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1 Introduction

In the literature there are two strategies for deriving the shallow water equations
(SWEs) relative to a rotating frame in three dimensions. The first — the strategy
of DILLINGHAM, FALZARANO & PANTAZOPOULOS - is reviewed in the report [3].
The second strategy is that of HUANG & HSIUNG [10, 8, 9, 11] (hereafter HH). In
this report the derivation of HH is reviewed identifying the key assumptions.

The HH derivation is then contrasted with a new third strategy for deriving
SWEs using the surface equations derived in [2].

2 3D equations relative to a moving frame

The starting point is the momentum equations for the fluid in a vessel relative to a
body-fixed coordinate system

Dt + VD +2Q % U+ Qx(x+d)+Q2x (Qx(x+d)+4+9¢Q"E; =0,
(2.1)
where g > 0 is the gravitational constant and

Du . 0u | ,0u_ . 0u | , du
Dt ‘= ot T Ug, T V5, TWg,.

See Appendix A of [1] for a derivation of the momentum equations relative to a
moving frame. In equation (2.1) the angular velocity vector € and the translational
acceleration vector q are relative to the body frame.

Conservation of mass takes the usual form

Uy + Uy +w, = 0. (2.2)
The boundary conditions at the free surface are the kinematic condition

hi +uh, +vhy =w at z=h(z,y,t), (2.3)



and
p=0 at z=h(z,y,t), (2.4)

neglecting surface tension. The boundary condition at the bottom surface and walls
is
un = 0. (2.5)

Let {e1, e, e3} be a basis for the body frame x and {E;, Es, E3} be a basis for the
spatial frame X.

3 Reduction of conservation of mass

HH start by assuming that u and v are functions of horizontal space coordinates

and time and do not depend on the vertical space coordinate
u = u(r,y,t),
( (HH-1)
v o= v(r,y,t).

Then integrating the continuity equation from z =0 to z = h(z,y,t) leads to

foh (g + vy +w,)dz = h (u, +vy) + w|h = hu, + hv, + hy + uhy, + vhy,
= hy + (hu), + (hv), =0,
(3.6)
using the bottom and kinematic free surface boundary conditions. Note that v and
v in equation (3.6) can be interpreted as the depth-averaged horizontal velocities,

u = u(z,y, z,t)dz,

L
f (3.7)
i Jo ol

)
T o= v(x,y, z,t)dz,

since
(hw), = 5 fo x,y, z,t)dz = hyu(x,y, z,t) |h—|—f0huzdz
(hv), = fo (z,y,z,t)dz = hyv (z, y,zt | —i—fohvydz
= foh (uz +vy +w,)dz = (hu), + (), — hyu (2,y, 2, t) — hyv (x,y,2,t) ‘h

+w (x,y, 2, t) ’h = hy + (hu), + (hv), =0,

applying the bottom and kinematic free surface boundary conditions.

4 Vertical momentum and the pressure field

The vertical momentum equation can be expressed in the form

Dupdl% = —2(0w— Qu) + (B +03) (2 +ds) + B (2,9,1) , (4.8)
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where
B(x,y,t) = — (Ql + Q293) (y +d2) + <Q2 - Q1Q3> (z+dy) —ds — ges - Q"Es.
The second assumption of HH is to neglect the vertical acceleration

Dw ~0. (HH-2)

Dt

The vertical momentum equation then reduces to

190 — —2 (v — Qou) + (2 + DB) (2 + ds) + B (2, y, 1) ,

Integration of this equation from any point z to the surface h gives an expression

for the pressure field at any point z
%p<x7y> th> = (h - Z) (291U - 292“ - ﬁ (1:7 y?ﬂ)
(4.9)
+5 (0 + ) ((= + ds)* — (h + d3)2) )

where the dynamic free surface boundary condition has been used on the left hand
side. In the reduction of the horizontal momentum equations, the horizontal pressure
gradient is needed. Differentiating (4.9),

10p
- = 20v —20u — (B + Q%) (h+d3) — B (x,y,t)) hy
Jan = (020 (OF£08) ()~ 3. )
+ (2911)1 — QQQ'LLI — QQ -+ 9193) (h — Z) .
and
L0 900 — 2050 — (2 + 02) (h+ ds) — B (2, 5.0)) h
pdy P e (4.11)
+ (2000, = 20w, + O+ D0 ) (h—2)
5 Reduction of the horizontal momentum
The z—component of the momentum equations (2.1) is
%—F%% - —Q(ng—ng)—Qg (Z+d3)+93 (y+d2) (5 12)
Q- (x+d) + (z+d1) |2 — a1 — ger - QTE;.
Since u, =0, %1; reduces to

Du __
Dr = Ut T Uly + VUy,.



f Du

Now substitution o D

and l? from (4.10) into the x—momentum equation gives
p Ox

up + uug + vuy, + (2Q10 — 2Qou — (2 + Q3) (h+ d3) — B (2,9, 1)) he
+ (2911}1 — QQQ'LLI — QQ -+ 91Q3> (h — Z) + 2 (QQ'LU — Qg'U) + QQ (Z + dg)

Q3 (y +dy) + Q- (x+d) — (z+d) [|Q + a1+ ger - QTE; = 0.
(5.13)
The third assumption of HH is

20w = 0. (HH-3)
Then integrating equation (5.13) from z =0 to z = h(x,y,t) gives
wp + ut, + vuy, + (2Q10 — 2Q9u — (2 + Q3) (h+ d3) — B (z,y,1)) hae
(s — Doty + D) b — 200 + (U — ) (v + o) (5.14)
— (B + ) (i) + (2 + %) ds + i + ger - QTEy = 0.
The fourth assumption of HH is
(Qv, — Qoug) h = 0. (HH-4)

Note that Qqv, — Qou, is half of the x—derivative of vertical component of the
Coriolis force. Finally equation (5.14) simplies to

up + uuy + vuy, + (2Q10 — 2Qau — (2 + Q3) (h+ d3) — B (z,y,1)) he
+ (h + d3) 9193 — 2QgU + <QlQQ — Q3> (y + dg) (515)
— (% + Q) (z+di) + Qods + G + ger - QTE; = 0.

This is the form of the z—momentum component of the SWEs that appears in
[10, 11].

5.1 Reduction of the y—momentum equation

The y—component of the momentum equations (2.1) is

%Jrl@ = 2(Qw — Qsu) + O (2 +ds) — Qs (z + dy)

POy L, (5.16)
— Q- (x+d)+ (y+do) ||2]]° — G2 — ges - QTE3.

Since v, =0, %’ reduces to

Dv __
Dr = Ut T UUg + VUy.



f Dv

Now substitution o D

and %g—g from (4.11) into the y—momentum equation gives

v+ uvy + ooy + (2210 — 2Q0u — (92 + Q3) (b + d3) — B (x,y,t)) hy
+ <Qley — 20uy + O + 9293) (h = 2) — 2 (Qw — Qgu) — O (= + ds)

+Q (2 + i) + QR (x+d) = (y + d) Q| + G2 + g2 - Q"Es = 0.
(5.17)
The fifth assumption is
201w ~ 0. (HH-5)

Then integrating equation (5.17) from z =0 to z = h (z,y,t) gives
v+ uvy + ooy + (200 — 2Q0u — (2 + Q2) (b + d3) — B (x,y,t)) by
+ (v, — Qouy, + Q) h + 2Q3u + <S21S22 + Q3> (x +dy) (5.18)
— (7 + %) (y +d2) + (—Ql + 9293) ds + o+ ges - QTE3 = 0.
The sixth assumption is
(Qvy — Qouy) h =0, (HH-6)

note that v, — Qyu, is half of the y—derivative of vertical component of the
Coriolis force. Finally equation (5.18) simplies to

v+ uvy + ooy + (200 — 2Q0u — (QF + Q3F) (b + d3) — B (x,y,t)) by
(b4 dy) Qs + 2Q5u + (9192 + Qg) (z +dy) (5.19)
_(Q%—FQ%) (y+d2) —Qld3+C'12+gez QTEg =0.

This is the form of the y—momentum component of the SWEs that appears in
10, 11].
The assumptions (HH-4) and (HH-6) can be written in a concise vector form

AV [(Q2 xu)-e3] =0.

6 Prescribed yaw-pitch-roll motion of the vessel

The rotation matrix in [9, 10, 11] is restricted to

cospcostl —sin cos ¢ + cos ) sin O sin ¢ sinng + cossinf cos ¢
Q = |sintcosf costcos¢+sinysinfsing — cossing + simﬁsin&
—sin6 cos 6sin ¢ cos 6 cos ¢
(HH-7)
This matrix is equation (7) in [11] with two typos corrected. The first boxed term
is incorrectly typed as sin# in [11] and the second boxed term is incorrectly typed
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as sin ¢ in [11]. The correspondence with the notation in [11] is ¢ = e;, 6 = es and
77/) = €3.

The connection between the rotation matrix (HH-7) and a yaw-pitch-roll se-
quence is best demonstrated using rotation tensors, and the details of this construc-
tion are given in the report [6].

The angular velocity can be deduced using the matrix representation or by using
the properties of rotation tensors. The spatial angular velocity is

Q° = JE; + fay + ¢b; .

The 3-2-1 Euler angles have a singularity at § = :IZ%T(' and so # must be restricted
to the interval

T
—— <<
2

T
5
The singularity arises because the map from (1/}, 0, ¢) to Q° is not invertible when
cos = 0. To see this write out the map

Q3 0 —sinvy cosycosb ¢
251 =10 cosy sinwycosb 0
Q3 1 0 —sinf b

The determinant of the coefficient matrix is — cos# resulting in a singularity when
cosf = 0.
The body angular velocity is

Q' = (—E;sinf + E,cosfsin ¢ + Es cos 6 cos ¢)
+0(E5 cos ¢ — Essin ¢) + ¢F;
= E(¢—1sinh) + Ey(¢) cos sin ¢ + 6 cos ¢)
+E;(¢) cos 0 cos ¢ — Osin ¢) .

In [14] the body angular velocity is denoted by wor and the above expression for
Q° agrees with wor on page 188 of [14]. In matrix form

b 1 0 —sinf (;5
Q5] =10 cos¢ cosBsing 9
Qb 0 —sing cosfcoso v

This mapping is also singular when cosf = 0. Write this mapping in matrix-vector
form

Q'=B"'o.
Then
1 singtanf cos¢tand
B=|0 cos ¢ —sin ¢
0 singsect cosgpsect
As shown below in §6.1, this expression agrees with [B] := B in [7] and in [11].

Further details on the 3-2-1 Euler angles are in the report [6].
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6.1 Notation in [11]

On page 222 of [11] the ship translational displacements, denoted by (&1,&2,&3),
in the steady moving system and the Eulerian angles, denoted by (e1,es,e3), are
related by

§1 Uy
52 [R] 0 U2
& | = us | (6.20)
€1 Uy
€ 0 [B] Us
é3 L ] Ug

This is equation (5) in [11]. In equations (6)-(7) in [11], the matrices [B] and [R]
are defined as follows

1 sine; taney; cose; tanes
[B] = |0 cos €1 —sineg :
0 sinej secey coSe; Secey

and
CcoSey Coses sine; siney coses — cosep sines  Cosep siney coses + sineq|sin ey
[R] = |cosey sines sine; siney sines + cose; coses |sine; | sin ey sines — sine; cos ez

—sin ey sin e cos ey COS e1 COS €y

Replacing e; = ¢, ea =0, e3 =1 and & = q1, & = @2 and &3 = g3 it is clear (after
correcting two boxed typos in [R]) that [R] = Q and [B] = B. The first boxed
term should be sin e — sin e; and the second boxed term should be sine; — cose;.
In (6.20), the angular velocity (ua4,us,ug) is related to the Euler angles by

Uy €1
Us = [B] -1 €2
Ug €3

Hence it is clear that uq = Q8 us = Q5 ug = 5.

7 Final form of the HH-SWEs

The rotation matrix that HH have used in their derivation is (HH-7). So
e - QTE3 = —sin (9,
e - QTE; = cosfsin g,
e;s-QTE; = cosfcos o,



Table 1: Correspondence between notation in [2] and notation in [10, 11]

Ref [2] [ HH
d1 —Zy
d2 —Yg
dg —Zyg
G Uy
Go Us
43 U3
¢ €1
0 €9
(0 €3
0 Uy
Q Us
Q3 Ug

and so the x—momentum equation becomes
up + uty + vuy, + (2Q10 — 2Qau — (2 + Q3) (h+ d3) — B (z,y,1)) he
4 (h+ d3) Q5 — 2030 + <9192 . Q3> (y + ds) (7.21)
— (24 02) (x +dy) + Qods + G — gsinh =0,
In HH notation this equation is written
U+ utty +vuy + (=2 — gsh)hy = o + @1h,
with qo, q1, g2, g3 defined in [10]. The y—momentum equation becomes
v 4 vy + vvy + (2Q10 — 2Qou — (3 4+ Q3) (b + d3) — B (z,y,t)) hy
(bt dg) Q905 + 204u + (9192 n Qg) (z +dy) (7.22)
— (2 +D2) (y+dy) — Qds + o + geosfsing = 0.
In HH notation this equation is written [10]
v + uv, + vy + (—re — r3h)hy, =19 + 11h.

with ro = ¢o, r3 = g3 and 19,7, defined in [10]. The function 3 (z,y,t) becomes
B(x,y,t) = — (Ql + QQQ3> (y +da) + (Qz - 9193> (x+dy) —ds — gcosfcosd.

Unwrapping the flux vector form of equation (55) in [10] shows that they are equiv-
alent to (3.6), (7.21) and (7.22) here.
The identification of notation is as shown in Table 1.



8 Correction of typographical errors

There are some typos in [10]. The terms in boxes below are ones that have been
corrected. Equation (44) in [10] is

Uy + UV, + Uy +wu, = fg—l@—ﬂg—Pg—QQ—_SQa
and equation (45) is
wy + uwy, + vwy + ww, = —%%—ﬂg—Pg-Qg,-Rg-Sg,

and (46) is

fi [+ sin(ez)

fo| = | —gsin(ey) cos(es) |
fs —gcos(eq) cos(ey)
and ﬁ) in (57) is
0
fo=|fo|,

[0]

and equation (59) is

Qo = g sin(ez) — @1 + 2ugv + (uf + u) (v — z,)
(i1 — uaus) (y — yg) + (uaug|+Jis) zg,

and equation (61) is

¢ = —gcos(er)cos(ey) — ug — 2 (ugv — usu) — (ugug — us) (r — 4)
- (U5U6u4) (y - yg) - (uzzl + ug) Zg 5
and 79 in (63) is

ro = —gsin(ey)|cos(ez) | — U — 2ugu — (ugus + Ug) (x — z4)

+ (uf 4 ug) (v — yg) + (usts — 1) 24 .

9 Comparison of the HH SWEs with the SWEs
in [2]

The new surface equations for rotating 3D shallow water flow derived in [2] are

Ut+UUI+VUy+a11hx+a12hy = bl,

9.1
Vi+ UV, +VV,+ag hy +axhy, = b, 61



with
a = 204V 4 e3- QT@ + ges - QTE3 - (Q% + Q%)(h + d3)

—(Qy — ) (x4 dy) + (U + Q) (y + da)

9.2
A9y — —QQQU — (Q% + Q%)(h + dg) + €3 - QT(I:] + ges - QTEg ( )
+(Ql + QQQg)(y + dg) — (Qg — 9193)(55 + dl) .
and
a1 — 2Q2V,
(9.3)
a9 = —QQlU,
and
bl = —QQth + Qng — e - QT(I:] — gey - QTEg + (Q% + Qg)(ZE + d1>
+(Qg — 9192)(?/ + dg) — (QQ + 9193)(h + dg) ; (9 4)

by = 2Mh; — 203U — ey - QT8 — gey - QTEs + (7 + Q3)(y + do)
_(QS + Q1Q2)<33 + dl) + (Ql - Q293)(h + d3) .

In equation (9.1) the translational acceleration vector g is relative to the spatial
frame and if we replace QT§ with body translational acceleration vector ¢ then the
coefficients simplify to

apy = Qle + 613 + ges - QTE3 — (Q% + Q%)(h + dg)

—(Q — Q) (x + dy) + (U + Q) (y + da) (95)
Ay = —20U — (Q2 +Q2)(h +ds3) + ds + ges - QTE3
+(Q1 + QQs3) (y + dy) — (QQ — 0 Q3)(z+dy),
and
by = —20sh 420V — {1 — ger - QTEg + (02 + O2)(x + dy)
+(Q3 — D) (y + da) — (Qz + Q) (h + ds) 96)

by = 20ihy — 20U — 42 — gea - QTEz + (QF + Q3)(y + da)
—(Qs + ) (z + di) + () — Q) (h + ds) .
To compare the HH SWEs with new surface equations write the HH momentum
equations in the following form
U + Uy + VUy + allflh, = pHH

9.7
v + uv, + vv, + albfh, = b 61

where
alll = 20,0 — 2Qu — (2 + Q%) (h + d3) + (Ql + 9293> (y + ds)
— <QQ — Q1Q3> (r+dy)+ s + ges - QTE;,

HH HH
59) ayr
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and

b = = (h+ dy) Q1 + 2030 — (9192 - Qs) (y + d2)
+ (2 +02) (z +dy) — Qods — Gy — ge; - QTEs,
BT = — (h+ dy) QY — 205u — (9192 + QB) (2 +d)

+ (2 +Q2) (y + do) + Nids — G2 — ges - QTE;.

Assume that the (U, V') velocity fields in the surface equations are equivalent to
the velocity fields in the HH equations, and then a comparison of coefficients shows
that

CL{IIH = a1 — 2QQU,
CL12q2H = a9 + 2Qﬂ) s
CL{‘;H = Qai2 — 2921) s
afi? = asn +20u, (6:8)

I = by 4+ 2050 4+ Qb
b = by — 20 hy — b

Hence, assuming equivalence of the horizontal velocity fields, the HH SWEs reduce
to the surface equations when

12Qu| << 1, 2] << 1, 20| << 1, |2Qu| << 1,
and ' '
|2Q2ht+92h| << 1, IQtht+th| <<1.
10 Numerical simulations

Numerical simulations are performed using the new surface SWEs in [2]. The nu-
merical scheme is detailed in [2, 5]. In the simulations the initial conditions are

U(z,y,0) =V (x,y,0) =0 and h(z,y,0) = ho,
with hg input. Other required inputs are
Ly, Ly, di, do, ds,
and the functions associated with the rigid body motion of the vessel

D, Qo Q3,0 @, @, g3
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Figure 1: Wave pattern due to surge and sway: comparison of the numerics based on
the surface SWEs with Figure 26 of [10]. The data are t = 1.5 sec, w = 6.0rad/sec,
Li=1m and Ly =0.8m.

10.1 Numerical results for surge-sway forcing

This example is motivated by the numerics in [10]. They set the following parameter
values

L1 =1 y L2 — 08, h() - 010, d1 — —050, dg — —040, d3 — 00,

with all units in metres. There is no rotation so €2y = 2y = €23 = 0. The transla-
tional motion is surge and sway and they take the form

q1(t) = @a2(t) = €5 sin(wqt), g3(t) =0,

with
g4 =002, e5=0.02, and wy=06.0,
with the amplitude in metres and the units of w, are radians per second.

A example simulation using the code in [2, 5] is shown in Figure 1. The wave
surface due to the coupled surge and sway motions is shown at t = 1.50 sec. The
corresponding velocity distribution is shown in Figure 2. Further discussion of these
results is in [2].

10.2 Numerical results for yaw forcing

In this section numerical results for pure yaw motion are shown. The parameter
values are the same as the surge-sway example with a different forcing. The forcing
is pure yaw motion so that ¢; = g2 = ¢q3 = 0 and

cosy —siny 0

Q= [siny cosyy O
0 0 1

Hence the angular velocity is



Figure 2: Velocity field due to surge and sway: comparison of the numerics based on
the surface SWEs with Figure 27 of [10]. The data are t = 1.5 sec, w = 6.0rad/sec,
Li=1m and Ly, =0.8m.

Xim) Yim)

Figure 3: Wave pattern due to yaw: comparison of the numerics based on the surface
SWEs with Figure 28 of [10]. The data are ¢t = 1.5sec, w = 6.0rad/sec, L1 = 1m
and Ly, = 0.8 m.

The yaw angle is prescribed to be harmonic
Y(t) = e3 sin(wst) ,

with -
g3 =4.0° = Erad, and ws = 6.0 rad/sec.
The wave surface under only the yaw motion at ¢ = 1.50 sec is depicted in figure

3. The corresponding velocity distribution is shown in figure 4. Further discussion
of these results is in [2].
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Figure 4: Velocity field due to yaw: comparison of the numerics based on the surface
SWEs with Figure 29 of [10]. The data are t = 1.5sec, w = 6.0rad/sec, Ly = 1m
and Ly =0.8m.

10.3 Some properties of the SWEs for pure yaw forcing

In the case of pure yaw forcing, the coefficients in the surface SWEs reduce consid-
erably. With Q; =y =0 and 3 = 9,

aiy = a2 =4¢g
ap = an =0
by = 203V + Q22+ dy) + Q3(y + do)
by = —2Q03U + D2(y+dy) — Q3(z +dy).

In this case the surface equations and the HH equations are identical and the mo-
mentum equations reduce to forced classical SWEs

U+ UU, + VU, +ghy = 20V + 9%z +dy) + (y + do) (109)
Vi+ UVa+VV, +ghy, = —20U +¢2(y+dy) — (x +dy). '

These equations have the remarkable property that they conserve a form of potential
vorticity. Let '

Vo = Uy + 29

—

It is proved in [2] that & is a Lagrangian invariant

P =

D%
D =0.
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