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1 Introduction

We recall the basic facts of bundle theory on which this thesis is based, and introduce
nomenclature. Several pictures are presented, which should be thought of as analogies for
the actual mathematical structures involved in the theory. The motivation for including
quite so many illustrations here is that in general, diagrams are conspicuously absent
from texts on the subject, yet are central to an intuitive, geometric understanding of the
subject. This novel angle is important because many of the structures involved in bundles
can be described in different but equivalent ways mathematically (dual representations),
and this duality is often a lot easier to understand in the context of pictures of well-known
geometrical structures.

2 Principal bundles

Let (P,M,G, ) be a principal fibre bundle with total space P over base manifold M,
with Lie group G acting on the right on P, and projection 7. Let ¢ € P, = = 7(q) € M,
p € 7 Y(z). Let the group right-action on P be denoted by ®:

d:Gx PP (2.1)
®(g,p) = Py(p) =p-g (2.2)

We can think of the group as being an action which pushes points in the bundle around
the bundle along the fibres. Locally we can picture the situation as in Figure 1. Note
that we only consider principal bundles in this work.

3 Horizontal spaces, vertical spaces and connections:
the two viewpoints

3.1 The vector space viewpoint

At any point ¢, the tangent space T, P to the bundle can be decomposed naturally in to
two spaces, one parallel to the fibre, called the vertical subspace VP, and one transverse
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Figure 1: Visualizing a local representation of a principal bundle.



to the fibre, which, providing it satisfies certain conditions detailed below, we call the
horizontal space H,P. So we have the decomposition T,P = V,P & H,P. The vertical
space is defined uniquely by

V,P = ker(m,) (3.3)

and it is clear how vertical spaces at different points in the bundle are related - they
just transform smoothly with the fibre, since any parametrization of the fibre yields a
parametrization of V,P. However, there is in general no such unique way of describing
the remaining space in 71, once V,P is taken out. But this is something we need to do
in order to relate tangent spaces at different points in the bundle, and hence to define
differentiation processes on the bundle. Horizontal spaces satisfy this need. The concept
of the horizontal space H,P is a way of describing these left-over spaces, of dimension
[dim(T;,P)—dim(7,G)], in T, P once the vertical space is taken out, which varies smoothly
in the bundle, i.e. it gives us a consistent way of moving from fibre to fibre through the
bundle. For principal bundles, in addition to being smoothly-varying, we require that
H,P is invariant under the group action. The assignment of such horizontal spaces is
called a connection in a bundle:

Definition 3.1 A connection in a principal bundle is a smoothly-varying assignment to
each point ¢ € P of a subspace H,P of T, P such that

(i) T,p=V,P®HP VNgecP (3.4)
(1) (®,).(H,P) = Ho, P  Vg€G,qeP (3.5)

Figure 2 illustrates the situation. The first condition says that H,P must be transverse to
the fibre (which is necessary in order for it to span the rest of 7, P). The second condition
says that if we use (®4). to “push” H,P C T,P along the fibre, then the result is the
same as if we first push ¢ along the fibre using ®, to the point ®,(¢) and then form
the subspace Hg, P at that point. (Note (®,), : TyP — Ty, P is the push-forward
of ®,.) So a connection in a principal bundle is just a right-invariant distribution on the
bundle which is transverse to the fibre at each point.

Remark 3.1 An equivalent condition to condition (i) above is
(i) m(HyP) = TrgyM Vge P (3.6)

This just says that the dimension of H,P has to be great enough to fill up the rest of T, P
completely once TG is taken out: since m, maps T,G to zero, and locally the bundle is
a product space, the image of H,P under 7, must have the same dimension as Ty, M
(i.e they are isomorphic).

3.2 The differential form viewpoint

Now, since the bundle group is a Lie group, there is a canonical identification of the
tangent space to the fibre at each point ¢ with the Lie algebra g of G, so we can write
T,G = g, which leads to the following differential-form-based description of a connection.



T,P=V,P®H,P

H,P

LM = H,P

Figure 2: Horizontal spaces.



T,P =V,P& H,P

Figure 3: Using H,P to project V € T, P on to V, P.



From Figure 2 it is clear that a choice of H,P in fact defines a projection of T, P on
to T,G, and hence on to g. Figure 3 shows this explicitly: V is a vector in T, P which is
projected via H,P to a vector in V,P. This is also intuitively clear for higher dimension
situations, not only that pictured, since we are just dealing with intersections of linear
spaces. We thus have a linear map 7,P — g, i.e. a g-valued differential 1-form on P,
with kernel H,P. This representation of a connection as a differential form is called a
connection 1-form, but we need a few more definitions before we can describe it fully:
let g = T.G be the Lie algebra of G, where e is the identity in G, let X;(G) be the
set of all left-invariant vector fields on G'. Take £ € g. Let X € X.(G) be the unique
left-invariant vector field on G corresponding to &, i.e such that X¢(e) =&. Each { € g
induces a flow on P. Let g¢(t) be the unique integral curve of X, passing at ¢ = 0
through e € G, then g¢(t) is a one-parameter subgroup of G.

Definition 3.2 The exponential map exp : g — G is defined by

exp(§) = ge(1) (3.7)

and it can be shown that
exp(t6) = gelt) € G (3.8)

Figure 4 gives an idea of how these objects can be represented geometrically.

Definition 3.3 The infinitesimal generator of the action ®, corresponding to &, is a
vector field Ep on P defined by

Erla) = (e, )], 3.9)
and so for ®(g,q) = - g we get
Erla) = (ot ) (3.10)
= Lg-g)], (3.11)
= %(q exp(t9))] (3.12)
= q¢ (3.13)

and we can now proceed to the formal definition of a connection 1-form on a principal
bundle:

Definition 3.4 A connection 1-form on P is a g-valued 1-form w, : T,P — g, satisfy-
ing, for each q € P,

(1) wepla)=¢ VEeg (3.14)
(i) wa,(q)([(Pg)+| V) = Adg(wy(V)) VW eTyP, Vge G (3.15)
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1—parameter subgroup ge(t)

(the integral curve of Xg) left invariant vector field X,

Figure 4: A right-action on a principal fibre bundle.



Ad, : g — g is the adjoint action at g € G (i.e. the derivative of conjugation, evaluated
at e), which in our case will only ever be given by

Ady(o) =g lag geG, o€y, (3.16)
which holds for matrix groups. So condition (i) becomes:
wq’g((l)([((bg)* V) = Q)g_l(wq(\?))cl)g VWeT,P VgeG (3.17)

We can visualize this as in Figure 5, which we can very loosely think of as: if you apply wg,
to the tangent vector ((®,).V) at ¢-g € G, then this is the same as if you start at ¢-g € G,
then transform back along the fibre under g then apply w, to the tangent vector V at
the original point ¢, then transform forwards along the fibre under g returning to ¢ - g.
This characterization of the connection, which is essentially based on tangent covectors,

q
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H,P

TrgM = HoP

Figure 5: G-invariance of the connection form.

is just the representation dual to the previous one (Definition 3.1), which is essentially
based on tangent vectors. Notice in particular the duality between equations (3.5) and
(3.17).



Remark 3.2 If we do not need to specify the point at which a connection form is evalu-
ated, we may denote it by just w instead of wy.

References [3]-[5] provide good material on manifolds and bundles.

4 Parallel translation

In the context of all these diagrams depicting horizontal subspaces, the notions of hori-
zontality and parallel translation become very easy to understand. Suppose we now have
a path in the bundle given by ¢+ ¢(t) € P with t € [¢,d] C R.

Definition 4.1 Path q(t) € P is horizontal w.r.t a given connection if the tangent vector
q(t) lies in the horizontal subspace determined by the connection, Hyq) P, for each t.

Remark 4.1 Recall, horizontal subspaces are by definition in the kernel of the associated
connection 1-form w, so path q(t) is horizontal w.r.t w iff w(q(t)) = 0 Vt. i.e. the
projection of the tangent vector ¢(t) on to the vertical space at q(t) is zero, at every point
of the path.

Figure 6 illustrates a horizontal path: ¢(¢) is a path through bundle P, and at each
of the three points q(t1),q(t2),q(t3) the tangent space to the bundle is depicted (as a
dashed-line box), along with the horizontal and vertical subspaces Hyq,) and Vi,). Also
shown are the tangent vectors to the path at the three points - these tangent vectors lie
in the horizontal subspaces, representing the horizontal nature of the path. Now, since
there is in general some flexibility in the choice of horizontal spaces in a bundle (subject
to the conditions of the definition), a path can be horizontal w.r.t one connection while
simultaneously being not horizontal w.r.t another. In figure 6, we would represent a
connection w.r.t which ¢(¢) is not horizontal by tilting the horizontal space inside one
or more of the “tangent space boxes” by some angle (or angles), since then the tangent
vectors would not lie inside the horizontal spaces for every t.

Now, if path ¢(t) is not horizontal w.r.t a given connection w, then we can derive
an expression which describes how far it deviates from being horizontal. We do this by
considering the separation, in the fibre, between ¢(t) and a second path, ¢(¢), which starts
at the same point ¢(c) = ¢(c¢) in the bundle, and is horizontal. Any path in bundle P
which maps, under 7, to the same path on base M as does ¢(t) is called a lift of ¢(t). If
a lift of ¢(t) is horizontal w.r.t w then it is called a horizontal lift of q(t), and translating
(i.e. evaluating) some quantity along a horizontal path (as opposed to a non-horizontal
path) is called parallel translation. So ¢(t) is a horizontal lift of ¢(¢) and we analyze it as
follows. Using local coordinates for the local product structure in the bundle, every point
on path ¢(t) can be written as the product of the point ¢(t) and some element of the
fibre, say a € G. But since this is the case for every point along the path, we get a whole
curve a(t) € G which measures the difference between the two curves in the bundle:

q(t) = q(t)a(t) (4.18)

We can think of a(t) as a sort of “fine-tuning” variable, which, when varied by the right
amount as ¢(t) proceeds along its course, enables us to shift §(¢) around the fibre exactly
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Path 7(q(t))

Figure 6: A horizontal path ¢(¢) through principal bundle (P, M, w,G).
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the right amount necessary for it to remain horizontal. a(¢) will then be an expression
describing how much ¢(t) deviates from being horizontal. To obtain the equation which
governs this required motion in the fibre, we differentiate (4.18) w.r.t ¢, apply the con-
nection form w, then use the horizontal and right-equivariance conditions, ‘w(¢(t)) = 0’
and (3.17) respectively. This yields the first-order differential equation for a(t):

a(t)a™(t) = —w(q(t) (4.19)

with a(c) = e required to satisfy ¢(c) = ¢(c). Detailed derivations of this equation are
given in [2] (p.69), [1] (p.265) and [4] (p.364). This equation shows us precisely how a(t)
must vary as we move along ¢(t) in order for ¢(¢) to be the unique horizontal lift starting
at ¢(c). We summarize the concepts of horizontal lifts and parallel translation in figure

Path ¢(t)
(horizontal)
P
) ¢ B P AN i(0) =it
i(t),_, ¢ HyoP
Path ¢(t)
G (not horizontal)
T N\

Path 7(q(t))

Figure 7: Generating a horizontal path ¢(¢) from a non-horizontal path ¢(t) by applying
a shift a(t) in the fibre.

Remark 4.2 This method for generating horizontal paths also applies for paths {(t)
which start at points in the fibre attached to q(c), other than q(c) itself. This just involves
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taking the initial condition a(c), for (4.19), to be some value other than the identity in
G, and would be represented on figure 7 by sliding the path ¢(t) up the fibre G so that
q(c) and 4(c) are separated by a value a(c) in the fibre.

Remark 4.3 [t is important to remember that the diagrams in this chapter are merely
pictorial analogies for the mathematical objects involved. In particular, fibres are always
pictured here as being 1-dimensional, when in reality they can be of any dimension. For
example, in Figure 7, the shift in the fibre is portrayed as being a simple shift up or down
the fibre, but really the shift a(t) is a path in the group G, whatever that may be.

This concludes our review of fibre bundles, and our collection of very clear diagrams
showing previously uncollated (if not unidentified) ways of thinking about the basic ge-
ometry of fibre bundles.
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