Froude number can exceed unity at some values of x and t. The
parameter values are the same as in Figure 13.
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Figure 13: Local Courant number versus x at different values of time. Data tabulated in
Table 1. The horizontal axis is « in m and the vertical axis is Courant number.
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Figure 14: Critical Froude number (right-hand side of (6.8)) versus « at different ¢. Data
tabulated in Table 1. The horizontal axis is x in m and the vertical axis is Froude number

squared.
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Figure 15: Computed nondimensional wave height (|hpmaz —Rmin|/ L) versus the phase shift
for different frequencies for the surface SWEs with parameters 6 = 0.035, 6, = 0.5rad,
L=05m, hg=0.075m, dy = —0.25m, do = 0.1m, Az = 0.006m and At = 0.005s.
The horizontal axis is 6 in rad and the vertical axis is nondimensional wave height at
= 0.25m.

13 Coupled surge—pitch forcing

Coupled surge-pitch, or surge-pitch-heave forcing is easily modeled with the surface SWEs.
In this section results illustrating the coupled surge-pitch motion are presented. For
simplicity the surge and pitch forcing are chosen to be harmonic with the same frequency
but out of phase, and the amplitude of the two is the same order of magnitude. The

rotation is
0(t) = dbpsin(wt +6;), 0<6; <,

and horizontal translation is
¢1(t) = dLsin(wt) .

The parameters are fixed at

0 = 0.035, 6y=0.5rad,

L = 05m, hy=0.07m, dy=-025m, dy=01m,
and the discretization parameters are Ax = 0.005m and At = 0.005s. Figure 15 shows
computed nondimensional wave height (|ha0 — Rhmin|/L) versus the phase shift for dif-
ferent frequencies for the surface SWEs. The maximum response is when the pitch and
surge forcing are 180° out of phase.

Snapshots of the fluid motion at a sequence of times are shown in Figure 13. In this
figure the parameter values are

0 = 0.244346, 0y =0.5rad, w=5.0rad/sec, 0= Frad,

(13.1)
L = 05m, hy=015m, dy=-025m, dy=0.0m,

and the numerical parameters are Ax = 0.005m and At = 0.005s. In these simula-
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Figure 16: Snapshots of rigid body motion with interior fluid sloshing for coupled surge-
pitch motion, with parameter values given in (13.1). The snapshots are at ¢ = 2.30 s,
t = 2.85s for the first row from left to right, ¢t = 3.30s, t = 3.55s for the second row
from left to right, and ¢t = 3.85s, t = 4.0 s for the third row from left to right.
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tions transients have settled down (these figures show the flowfield between 460 and 800
timesteps). Full simulations including earlier and later times have been combined into a
video. This and other sloshing videos can be seen at the Surrey sloshing website [1].

14 Sloshing on London Eye

Here we will restrict attention to sloshing in a vessel attached to a ferris wheel of radius
r. that is prescribed to travel along a circular path such that

t) = —rq.(costy—cosb,.)
a1 (t) (cos b ) (14.1)
q@a2(t) = 1. (sinf. —sinby) ,

where
‘90 = wct + 90 s

and is prescribed to harmonically rotate with frequency w and amplitude § about the
suspension point

=0dsinwt, =0, Q=4. (14.2)

It is not the value of the frequency that is important, but its value relative to the natural
frequency 11.2).
Set the input data as

hgy = 0.15m, L=1m, 6=0.3047rad,

w = w; =3.8109rad/sec, Oy=0rad, w.=0.5rad/sec,
re = 2m, dy=-0.5m, dy=-0.60m, At=0.01sec,
Az = 0.01m.

Then with the initial conditions (10.12) Figure 17 shows the formation and propagation
of a travelling hydraulic jump at a sequence of times when the tank is rotating about the
suspension point harmonically with the forcing frequency near the first natural frequency
of the fluid. This example shows the consistency between the numerical results and the
theoretical conclusion of §7 which states that the roll/pitch motion should be an order of
magnitude smaller than q-translations in order to avoid large fluid motions that would
violate (SWE-1) and (SWE-2).
For the second numerical experiment set the input data as

hg = 0.15m, L=1m, =0.150567rad,

w = wy="T7.6218rad/sec, 0y=0rad, w.=0.5rad/sec,
re = 2m, dy=-0.5m, dy=-0.60m, At=0.01sec,
Az = 0.01m.

Figure 18 shows the snapshots of the rigid-body with the interior fluid sloshing when the
frequency of rotation about the suspension point is near the second natural frequency
of the fluid which causes the appearance of additional harmonics in the generated wave
shape.
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Figure 17: Snapshots of a rigid-body with interior fluid sloshing at a sequence of times.
The snapshots in a counterclockwise order are at ¢t = 1sec, t = 3.1sec, t = 5.3 sec,
t="7.2sec and t = 9.7 sec.
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Figure 18: Snapshots of a rigid-body with interior fluid sloshing when w = wy.
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15 Concluding remarks

The starting point of this paper was the surface equations for sloshing in a vessel under-
going rigid body motion in the plane. These equations improve on previous shallow water
equations for sloshing in that the vessel motion is exact and there are only two assump-
tions on the fluid motion. They show how the breaking criterion of Penney-Price-Taylor
arises, how surface tension affects the SWEs, and are amenable to numerical simulation.
The advantage of restricting to shallow water flow (rather than the full two-dimensional
equations) is that numerical imulations of the SWEs are much faster.

Remarkably, all these properties carry over to the case of shallow water sloshing in
three dimensions. In ALEMI ARDAKANI & BRIDGES [10] the surface equations for shallow
water sloshing in a vessel undergoing an arbitrary rigid body motion in three dimensions
are derived. The motion of the vessel is exact and the only approximations are on the
fluid motion, again requiring only two natural hypotheses on the surface vertical velocity
and acceleration, generalising (1.9).

In this paper the motion of the vessel has been prescribed. The vessel motion can
also be determined by solving the rigid-body equations coupled to the fluid motion. The
dynamically coupled problem is studied in [7, 6].

As an example of the coupled problem, consider for simplicity pure horizontal trans-
lation of the vessel (go = 6 = 0). The exact equation for the dynamically-coupled motion
of a vessel of dry mass m, and spring constant v with the fluid is

d L h .
pr (/ / pu(x,y,t)dyde + (mg + mf)q1> +vqg =0,
o Jo

where my = phoL is the fluid mass. A derivation of this equation is given in [7]. Now,
approximate the horizontal momentum by a shallow water model

d L
p (/ phU(z,t) dx + (ms + mf)q'l) +vg =0.
0
Then using the momentum equation with g; = @ = 0 this equation can be reduced to
msq.l + vqr = %pg(h’<L7 t)Q - h(07 t))2 ) (151)

which is Cooker’s equation (COOKER [21]). Solution of the coupled problem, where ¢;(¢)
is determined from (15.1) rather than specified, leads to very different dynamics. The
natural frequencies change and the dynamic coupling can mollify the fluid motion or
enhance it. Numerical simulation of the coupled problem (6.3) and (15.1) is reported
in ALEMI ARDAKANI & BRIDGES [7]. The full dynamically coupled problem including
rotation is studied in ALEMI ARDAKANTI [5].
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— Appendix —

A Conservation form of the rotating SWEs

The sloshing equations (6.3) can be written in conservation form when surface tension is
neglected. This property is surprising since neither Dillingham’s SWEs, HH SWEs, or
the ALR SWEs have this property.

Let

R = U +a(z,t)(h+dy) + 39 (h + do)? (A1)
+gzsind — 1Q%(z + di)? + (G1 cos b + o sinb)z.

Then the z—momentum equation (6.3) can be written in the conservation form
(U —-2Q(h+d2)): + R, = 0.

The mass equation in (6.3) is already in conservation form. However, there is even more
structure to these equations. The function R is the derivative of another function with
respect to h. Call this function E(h,U). Expand R,
R = IU?+g(h+dy)cosf+ grsing + Uz + di)(h + do) — 3Q%(x + dy)?
—102(h + do)? + (—G1 sin 6 + Ga cos ) (h + do) + (G cos 6 + Gasin )z,

and integrate g—f = R, giving the expression (6.7). Then
R=9% and hU =232, (A-2)

and the governing equations are
oh | & (OEY _
o+ (50) =0,

and
G (U —20(h+ do)) + 5 (57) = 0.

Further define the momentum by (6.6). Then the governing equations take the form
5 (VD) + 5 (VE) =0, (A-3)

where the gradient consists of derivatives with respect to h and U.

This form of the equations captures an important property of the classical shallow
water equations. BENJAMIN & BOWMAN [13] show that the classical shallow water
equations can be expressed in terms of the energy E and momentum I,

E = %hu2+ %gh2 and [ = hu.
Then with VE = (gh + $u? uh) and VI = (u, h), the classical SWEs are recovered by
substituting £ and I into the form (A-3).
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B Derivation of Armenio & La Rocca’s (1996) SWEs

In the derivation of ARMENIO & LA Rocca [12], the mean velocity (1.3) is used and
so the mass equation is exact. In this appendix a review of the derivation of the SWE
momentum equation due to [12] is given. The reduction of the momentum equations
proceeds as follows. The translation accelerations q are neglected since they do not affect
the derivation. The starting point of the ALR derivation is the momentum equations

D 10 :
e/ —gsinf + 2Qu + Q(y + dz) + Q*(z + dy),
Dt~ pox
Dv 10p (B-1)
Dt oy —gcosf —2Qu — Q(z + dy) + Q*(y + do)
The first assumption is to neglect the vertical acceleration
Dv
— =0. ALR-1
Dt ( )
The vertical momentum equation then reduces to
10 .
_6_p = —gcosf — 2Qu — Q(x +dy) + Q*(y + da),
pPoy

Integrate this equation over the entire depth

1 "o " :
-p(z,y,t)| — —p(z,0,t) = —ghcosh — QQ/ udy — Qz + dy)h + LQ%(h* + 2hd,) .
p P 0

Applying the dynamic free surface boundary condition, and neglecting surface tension,
gives an expression for the pressure field at y =0

1 )
;p(m, 0,t) = ghcosf + 2Qhu + Q(z + di)h — $Q*(h* + 2hds) .

Now consider the z—momentum equation in (B-1). To simplify this equation two
assumptions are invoked

200~ 0, (ALR-2)
and
10p

P in the z—momentum equation is evaluated at y =0 . (ALR-3)
p Ox

With these assumptions the z—momentum equation simplifies to

Du 10p :
—— 4= = —gsinf + ) d 0? d
Dt+p3x » gsin® + Q(y + dy) + Q°(x +dy),
with L8
;£ = ghy cos 0 + 2Q(hT0), + Qh + Qz + dy)hy — Q2(h + do)hs .
y=0

However, the system is still not closed. One additional assumption is required

Du
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With this hypothesis, the z—momentum equation becomes (9.3) with coefficients (9.4).

The first two assumptions (ALR-1)-(ALR-2) are analogues of the ones used in the
derivation of the surface equations in §3. It is difficult to quantify the error in assumption
(ALR-3). The error in Assumption (ALR-4) can be clarified however, since

1 (" Du 10 (", y
7 ; Edy—ut—uux—ﬁ%</o u dy—hu).

Hence the error is small if the the right-hand side of this expression is small. A sufficient
condition for neglect is when the depth-averaged velocity squared is close to the square
of the depth-averaged velocity.

C Vertical accelerations and the highest standing wave

One of the interesting features of the exact surface equation for the horizontal surface
velocity is the way that the vertical acceleration appears. Define

(1)

A condition proposed by PENNEY & PRICE [56] for the limiting periodic standing wave
is a” = 0. They argued that — in the absence of surface tension — the pressure just inside
the liquid near the surface for a standing wave must be positive or zero and consequently
at the surface g—i < 0 which is equivalent to a” > 0. When this condition is violated then
the standing wave should cease to exist.

Experiments of TAYLOR [62] confirmed the importance of a” in determining the high-
est wave. Numerical calculations of SAFFMANN & YUEN [60] also found that a’ =~ 0 for
standing waves near breaking. In their discussion of breaking mechanisms for sloshing
waves, the authors of ROYON-LEBEAUD ET AL. [58] remark that a destabilization of a
standing wave first appears when the wave front acceleration exceeds the acceleration of
gravity, OKAMURA [52] has computed large amplitude standing waves with crest accel-
erations up to —0.9998 g, with a” tending to zero at the crest as the limiting standing
wave is approached.

The property that the vertical acceleration tends to —g as the highest wave is ap-
proached is distinctly different from the case of Stokes progressive waves where the ver-
tical acceleration at the crest tends to — %g as the Stokes limiting wave is approached
LONGUET-HIGGINS [45]. OKAMURA [52] also shows that the crest acceleration provides a
better parameterization than wave height for very steep waves. In his study of vertical jets
emitted by unsteady standing waves, LONGUET-HIGGINS [46] found vertical accelerations
exceeding —10g.

Reformulate the governing equations around the function a
equations for (h,U,V) are

L. The exact governing

ht‘i‘Uhm:V,
U +UU, +a" hy = 0kyy, (C-2)
Vi+UV,+g=a".
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The latter equation follows by noting that

h
ht + U (Um

h
hx>
h

+ (ht + Uhy — V)u,

h
+ vy

h

Vi+UV, = v + vy

h

= (v + uv, + vvy)

h
Dol — gl —g.

Dt

The equations (C-2) are not closed — unless al is given.

Taking the limit a’ — 0 and neglecting surface tension, the equation for U reduces
to the inviscid Burger’s equation U; + UU, = 0 which has solutions that blow up in
finite time. POMEAU ET AL. [57] argue that this singularity is related to wave breaking
( BRIDGES [15]). Hence the Penney-Price-Taylor criterion is indeed a limiting condition
for standing waves.

By combining the z—momentum equation (neglecting surface tension) with the mass
equation (assuming |V + hU,| is small) gives

he+ (W), =0 and U, +UU, +a*h, =0.

In this case the limit a® — 0 is similar to the high Froude number limit of classical
shallow water theory, and this limit produces a range of exotic solutions EDWARDS ET
AL. [25].

One can derive a form of energy equation for (C-2) when ¢ =0,

& +U&E =d"hy, &:=LU+V?) +gh.

If a¥ ~ 0 is the appropriate condition for wave breaking in a stationary vessel, it
suggests that the appropriate condition for wave breaking in a rotating translating vessel

is
Dvl" .
F;} +gcosf+ Qx4 di) — Q(h+ dy) — G sin 0 + Gocos < 0.
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