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New shallow-water equations, for sloshing in three dimensions (two horizontal and one vertical) in a vessel
which is undergoing rigid-body motion in 3—space, are derived. The rigid-body motion of the vessel (roll-
pitch-yaw and/or surge-sway-heave) is modelled exactly and the only approximations are in the fluid
motion. The flow is assumed to be inviscid but vortical, with approximations on the vertical velocity
and acceleration at the surface. These equations improve previous shallow-water models. The model also
extends to three dimensions the essence of the Penney-Price-Taylor theory for the highest standing wave.
The surface shallow-water equations are simulated using a split-step alternating direction implicit finite-
difference scheme. Numerical experiments are reported, including comparisons with existing results in the
literature, and simulations with vessels undergoing full three-dimensional rotations.

1. Introduction

Shallow-water equations (SWEs) for a three-dimensional (3D) inviscid but vortical fluid in a vessel un-
dergoing an arbitrary prescribed rigid-body motion in 3D are derived. The rigid body motion is represented
exactly and only two assumptions are imposed on the velocity and acceleration at the free surface to close
the SWEs.

While there has been a vast amount of research into two-dimensional sloshing, the research into 3D
sloshing is still very much in development. A review of much of the research to date is presented in Ibrahim
(2005) and Faltinsen & Timokha (2009). The predominant theoretical approaches for studying 3D sloshing
are (a) asymptotics and weakly nonlinear theories, (b) multi-modal expansions which reduce the governing
equations to a set of ordinary differential equations; (c) reduction to model partial differential equations
such as the shallow-water equations; and (d) direct numerical simulation of the full 3D problem.

If 3D numerical simulations were faster, the latter approach would be very appealing. There has been
much progress in the numerical simulation of 3D sloshing using Navier-Stokes based methods (MAC,
SURF, VOF, RANSE), boundary-element methods and finite-element methods for 3D potential flow (some
examples are Lee et al. 2007; Kim 2001; Liu & Lin 2008; Buchner 2002; Kleefsman et al. 2005; Gerrits
2001; aus der Wiesche 2003; Chen et al. 2009; Cariou & Casella 1999; Chen et al. 2000; Wu et al. 1998).
Rebouillat & Liksonov (2010) review a range of numerical strategies for fully 3D sloshing. While the results
of these simulations are impressive, the difficulty is that CPU times are measured in hours rather than
minutes or seconds. An example is the VOF simulations of Liu & Lin (2008), where 3D sloshing in a vessel
with rectangular base is forced harmonically. To simulate 50 seconds of real time (about 20 periods of
harmonic forcing) took 265 hours of CPU time. It is very difficult to do parametric studies or long time
simulations with this amount of CPU time. Hence any reduction in dimension is appealing.

On the other hand one can make some progress in the understanding of sloshing in 3D using analytical
methods, asymptotics (perturbation theory, multi-scale expansions) and modal expansions. In 2D shallow-
water sloshing the predominant types of solution are the standing wave and travelling hydraulic jump. But
in 3D shallow-water sloshing the range of basic solutions is much larger. One still has the 2D solutions,
but there can be mixed modes, swirling modes, multi-mode cnoidal standing waves, diagonal modes, and
multi-dimensional hydraulic jumps and analytical methods are very effective for identifying parameter
regimes for these basic solutions (e.g. Faltinsen et al. 2003, 2006¢a; Faltinsen & Timokha 2003; Bridges
1987). And, there is a vast literature on asymptotic methods for the special case of parametrically-forced
sloshing in rectangular containers (Faraday experiment) (e.g. Miles & Henderson 1990, and its citation
trail). Multi-modal expansions take analytic methods to higher order. When the fluid domain is finite in
extent there is a countable basis of eigenfunctions for the basin shape, and one approach that has been
extensively used is to expand the nonlinear equations in terms of these (or other) basis functions with
time-dependent coefficients, leading to a large system of ordinary differential equations. Examples of this
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approach are Faltinsen & Timokha (2003); Faltinsen et al. (2003, 2006a); La Rocca et al. (1997, 2000)
and (Part II of Ibrahim 2005). The advantage of modal approximation is that the problem is reduced to a
system of ODEs which is much quicker to simulate numerically.

In between direct 3D simulations and analytical methods is a third approach: to derive reduced PDE
models. This approach is particularly useful for the study of shallow-water sloshing. The study of 3D
shallow-water sloshing is motivated by a number of applications such as: sloshing on the deck of fishing
vessels (Caglayan & Storch 1982; Adee & Caglayan 1982) and offshore suppy vessels (Falzarano et al.
2002), sloshing in wing fuel tanks of aircraft (Disimile et al. 2009), green-water effects (Dillingham &
Falzarano 1986; Zhou et al. 1999; Buchner 2002; Kleefsman et al. 2005), sloshing in a swimming pool on
deck (Ruponen et al. 2009), sloshing in fish tanks onboard fishing vessels (Lee et al. 2005), and sloshing in
automobile fuel tanks (aus der Wiesche 2003).

About the same time, Dillingham & Falzarano (1986) and Pantazopoulos (1987) (see also Pantazopoulos
& Adee (1987) and Pantazopoulos (1988)) derived shallow-water equations for 3D sloshing with the vessel
motion prescribed. It is this approach that is the starting point for the current paper. These SWEs,
hereafter called the DFP SWEs, will be recorded and analyzed in §10. In followup work Huang (1995) (see
also Huang & Hsiung (1996) and Huang & Hsiung (1997)) gave an alternative derivation of rotating SWEs
for sloshing resulting in slightly different equations from the DFP SWEs. The latter system will be called
the HH SWEs. A discussion of the HH SWEs is also given in §10.

The DFP SWEs use a very simple form for the vessel motion, and have unnecessarily restrictive as-
sumptions in the derivation. The derivation of the HH SWESs is more precise but still has some restrictive
assumptions. These assumptions are outlined in §10 and in more detail in the technical reports of Alemi
Ardakani & Bridges (2009¢,d).

In this paper a new derivation of SWEs in 3D is given. The starting point for the new SWEs is the exact
equation for the horizontal velocity field at the free surface

Uy + UU, + VU, + (a11 + %ﬂh) he +aishy = by + odydiv(k),

(1.1)
Vit UV, + VVy o+ (az2 + 22[" ) by + azhe = by + 00ydiv(s) .

These equations are relative to a frame of reference moving with the vessel with coordinates (z,y, z) and
z normal to the vessel base. The terms a11, a2, as1, as2,b1, by encode the moving frame, x is minus the
horizontal projection of the unit normal of the surface and is defined in §2, ¢ is the coefficient of surface

tension, and % is the Lagrangian vertical acceleration evaluated at the free surface. The fluid occupies
a rectangular region with a single-valued free surface,

0<z<h@,yt), 0<e<Li, 0<y<Ls.
The free surface horizontal velocity field is
U(z,y,t) = u(z,y, z,t)|h = u(z,y, h(z,y,t),t) and V(z,y,t)= v(x,y,z,t)|h.
Couple the equations (1.1) with the exact mass conservation equation

he + (hU )y + (hV)y = W + hU, + bV, , (1.2)

which is derived from the kinematic free surface boundary condition (see §2). W = w " is the vertical
velocity at the free surface.

By assuming that 2% "~ 0and W+ hU, + hV, =~ 0 the equations (1.1)-(1.2) are a closed set of SWEs
which retain the vessel motion exactly. It is this closed set of SWEs that is the starting point for the
analysis and numerics in this paper.

One of the advantages of the SWEs is that vorticity is retained. This is in contrast to almost all analytical
research into 3D sloshing which is based on the assumption of irrotationality. Vorticity can be input through
the initial conditions, but a new mechanism comes into play in shallow-water sloshing: the creation of
vorticity though discontinuities in hydraulic jumps (e.g. Pratt 1983; Peregrine 1998, 1999). In coastal
hydraulics Peregrine (1998) has shown how steady hydraulic jumps generate vorticity — for steady flow. In
the case of shallow-water sloshing there is a new dynamic mechanism due to the time-dependent nature of
the hydraulic jumps, and the new equations give some direction towards generalizing the Pratt-Peregrine
theory to the unsteady case. The emergence of non-zero vertical vorticity is witnessed in some of the
numerical simulations reported herein.

The surface equations (1.1)-(1.2) have a form of potential vorticity (PV) conservation, when (a) surface
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tension is neglected; (b) Lagrangian vertical accelerations are neglected; and (c) and the vertical velocity
is approximated by W ~ —hU, — hV,,. In this case the PV is

Vi — Uy + 295 — 205k, — 204,
- . :

In the special case where 3 = 9 = 0 and Q3 is constant, the expression for PV reduces to the classical
case in geophysical fluid dynamics (e.g. §4.2 of Salmon 1998). When 27 and 2 are nonzero, there is an
interesting geometrical interpretation: the correction to the vertical vorticity is the projection of the angular
velocity vector onto the surface unit normal. See §8 for details. In geophysical fluid dynamics the rotation
vector (rotation of the earth) is treated as a constant and is always vertical. On the other hand, Barnes
et al. (1983) have shown that the earth does indeed wobble and so the idea of a time-dependent rotation
vector as here may have some interest in geophysical fluid dynamics.

The vessel is modelled as a rigid body, and the position of a rigid body in 3—space is completely deter-
mined by specifying (q(t), Q(t)) where q(t) is a vector in R? giving the horizontal and vertical translation
of the body relative to some fixed reference frame, and Q is a proper 3 x 3 rotation matrix (Q is orthogonal
and det(Q) = 1).

Specifying translations is straightfoward, but specifying rotations requires a little more care. Surprisingly
most previous work on forced sloshing uses pure translation, or the rotations are simplified using a small
angle approximation or restricted to planar rotations. The small angle approximation is to take the angular
velocity of the form Q = (gb,&,w) where ¢, 8 and ¢ are roll, pitch and yaw angles respectively (precise
definition given in §C.1). Examples of forcing used in the literature are Chen et al. (2009) (harmonic
surge and sway motion, and harmonic roll motion); Wu et al. (1998) (harmonic surge, sway and heave
forcing); Chen et al. (2000) and Faltinsen et al. (2006a) (harmonic surge forcing); aus der Wiesche (2003)
(impulse excitation representative of automobile accelerations); Faltinsen et al. (2006b) (roll-pitch forcing
with a small angle approximation); Faltinsen et al. (2003) (roll-pitch-surge-sway forcing with small angle
approximation for rotations); Liu & Lin (2008) and Wu & Chen (2009) (forcing in all 6 degrees of freedom
with small angle approximation for rotations).

In this paper exact coordinate-independent 3D representations of the rotations are used. Special coordi-
nate choices are Euler angle representations and numerical construction of the rotation matrix. The choice
(body or space) representation of the angular velocity is important and its implications are discussed. Also
there are subtleties in the construction of the angular velocity (Leubner 1981) and these are also discussed
herein and in the report of Alemi Ardakani & Bridges (2009¢).

There has been very little experimental work with vessels undergoing full 3D rotations. Most experiments
are with pure translations and/or planar rotations. A facility for 3D rotations of vessels with fluid would
be technically demanding. However, the paper of Disimile et al. (2009) mentions an experimental facility
capable of exciting a tank containing fluid in all 6 degrees of freedom. However, to date they have only
reported on results of forced roll motion.

Our principal tool for analyzing the SWEs is numerics. The numerical scheme is based on the Abbott-
Tonescu scheme which is widely used in computational hydraulics. It is a finite-difference scheme, fully
implicit, and the two-dimensionality is treated using an alternating direction implicit scheme. A one-
dimensional version of this scheme was used in Alemi Ardakani & Bridges (2009f).

An overview of the paper is as follows. In §§3-4 the surface equations (1.1) for sloshing in a vessel
undergoing motion in 3-space are derived starting from the full 3D Euler equations relative to a moving
frame. Before assuming that the Lagrangian vertical accelerations are small we analyze the exact equations
in §5 and show that they give an explanation for and a generalization to 3D of the Penney-Price-Taylor
theory for the highest standing wave. The assumptions necessary for the reduction to a closed set of
SWEs with the body motion exact are discussed in §7, leading to a closed set of SWEs. Potential vorticity
conservation is discussed in §8.

Details of the specification of the vessel motion are given in §9, including both an Euler angle repre-
sentation and direct calculation of the rotation matrix numerically. Further detail on the special case of
yaw-pitch-roll Euler angles is given in the report of Alemi Ardakani & Bridges (2009b).

The DFP SWEs and HH SWEs are reviewed in the reports of Alemi Ardakani & Bridges (2009c¢)
and Alemi Ardakani & Bridges (2009d). A summary of the main assumptions in their derivation and a
comparison with the new surface SWEs is given in §10.

Numerical results are reported in Sections 12 to 15. These simulations include full 3D rotations: roll-
pitch and roll-pitch-yaw in §12. Results of pure yaw forcing are report in §13. These simulations show the
appearance of vorticity and agree with previous simulations of Huang & Hsiung (1996). Motivated by the
theory of Faltinsen et al. (2003) and the simulations of Wu & Chen (2009), diagonal surge-sway forcing is

PV

(1.3)
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FIGURE 1. Schematic showing a configuration of the fixed coordinate system OXY Z relative to the moving co-
ordinate system, attached to the tank, Oxyz. The origin of the OXYZ coordinate system can have an additional
displacement q(t). In this figure q(t) = 0.

considered in §14, capturing diagonal waves and swirling waves. In §15 an example is shown with very large
displacements of the vessel. The model is based on the London Eye, but its implications are much more
general, as it illustrates how the model can be effectively applied to motion of the vehicle along arbitrarily
defined surfaces.

2. Governing equations

The configuration of the fluid in a rotating-translating vessel is shown schematically in Figure 1. The
vessel is a rigid body which is free to rotate and or translate in R, and this motion will be specified. The
spatial frame, which is fixed in space, has coordinates denoted by X = (X,Y, Z), and the body frame — a
moving frame — is attached to the vessel and has coordinates denoted by x = (z,y, 2).

The whole system is translating in space with translation vector q(¢). The position of a particle in the
body frame is therefore related to a point in the spatial frame by

X=Q(x+d)+q,

where Q is a proper rotation in R?* (QT = Q! and det(Q) = 1). The axis of rotation can be displaced a
distance d from the origin of the body frame and d = (dy, d2,d3) € R? is constant. The displacement Qd
could be incorporated into q(¢) but in cases where the origin of the spatial frame is fixed, it will be useful
to maintain the distinction.

This formulation is consistent with the theory of rigid body motion, where an arbitrary motion can be
described by the pair (Q(t),q(t)) with Q(¢) a proper rotation matrix and q(t) a vector in R? (O'Reilly
2008; Murray et al. 1994).

The body angular velocity is a time-dependent vector

Q(t) = (1), Q2(1), 2s(2))
with entries determined from Q by

_ 0 - Q]
Q'Q=| 2 0 -Of:=0Q. (2.1)
Q0
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The convention for the entries of the skew-symmetric matrix Q is such that
Qr = Q x r, forany reR®, Q:=(Q,0,0).

The body angular velocity is to be contrasted with the spatial angular velocity — the angular velocity viewed
from the spatial frame — which is
ﬁspatial — QQT )
As vectors the spatial and body angular velocities are related by Q*P*tal — Q€. Either representation
for the angular velocity can be used. For example Pantazopoulos (1988); Dillingham & Falzarano (1986);
Falzarano et al. (2002); Pantazopoulos & Adee (1987) all use the spatial representation, whereas Huang
& Hsiung (1996, 1997) use the body representation. We will show that the body representation is the
sensible choice leading to great simplification of the equations. Henceforth, the angular velocity without a
superannotation will represent the body angular velocity.
The velocity and acceleration in the spatial frame are

X=Qx+Q2x (x+d))+4q, (2:2)
and
X=QxE+22xx+0x (x+d) +Q2xQ2x (x+d)+Q7g|. (2.3)

Newton’s law is expressed relative to the spatial frame, but substitution of (2.2)-(2.3) into Newton’s law

and multiplying by Q7 gives the governing equations relative to the body frame,
Du 1 . ..
i T ;Vp—&—ZQ xu+Qx(x+d)+2x (Qx(x+d)+QTg+QTg=0, (2.4)

where u = (u,v,w) is the velocity field,

[an)

2'*a—+uaf+va—+wa— and g:=g|0
Dt ot Yor Yoy Vo2 8= ’

—_

with g > 0 the gravitational constant. A detailed derivation is given in Appendix A of Alemi Ardakani &
Bridges (2009f). The term Q”'g rotates the usual gravity vector so that its direction is properly viewed in
the body frame. Similarly for the translational acceleration q. Further comments on the viewpoint of the
vessel velocity and acceleration are in §9.
In the derivation of the SWEs the components of (2.4) will be needed. Write the momentum equation as
Du 1

-4z =F 2.
Dt+pr , (2.5)

then
F=-20xu—-Qx(x+d -Qx(Qx((x+d)-Qlg—Q7q,

and the components of F are

Fi = —2(Qw — Q3v) — Qa(z+ds) + Q3(y + da)

—0 Q- (x+d)+ (2 + )[R -4 Qe —ges - Qe
Fy = +2(Qw — Qqu) + Qi (z +d3) — Q3(x + d)

—0 Q- (x+d)+ (y+ do) QI — G- Qez — ge3 - Qez,
Fy = —=2(Mv— Qu) — O (y+ dy) + Qa(x + dy)

Q30 - (X+d) + (Z+d3)||QH2 -q- Qes —ges - Qes.

The use of the unit vectors e, e; and e3 is just to compactify notation. The terms with unit vectors are
interpreted as follows

Qe -e3 = Qss,
where Q;; is the (4, j)—th entry of the matrix representation of Q and

Qes - q = Q1341 + Q2362 + Q3343

with similar expressions for the other such terms.
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The fluid occupies the region
0<z<Ly, 0<y<Ly, 0<z<h(zvyt)),

where the lengths L; and Lo are given positive constants, and z = h(x,y,t) is the position of the free
surface.
Conservation of mass relative to the body frame takes the usual form

Uy + Uy +w; =0. (2.6)
The boundary conditions are
u=0 at z=0 and z=1L;
v=0 at y=0 and y=Lg (2.7)
w=0 at z2=0,

and at the free surface the boundary conditions are the kinematic condition

hi +uhy +vhy =w, at z=h(z,y,t), (2.8)
and the dynamic condition
p=—podiv(k) at z=h(x,y,t), (2.9)
where ¢ > 0 is the coefficient of surface tension,
. (9/4;1 3/432
d =—+4+ —
(k) oz Ay’

and
hy h

k1=——o>2 and kKy=—2Y

,/1+h%+h§ ,/1+h§+h§

The vector k is minus the horizontal component of the unit normal at the free surface. The unit normal
vector n to the free surface, chosen to point out of the fluid, is

—h
1 X
n= —hy |, £=\/1+h2+h. (2.10)
1

2.1. Vorticity
The vorticity vector is defined by
V:=Vxu. (2.11)
Differentiating this equation gives
DV Du

Taking the curl of the momentum equations (2.4) gives

v x <D“) — 20 Vu - 20
Dt
Combining with (2.12) gives the vorticity equation
DV .
— =(2Q+V)- —2Q.
D (222+7V)-Vu
Two components of the vorticity equation will be important in the derivation of the surface SWEs,
0 (Dw 0 (Dv ou ou ou .
— | = = — = 200 — + 205 — 4+ 203 — — 2Q
8y<Dt> 8z<Dt>Jr Yoz T 23y+ 0z e

(2.13)

0 (Dw 0 (Du ov ov ov .
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3. Reduction of the pressure gradient

The key to the derivation of the surface equations in 3D (1.1) is the precise treatment of the pressure
field. Let

B(x,y,t) = = (y +do) + Qa(z +dy) — B (z +dy) — Q(y+d2) — Qez -4 — gQez-e3.  (3.1)

Then the vertical momentum equation can be expressed in the form

Dw 10p
E + ;% = —2(911} — QQU) + (Q% + Qg)(z + d3) + ﬁ(%,y,t) .

Integrate from z to h,

h h h h

D 1
—wds—&—fp = —291/ vds+2ﬂg/ uds
Dt p p

+(Qf + Q%)(%hQ — %ZQ + dsh — dsz) + B(z,y,t)(h — 2).

z z

Applying the surface boundary condition on the pressure then gives the pressure at any point z,

h

;p(m,y,z,t) = %ds—i—%)l/ vds—ZQz/ uds — B(z,y,t)(h — 2)

» (3.2)
—(0F + D) (5h* — £2% + dsh — d3z) — odiv(k).
This equation for p(x,y, z,t) is exact. The strategy is to take derivatives with respect to x and y and then
substitute into the horizontal momentum equations. The details are lengthy and are given in Appendix A.
The expressions are

L op Dul"  Dul" oW — 20,V + 20 (h — 2) — 200w + 20
- = — - x — —z)— w v
p Ox Dt|, Dt 2 8 2 2 3 (3.3)
120, Vhy — 2QUhy — (92 + Q2)(h + d3)hy — Bu(h — 2) — Bhy — 00, div(k) .
and
lop _ Dvf' %hh — 2 W 4 2Q3U — 20 (h — 2) 4 2Qw — 2Q3u
pdy ~ Dt|, Dt|"? ! ° ! ! ° (3.4)

20,V hy, — 205Uk, — (2 + Q2)(h + ds)hy — By(h — z) — Bhy — 00, div(k).

The pressure is eliminated from the horizontal momentum equations using (3.3) and (3.4). The details will
be given for the x—momentum equation and then the result will be stated for the y—momentum equation.

4. Reduction of the horizontal momentum equation

The x—component of the momentum equations (2.4) is

Du 1@

Bitoo = —2(Qow — Q3v) — Qa2 + dz) + Q3(y + da)

0 Q- (x+d)+ (z+d1) Q| — Qer -G — gQer - e5.

Replace the second term on the left-hand side by the expression for p~!p, in (3.3),

h h

he = —20W + 203V — 20y (h — 2)
—201 Vhy + 2Q5Uh, + 2Q0w — 2Q30
+(QF + Q3)(h + d3)hy + B (h — 2) + Bhy + 00,div(k)
—2(Quw + Qgv) — Qo(z + ds) + Q3(y + dy)
~0 Q- (x+d)+ (2 +d1)[|2] — Qer -4 — gQes - es5.

Du  Du

Dt T D

n Dw
Dt

z
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There are convenient cancellations: principally %1;, 20,z and the interior Coriolis terms all cancel out.
Cancelling and using 8, = 22 — 103, and the kinematic condition W = h; + Uh, + V h, gives

h h

Du)y ’,3;;‘ hy 4 2Q(he + Uhy + Vhy) — 23V + 20,V h, — 2Q,Uh,

— (02 + D) (h+ d3)hy — (3 + Q3) (2 + d1) + U Qa(y + da) + 2 Q3(h + d3) (4.2)

+Qu(h + ds) — Q3(y + d2) + Qe - 4+ gQe; - €3 — Bhy, — 0d,div(k) = 0.
h
can be expressed purely in terms of surface variables since,

Now use the fact that %

h

Du
U, +UU, +VU, = Di
Substition into (4.2) reduces the z—momentum equation to an equation purely in terms of surface variables
Duw|"
U, +U0U, +VU, + (au + i ) hay + a1z hy = by + 00,div(k). (4.3)
The coefficients in this equation are
an(@,y,t) = 20V — (QF + Q) (h +d3) -
= 20V + Qes - G+ gQes - e3 — (2 + Q3)(h + d3) (4.4)

—(QQ — 9193)(1' + dl) + (Ql + 9392)@ + d2) ’

ayz = 20V, (4.5)
and
bi(z,y,t) = —20h +2Q3V — Qe -G — gQeq -e3 + (93 + Q%) (z + dy)

+(Qg — QlQQ)(y + dg) — (Qg + Qlﬂg)(h + d3) .
A similar argument leads to the surface y—momentum equation

D h
‘/t -+ UVI —+ VVy + ao1 hx + <a22 —+ D71: > hy = bQ + JaydiV(H) s (47)
with
as) = —QQlU, (48)
and
azg = —20U — (QF +Q3)(h +ds) + Qes - G+ gQes - e3 (49)
(1 + QQs)(y + d2) — (Q2 — Q) (z + dy), .
and

by = 2Q1hy —2Q3U — Qez -G — gQes - e3 + (QF + Q3)(y + da)

—(Q + D) (x4 dr) + (21 — D2Q3)(h + d3) .
The terms a1; and aqs are related by

(4.10)

ail — Qle = Q99 + QQQU .

The surface equations (4.3) and (4.7) are exact. Moreover the assumption of finite depth has not been
used yet and so they are also valid in infinite depth. In order to reduce them to a closed system, the only
Duw |h

term that requires modelling is the Lagrangian vertical acceleration at the surface, 57

5. Penney-Price-Taylor theory for the highest standing wave

Before proceeding to reduce the surface equations to a closed set of shallow-water equations a key
property of the exact equations is highlighted.

One of the simplest forms of sloshing waves is the pure standing wave. It is periodic in both space and
time. Penney & Price (1952) argue that the highest two-dimensional standing wave should occur when the
Lagrangian vertical acceleration at the crest is equal to —g. They consider standing waves in infinite depth
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only, but it will be clear from the discussion below that their argument is also valid in finite depth. Their
argument — in the absence of surface tension — is that the pressure just inside the liquid near the surface
must be positive or zero and consequently at the surface % < 0 which is equivalent to

h
Dw
“U S, 5.1
97T Dy (5.1)

t Dw _ dw

When this condition is violated the standing wave should cease to exist. Taking into account that 77 = F¢
at a crest, this is equation (67) in Penney & Price (1952). Using this theory they deduced that the crest
angle of the highest wave must be 90°, in contrast to the 120° angle of travelling waves. Taylor (1953) was
surprised by this argument and tested it by constructing an experiment. He was mainly interested in the
crest angle. His experiments convincingly confirmed the conjecture of Penney & Price (1952).

A theoretical justification of this theory can be deduced from the surface momentum equations. For
the case of 2D waves, this argument has been presented in §6 of Alemi Ardakani & Bridges (2009f).
Remarkably this argument carries over to 3D waves. Neglecting surface tension, and assuming the vessel
to be stationary, the surface momentum equations (4.3) and (4.7) reduce to

Ut+UUx+VUy+<g+%7fh>hx ~ 0,
Vit UV, + VY + (g4 28" )by = 0.

When g + % h_ 0, these equations further reduce to
v, +U0U,+VU, = 0,

Vi+UV,+VV, = 0.

These equations are closed and indeed it is shown by Pomeau et al. (2008a) that they have an exact
similarity solution. Moreover this similarity solution gives a form of wave breaking, which has in turn been
confirmed by numerical experiments in Pomeau et al. (2008b). The theoretical argument in Pomeau et al.
(2008a) is by analogy with the shallow-water equations but it is shown to be precise in Bridges (2009).
This theory indicates that any 3D standing waves will be susceptible to some form of breaking when the
condition (5.1) is violated. Indeed photographs of the experiments of Taylor (1953) show a form of crest
instability near the highest standing wave — in the 2D case, and his experiments also show a tendency to
3D near the highest wave. See also Figure 8(c¢) in Kobine (2008) which shows 3D standing waves reaching
a maximum. Adding in surface tension and a rotating frame will add new features to the theory. Surface
tension will likely provide a smoothing effect, but rotation will likely lead to a more complicated scenario
for breaking.

In this paper we are interested in shallow-water sloshing. In this case it is natural to assume that the
Lagrangian vertical accelerations at the surface are small, and so we will be working predominantly in the
region where the condition (5.1) is strongly satisfied.

6. Conservation of mass

The vertical average of the horizontal velocity (u(z,y,t),v(x,y,t)) is defined by

I I
= 7/ u(z,y,z,t)dz and v:= f/ v(x,y,z,t)dz. (6.1)
h Jo h Jo

Differentiating

h
+ foh Uy dz + hyv

h
+ foh vy dz

= ht—l—Uth+Vhy+f0h(uw+vy+wz)dz—f0hwzdz

he + (ha), + (hv)y, = hi+ hyu

= hi+Uhy+Vhy —W 4w
= ()7

z=0
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using u, + v, +w, = 0, the bottom boundary condition and the kinematic free surface boundary condition.
Hence, if (u,v) are used for the horizontal velocity field then the h—equation in the SWEs in the form

hy + (ha); + (hv), =0, (6.2)

is exact.
However we are interested in an h—equation based on the surface horizontal velocity field. The surface
and average velocities are related by

h
U(xﬂyat)fﬂ(xayvt) = %/ ZUZdZ,
1 On (6.3)
Viz,ygt) — oo,y t) = / 0. dz.
h Jo

Use these identities to formulate the mass equation in terms of the surface velocity field. Differentiating
(6.3) and using mass conservation,

0 _ 0 _
%[h(U—u)H—afy[h(V—v)] =W +hU, + hV,.
Replace W by the kinematic condition,
(h(U =)z +(h(V =70)y =W+ h(Us +Vy) = he + (WU )z + (RV), . (6.4)

The error in using the surface velocity field in the h—equation can be characterized two ways:

W+ h(Uy +V,) =0 or (WU —0))s + (h(V — 7)), ~0. (6.5)

7. SWEs for 3D sloshing in a rotating vessel
To summarize, the candidate pre-SWEs for (h,U, V) are

hi + (hU), + (RV), = W +hU, + hV,,,
h
U, +UU, + VUy + (an + %qf > h. + ao hy = b+ U@xdiv(ﬁi) , (7 1)
h
Vi+UVy+VVy +asi hy + <a22 + Dw ) hy = by +00,div(k).
The equation for W can be added
Duw "
Wi+ UW, + VW, = — (7.2)
Dt
h

The system (7.1) with or without (7.2) is not closed. If % is specified, then the system of four equations

(7.1)-(7.2) for (h,U,V,W) is closed. This system of four equations can be further reduced to a system of 3
equations with an additional assumption on the surface vertical velocity.
Henceforth it is assumed that the vertical velocity at the free surface satisfies

W + hU, + hV,| << 1, (SWE-1)
and the Lagrangian vertical acceleration at the free surface satisfies

Dw
Dt

Dw n
<< \a11| and ’Dt << |a22|. (SWE—2)
The assumption (SWE-1) has an alternative characterization as shown in (6.5). For small vessel motion,
the second assumption (SWE-2) is equivalent to assuming that the Lagrangian vertical accelerations are
small compared with the gravitational acceleration.

The coefficients of h, and h, can lead to instability and even loss of well-posedness. Let

A= <‘“1 ‘“2) . and define sym(A) := L(A + AT),
az1 a2
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the symmetric part of A. Then the following assumption is imposed on the coefficients:
sym(A) is positive definite. (SWE-3)

This condition is deduced from the linear constant coefficient problem,

Ut + anhx + alghy = 0
Vi + as1hy +(L22hy = 0.

Differentiating and combining gives the following wave equation for h(x,y,t),
hit = ho (a11haz + (a12 + a21)hay + azzhy,)

The condition (SWE-3) is precisely the condition for this wave equation to be well-posed. This condition
eliminates anomalies such as vertical downward accelerations exceeding gravity, and rotating or spinning
motion leading to overturning of the vessel.

7.1. Restrictions on the rigid body motion
The principal restrictions on the rigid body motion are the induced restriction that is implicit in the global
condition (SWE-2), through a1 and ass, and the local condition (SWE-3) through the matrix A.

In individual cases the restrictions on the rigid-body motion can be made precise. For example in pure yaw
motion, considered in §13, there is no restriction on the vertical angular velocity (other than the restriction
on the induced fluid motion). Section 7.3 below discusses limits on the rigid body motion induced by a
particular shallow-water scaling.

Another case where one can be precise, and is illuminating, is to assume that the vehicle is prescribed
to move on the surface of a sphere. This motion can be produced by taking Q =T and

a(t) = (q1(t), q2(t), g3(t)) = R(cos(t) cos ¢(t), cosO(t) sin ¢(t), sin(t)) ,
with R the radius of the sphere, ¢(¢) an arbitrary function of time, and
0(t) = wt with w constant .

In this case

allzaggzgwaRsinﬂ, a12:a21:0.

w < \/g. (7.3)

Mathematically, the shallow-water equations become ill-posed when this condition is exceeded. Physically,
the centripetal acceleration is exceeding the gravitational acceleration. A special case of the above vessel
motion, where the vessel lies on a great circle on the sphere, is considered in §15.

Hence the assumption (SWE-3) requires

7.2. Neglect of surface tension

Under the assumptions (SWE-1) and (SWE-2) and under the additional assumption that ¢ = 0 (neglect
of surface tension), the SWEs are hyperbolic. When o # 0 they are dispersive, for in that case
_ Om, O

d|V(n)fa$+87y:h$x+hyy+"',

where the dots correspond to nonlinear terms in h and its derivatives. Hence the o terms in the right-hand
side of (U, V') equations in (7.1) have the form

Odiv(k) = hgge +hyys +-- -,

Oydiv(k) = hagy +hyyy +--- .
At the linear level, these terms add dispersion to the SWEs. They will also require additional boundary
conditions at the walls (cf. Billingham 2002; Kidambi & Shankar 2004), as a contact angle effect appears

at the vessel walls. In this paper we will be primarily concerned with long waves and so will henceforth
neglect surface tension:

oc=0. (SWE-4)
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7.3. SWE-1 and SWE-2 in the shallow-water limit

The conditions (SWE-1) and (SWE-2) are global. That is, there is no particular restriction on parameter
values. Indeed they may be satisfied even in deep water. However, the most natural regime where one
would expect them to be satisfied is in the shallow-water regime. In this section a scaling argument and
asymptotics are used to analyze (SWE-1) and (SWE-2) in the shallow-water limit. The small parameter
representing shallow water is

(7.4)

where L is a representative horizontal length scale. Let Uy = v/ghg be the representative horizontal velocity
scale. Introduce the standard shallow-water scaling (e.g. p. 482 of Dingemans 1997),

~ T -y -z z s tUy
= —_ = — 2= — = — = —_—
v L YT ho  eL’ L’
(7.5)
G- 4 s v w5 h
U(), Uo’ ZfU()7 ho.

The scaled version of the surface velocities are denoted by U , V and W.

The typical strategy for deriving an asymptotic shallow-water model is to scale the full Euler equations,
and then use an asymptotic argument to reduce the vertical pressure field and vertical velocities (e.g. §5.1
of Dingemans 1997). Here however we have an advantage as the full Euler equations have been reduced to
the exact surface equations (7.1). Hence the strategy here is to start by scaling the exact equations (7.1),
and then apply an asymptotic argument.

To check (SWE-1), start by scaling the exact mass equation in (7.1)

Et~+ (Eﬁ); + (EV)@ = W + ?L(ﬁg + ‘75) . (7.6)

At first glance it appears that the left-hand side and the right-hand side are of the same order, since € does
not appear. However, the sum on the right-hand side is of higher order. The fact that the right-hand side
is of higher order is intuitively clear, since it can be expressed (see equation (6.4)) in terms of the velocity
differences U —uw and V' — 7 and in the shallow-water approximation the horizontal surface velocites (U, V)
and average velocities (T, ) are asymptotically equivalent. However, to make this precise we need to bring
in the vorticity field.

Go back to the unscaled mass equation and rewrite the right-hand side using (6.4) and (6.3)

0 4 0 "
hy + (RU), + (RV), = % (/0 zuzdz> + Bm (/0 zvzdz> .

Substitute for u, and v, using the vorticity field (2.11),

h h
he + (WU )s + (W), = % (/O = (Vs + wy) dz) + giy (/0 2 (wy — V) dz> . (7.7)

This equation is exact. The key to showing the right-hand side is of higher order is the scaling of the
vorticity. The appropriate scaling is to assume that the vorticity is asymptotically vertical,

Uy / ~ ~ ~
(V1,V2,Va) = 22 (V1,e9,V3) - (7.8)

This property of vorticity is implicit in the classical shallow-water theory, and here it is made explicit.
Scaling (7.7) then gives

I+ (WU )z + (WV)g = 2A(z, y, t,) . (7.9)
where
Aa/ﬁ~ Y+ 28) a4+ & N AR (7.10)
o), \"*T o) C ey, T\ ey ) :

Taking the limit € — 0 shows that (SWE-1) is satisfied. However, to be precise it is essential that

A(z,y,t,e) is bounded in the limit € — 0. (7.11)



Shallow water sloshing in 3D 13

Assumption (SWE-2) requires that the vertical acceleration in the two terms

Duw |" Duw |"
(all + E > and <022 + E ) . (7.12)

in (7.1) be small, relative to magnitude of a1; and ass. After scaling, the Lagrangian vertical acceleration
in the interior becomes

Dw U§<(‘3{E om0 ~8{D) U2 Dw

Dr L \ar Yoz Ve Vo) 7L Di
Hence
pw|" w2 pal'"  ,Di|"
Dt| L pr| "% il
using UZ = gho = gLe. The scaled version of the first term in (7.12) is therefore
<a11+Dw h) =g <%+S2D{E E)
Dt g Dt ’

with a similar expression for the ass term.
In the shallow-water regime, the assumption (SWE-2) is satisfied if

ail h
and

D
922 are of order one and ‘Dltg| is bounded as ¢ — 0. (7.13)

g g

However, by introducing scaling and taking an asymptotic limit, other anomalies can be introduced. We

have to ensure that b; and by are of the same order — or of higher order — as the left-hand side of the second
and third equations of (7.1). Look at the second equation with surface tension neglected

D
U+ UU, + VU, + <a11 + 5

h
)hm+a12hybl.

The left-hand side scales like U3 /L = ge. With the standard scaling for €,
Uy ~ ~ ~
(1,922, Q5) = 7 (1, 2, 0s),

all the terms in b; in (4.6) are of order € or higher except for the term gQe; - e3 which is of order unity.
In scaled variables it will be of order e~1. Hence this scaling puts a restriction on the angular velocity. A
natural scaling that renders b; consistent is to take the angular velocity to be asymptotically vertical, like
the vorticity,

U, ~ ~ ~
(Ql,QQ,Qg) = 70(691,592,93). (714)

To verify that by is now consistent it is necessary to show that
1 ~
lir% -Q(t,e)e; - e s of order unity (or higher in €).
e—0 &

This property follows from the scaling (7.14). In scaled variables, Q(t,¢) satisfies

d = 0 —s 553
d—,th =QQ2, Q= Q3 00—y,
75‘92 891 0

(see equation (2.1) for the unscaled version). Hence, in the limit as € — 0,

costp(t) —sing(t) 0

lim Q(t,¢) := Q(,0) = |sine() cosy(f) 0| where ﬂ =Qs,
e—0 0 0 1 dt

and
Q(ftv, O)el ce3 = 07

confirming that Q(t,e)e; -e3 = O(¢) as € — 0. A similar argument shows that the term Q(#,£)ey-e3 = O(e)
as € — 0, which appears in bs.
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The above scaling is only one of many, even in the shallow-water limit. A study of the various asymptotic
regimes is outside the scope of this paper. Our main guide is the two meta-assumptions (SWE-1) and
(SWE-2). They are required in general for closure and will have to be satisfied by any choice of scaling.

On the other hand, the above shallow-water scaling does appear implicitly in the numerical results. We
have found that roll-pitch type forcing (i.e. 7 and Q2 nonzero) requires very small amplitude in order to
avoid large fluid motions that would violate (SWE-1) and/or (SWE-2), whereas the amplitude of yaw
(Q3 nonzero) can be much larger (e.g. §13) and similarly the amplitude of translation (q) can be of order
unity (e.g. §15).

8. Potential vorticity for the SWEs with 3D rotations

The classical SWEs conserve potential vorticity, which is the vertical vorticity divided by the depth:
h='(V, — Uy), and the classical rotating SWEs in geophysical fluid dynamics conserve the perturbed
quantity h=*(V, — Uy + 2f), where the angular velocity vector is = (0,0, f) (see §4.2 of Salmon 1998).

The new surface SWEs conserve a form of PV which generalizes the classical case in an illuminating
way. We have discovered that the SWEs conserve the form of PV introduced in (1.3). The second term in
the numerator can be interpreted geometrically. Using the normal vector n at the free surface defined in
(2.10), the expression for PV is

V, - U, +2Mm-Q
- :

In this expression (2 is the body representation of the angular velocity. If the spatial representation of the
angular velocity is used (e.g. viewed from a laboratory frame), the form of PV is

PV = (8.1)

B V., — Uy + %Qn . ()spatial

PV
h

(8.2)

Note that PV is not changed between (8.1) and (8.2), just the representation is changed. In Appendix B it
is proved that

%(PV) ~0. (8.3)

In the classical shallow-water equations, preservation of PV has many important consequences (see review
of Mclntyre 2003). The generalization of PV to shallow-water equations with 3D rotations presented above
provides a setting for studying the implications of vorticity for shallow-water sloshing. In 2D shallowwater,
the predominant wave is a travelling hydraulic jump, when the vessel is forced harmonically near resonance.
In 3D shallow water, with multicomponent harmonic forcing, the potential for very complex dynamics of
curved hydraulic jumps can be expected. These hydraulic jumps will have an impact on the vorticity
budget.

For example, there is an interesting mechanism for the generation of vorticity due to a hydraulic jump
in two (horizontal) space dimensions discovered by Pratt (1983) and Peregrine (1998, 1999). They give a
formula for the amount of potential vorticity generated in the classical shallow-water equations due to a
discontinuous bore. However, their work applies only to steady bores. An extension of this theory to unsteady
multi-dimensional hydraulic jumps would provide some insight into the role of vorticity in shallow-water
sloshing.

9. Prescribing the rigid-body motion of the vessel

The fluid vessel is a rigid body free to undergo any motion in 3—dimensional space. Every rigid body
motion in R3 is uniquely determined by (q(t), Q(t)) where q(t) is the 3—component translation vector and
Q(t) is an orthogonal matrix with unit determinant (cf. Chapter 7 of O’Reilly 2008). In terms of the body
coordinates, the translations are surge, sway and heave, and the rotations are labelled roll, pitch and yaw
as illustrated in Figure 2.

Translations are straightforward to prescribe and need no special attention other than to be careful
about whether the spatial or body representation is used. In this paper q(t) is the translation of the body
relative to the spatial frame. If the translation is specified from onboard the vessel — that is, specifying the
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FIGURE 2. Diagram showing conventions for roll, pitch, yaw, surge, sway and heave.

surge, sway and heave directly — then the accelerations are related by

g Quu Q2 Q| (¢
G = |Qi2 Qa2 Qs | G2
Gareave Qi3 Q23 Q33| \ds

Note that the matrix on the right is the transpose of the rotation matrix. The natural approach in the
context of expermiments is to specify the absolute translations along with the rotations. Although we are
not aware of any experiments which combine both. The paper of Disimile et al. (2009) indicates that their
experimental facility for sloshing has the capability to produce all 6 degrees of freedom in the forcing.

On the other hand specification of the rotations requires some care. The set of orthogonal matrices is
highly nonlinear and in R3 the rotation matrices are no longer commutative in general. The simplest way
to specify a rotation is to use Euler angles. The properties of Euler angles needed in this paper are recorded
in Appendix C. However, even here one must be careful because Euler angle representations are inherently
singular, and there are subtleties in the deduction of the appropriate angular velocity (Leubner 1981). It is
also important to remember that Euler angles provide only a very special class of rotations. If, for example
the angular velocity vector of a vessel is specified arbitrarily, deducing the Euler angle representation will
be intractable in general.

The construction of Q(t) can also be approached directly using numerical integration. The rotation
matrix satisfies

Q=Q02, Q()=I, (9.1)
where € is the matrix representation of the body angular velocity (2.1). This approach is most effective
if the angular velocity is given. One setting where the body angular velocity is available is in strapdown
inertial navigation systems (e.g. Chapter 11 of Titterton & Weston 2004). The navigation system outputs
the body angular velocity and then (9.1) is solved numerically for Q(t) (called the attitude matrix in
navigation literature).

Another efficient approach to constructing rotation matrices is the use of quaternions. Quaternions
are now widely used in computer graphics algorithms (Hanson 2006) and in molecular dynamics (Evans
1977; Rapaport 1985). Evans (1977) points out that ”quaternion [computer] programmes seem to run ten
times faster than corresponding [computer| programmes employing Euler angles.” However in our case the
computing time for the rotations is very small compared to the computing time for the fluid motion, so
the simpler approach of computing Q directly by integrating (9.1) is adapted.

The differential equation (9.1) can be integrated numerically very efficiently, although the choice of
numerical integrator is very important as it is essential to maintain orthogonality to machine accuracy.
An efficient second-order algorithm for (9.1) is the implicit midpoint rule (Leimkuhler & Reich 2004) with

discretization
n+1 _ n n+1 n R
Q Q <Q +Q)Q<tn+§)7

At 2
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where (t) is treated as given; rearranging
Q" =Q" + 1At (Q™ + Q") Q (t”%) .
Setting
53 = LA (t”*é) :

one time step is represented by

-1
Q' =qQ <I+ S"+5> <I — S"+§> : (9.2)

Since S™ is skew-symmetric, the term (I 4+ S™)(I — S™)~! is orthogonal. Hence orthogonality is preserved
to machine accuracy at each time step.

When Q(t) is specified, this integration scheme can be designed to exactly synchronize with the time
integration of the fluid equations.

The implicit midpoint rule is a special case of the Gauss-Legendre Runge-Kutta (GLRK) methods which
have been shown to preserve orthogonality to machine accuracy, and they can be constructed to any order
of accuracy (Leimkuhler & Reich 2004). There are other effective and efficient methods for integrating the
equation (9.1) and some recent developments are reviewed in Romero (2008).

9.1. Linearizing rotations

When using Euler angles with very small amplitude forcing, the angular velocity is sometimes approximated
by the derivative of the angles. For example, consider the case of the 3-2-1 Euler angles introduced in
Appendix C. The body representation of the angular velocity is

¢ —1)sinb
Q= |1cosfsing+0cose | . (9.3)
1 cos 6 cos ¢ — Osin ¢
Neglecting terms that are quadratic in the angles reduces this expression to
¢
Q~10]. (9.4)
G
This approximation is appealing, since then 2 = © and Q = é, with ® = (¢, 0,). This linearization is
also mathematically correct.

On the other hand linearization of the associated rotation has to be done with care. The temptation is
to approximate the rotation by

R 0o -y 0
QT =1+6, &=(v 0 4], (95)
-0 ¢ 0

and this approximation is used in the literature. However, this approximation is no longer a rotation since

(Qapprox)T # (Qapprox)—l .

It will still produce a motion of the vehicle, but not necessarily a physical motion, since the approximate
rotation (9.5) is not bounded in general, and so over long times artificial displacements of the vehicle will
arise.

An approximation, to the same order of accuracy, can be obtained by using the Cayley transform

QU = (I+30)(I-30)".

This matrix is orthogonal and has the same order of approximation as (9.5).

On the other hand, there is no reason to linearize the Euler angles in either analysis or in numerics. In
general it is best to use the exact expressions for the Euler angles, even for small angles. In this paper only
exact representations of the rotations are used. Indeed, as far as we are aware, the simulations of sloshing
reported here are the first to use exact representations for 3D rotations.
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9.2. Harmonic forcing

Harmonic motion can be specified by expressing the Euler angles in terms of harmonic motion, or by
arbitrarily specifying the angular velocity and then integrating (9.1) to obtain the rotation. For example
in the case of roll-pitch with the same phase, but different amplitudes and frequencies,

¢(t) =ercosw,t and  O(t) = e, coswyt.

In choosing the forcing frequency it is not the value of the frequency that is important but its value relative
to the natural frequency. In the limit of shallow water, the natural frequencies of the fluid are

m?  n?

1/2
L%"—L%) s m,n:0,1,27.... (96)

Wmnp = T ghO (

10. Review of previous derivations of rotating SWEs for sloshing

Two derivations of the SWESs for fluid in a vessel that is undergoing a general rigid-body motion in three
dimensions first appeared in the literature at about the same time, given independently by Dillingham &
Falzarano (1986) and Pantazopoulos (1987), hereafter called the DFP SWEs. Both derivations follow the
same strategy. An extensive review of their derivations is in Alemi Ardakani & Bridges (2009¢). There are
several key weaknesses in their derivation. First they use the spatial representation of the angular velocity.
This choice, while not incorrect, leads to very complicated equations, which simplify dramatically simply by
changing to the body representation. Secondly, they make a small angle approximation and so the angular
velocity reduces to the form

Q = (¢7 é? O) )
similar to a 2D rotation, where ¢ is the roll angle and 6 is the pitch angle. Hence the full structure of
3D rotations is lost. They also restrict to roll-pitch motion. Thirdly, they make strong assumptions which
approximate equations with potentially much larger error than the surface SWEs.

The velocity field (U, V') is not the same as the velocity field in the DFP SWEs. DFP do not specify exactly
which horizontal velocity they use but their h—equation becomes exact if the average horizontal velocity
is used. In any case, assume for purposes of comparison that (U, V) = (u,v), and then the coefficients in
the two systems can be compared,

ar1 = ag) + 22U — (93 + Q3)h — (2 — QQ3)d1 + (R + Q2Q3)da,
alg = a?QFP + 2V, a9 = angFP -20U,
azs = agy — 20V — (3 + Q3)h — (Qo — U Q3)d1 + (U + QQ3)da.
The right-hand side coefficient comparison is
bi = fi— 20k + (B +03)di + (3 — UQo)dz — (2 + U Q)R
by = fo+2hs+ (9F +03)dy — (3 + D Q2)dy + (1 — Q).

The d; and ds error terms are not so important since they could be included in the DFP formulation so
they can be discounted. The discrepancy between the two formulations is still quite significant when the
rotation field is present. This discrepancy is due to the fact that the DFP SWEs have more assumptions
than the surface SWEs. See the report of Alemi Ardakani & Bridges (2009¢) for details.

Another strategy for deriving the SWEs for fluid in a vessel that is undergoing a general rigid-body
motion in three dimensions has been proposed by Huang (1995) and Huang & Hsiung (1996, 1997). Their
derivation is more precise, and starts with the full 3D equations. A detailed report on their derivation
is given in Alemi Ardakani & Bridges (2009d). They explicitly take u(z,y, z,t) and v(x,y,2,t) to be
independent of z but implicitly they are using the average horizontal velocity field (@, 7). They neglect the
vertical acceleration in general (not just at the free surface) and integrate the vertical pressure gradient,
differentiate and then substitute into the horizontal momentum equations.

To compare these HH SWEs with new surface equations, assume that the (U, V) velocity field in the
surface equations is equivalent to the velocity field in the HH SWESs, and compare coefficients

CL{{H = ai] — ZQQU, agH = ag2 + 291‘/,
aty’ = a1 =20V, ahi =an + 20U, (10.1)

b H by + 20hs + Qoh, DY = by — 201 — Qb
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The agreement between the HH SWEs and the surface SWEs is much better than the case of the DFP
SWEs but there are still important differences when €7 and €25 are important. One case where the surface
equations and the HH SWEs agree exactly (assuming equivalence of the velocity fields) is when the forcing
is pure yaw motion, and numerical experiments on this case are discussed in §13.

Another source where 3D shallow-water equations in a rotating vessel appear is in Exercise 9.6.4 on
page 436 of Faltinsen & Timokha (2009). The exercise asks the reader to derive two forms of the shallow-
water equations in 3D in a rotating frame. The first part of the question leads to a derivation of the DFP
equations (see part (b) on page 436). It is an improvement over DFP in that the body representation for
the angular velocity is used, but the angular velocity is linearized. In the second part of the question the
reader is asked to derive a second form of the equations maintaining full nonlinear rotations. However,
these equations turn out to be exactly the same as the HH SWEs (Huang & Hsiung 1996), and a detailed
alternative derivation of the HH SWEs is given in Alemi Ardakani & Bridges (2009d).

11. Numerical algorithm for shallow-water sloshing

The numerical method we propose for simulation of shallow-water sloshing in a vehicle undergoing rigid
body motion is an extension of the numerical scheme in Alemi Ardakani & Bridges (2009f). It is a finite
difference scheme, using centered differencing in space. It is fully implicit and has a block-tridiagonal
structure. The basic formulation of the algorithm was first proposed by Leendertse (1967) and refined
by Abbott and Tonescu and is widely used in computational hydraulics (cf. Abbott 1979). The only new
features in the algorithm are extension to include a fully 3D rotation and translation field, and exact
implementation of boundary conditions. The fact that the scheme is implicit makes the introduction of
rotations straightforward. Some explicit schemes are unstable in the presence of rotation.

The one-dimensional version of the algorithm was used in Alemi Ardakani & Bridges (2009f) and the
two-dimensional version is just a concatenation of this scheme: the time step is split into two steps and an
alternating direction implicit algorithm is used: implicit in x—direction and explicit in the y—direction in
the first half step and explicit in z—direction and implicit in the y—direction in the second half step. One
of the nice properties of the scheme is that the boundary conditions at the walls are implemented exactly,
even at the intermediate time steps.

The scheme has numerical dissipation, but the form of the dissipation is similar to the action of viscosity.
The truncation error is of the form of the heat equation and so is strongly wavenumber dependent. Moreover
the numerical dissipation follows closely the hydraulic structure of the equations. See the technical report of
Alemi Ardakani & Bridges (2009¢) for an analysis of the form of the numerical dissipation. The numerical
dissipation is helpful for eliminating transients and spurious high-wavenumber oscillation in the formation
of travelling hydraulic jumps.

In contrast, Pantazopoulos (1987) and Pantazopoulos (1988) use Glimm’s method. Glimm’s method is
very effective for treating a large number of travelling hydraulic jumps, but the solutions are discontinuous,
and the scheme has problems with mass conservation. Huang & Hsiung (1996, 1997) use flux-vector split-
ting. This method involves computing eigenvalues of the Jacobian matrices, and is effective for tracking
multi-directional characteristics. It appears to be very effective and accurate but is more complicated to
implement than the scheme proposed here.

Setting up the equations for the scheme proposed here is straightforward and follows the one-dimensional
construction in Alemi Ardakani & Bridges (2009f), but the details are lengthy. Hence we have given a
detailed construction of the algorithm in an internal report (Alemi Ardakani & Bridges 2009¢) and in
Appendix D just the main features are highlighted.

12. Sloshing with roll-pitch and roll-pitch-yaw forcing of the vessel

In this section the forcing is represented using Euler angles. The exact representations for roll-pitch and
roll-pitch-yaw used in the simulations are recorded in Appendix C.

12.1. Sloshing due to roll-pitch forcing

Roll-pitch forcing is the simplest rotation which is fully three-dimensional and non-commutative. With a
harmonic representation of the angles it is a simple model for the motion of a rolling and pitching ship.
There are results in the literature on roll-pitch forcing of a vessel containing shallow-water fluid ((e.g.
Dillingham & Falzarano 1986; Falzarano et al. 2002)), but in all cases the forcing is linearized so that the
angular velocity is the derivative of an angle. As far as we are aware, the results presented here are the
first to use an exact 3D representation of the roll-pitch motion in the simulations. Three simulations are
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t=0.8 sec t=1.4 sec

t=1.6 sec t=1.9 sec

FIGURE 3. Snapshots showing the emergence of a curved hydraulic jump when the forcing parameters are
gp =2.0° &, = 1.0°, wp = 4.2607, and w, = 3.4085 rad/sec.

presented: near resonance, far from resonance, both with quiescent initial conditions, and then a roll-pitch
simulation where vorticity has been injected into the initial condition.
The angles are taken to be harmonic

¢ (t) =epsin(w,t) and 6 (t) =epsin (wpt) . (12.1)
The body representation of the angular velocity is

erwy €08 (wyt) cos(gp sinwpt)
Qt) = WpEp COS Wpt ,
erwy €os (wyt) sin(e, sinwpt)

and the gravity vector is
—cos ¢(t) sin6(t)
g(t) =gQTes =g sin ¢ (¢)
cos ¢(t) cosO(t)

The vessel and fluid geometry parameters are set at
L1 = l.Om, L2=0.80m, h0=0.12m, dl =—O.50m, dg = —O.40m, d3 =0.0m.
With this fluid geometry, the natural frequencies (9.6) are

9\ 1/2
Winn = 3.40 (m2 + n) rad/sec,
.64
with the first two: wyg & 3.41 rad/sec and wp; = 4.26 rad/sec.

In shallow-water sloshing in one horizontal space dimension, a travelling hydraulic jump forms when
the vessel is forced harmonically near resonance. Here we see a similar phenomena, although the multi-
component forcing generates a hydraulic jump with a curved wavefront. Figure 3 shows the generation
of the bore after only 2 seconds of real time. In the figures, the X — Y — Z—coordinate system is the
fixed inertial frame, and the actual position of the tank relative to that frame is plotted. The numerical
parameters in this case are Az = 0.02, Ay = 0.016 and At = 0.01, and the initial conditions are quiescent:
h(z,y,0) = hy and u(z,y,0) = v(z,y,0) = 0.

Now suppose that the forcing frequencies are far from resonance. The vessel and fluid geometry param-
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FIGURE 4. Snapshots of free surface profile for coupled roll-pitch forcing, far from resonance, with e, = 5.0°,
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eters are set at

d3=0.0m.

—-0.25m,

do =

0.5m,

d = —

0.12m,

ho =

1
§L1 =05m,
The first two natural frequencies of the fluid are wqg

of the free surface at a sequence of times.

2 =

L

L1 = 10m,

~ 6.8171. Figure 4 shows snapshots

3.4085 and wpq
Even with the much larger forcing amplitude, the motion of the

~
~

free surface is quite gentle for long times. The initial conditions are quiescent and the numerical parameters

are Az = 0.02. Ay = 0.01 and At = 0.01.

12.2. Roll-pitch forcing with vorticity injected into the initial condition

ho but

take h(z,y,0) =

)

Vorticity can be injected into the initial condition. Consider the following form:;

with a non-trivial velocity field

(12.2)

. (mmx nmy
A —_— — ), Vi(x,y,0
Sm(Ll)COS(L2> (x,y,0)
where A is an input amplitude, and m, n are arbitrary natural numbers. This velocity field is divergence-free

and has vertical vorticity field

U (x,y,0)

Ve —Uy)

(

For the simulation, the vessel and fluid geometry parameters are set at

d3 =0.0m.

—0.125m,,

) d2:

—0.25m

=3.
5.5662 and wgy; ~ 11.1324. Pitch and roll motions

0.5m, Ly=025m, ho=008m, di =

Ly =

The vorticity parameters are set at A = 0.08, and m =n

The first two natural frequencies of the fluid are wyy =
are taken to be harmonic and the same form as (12.1) with parameters

0.5010 rad/sec.

0.6679 rad/sec,

10.87°,

Wy =

7.1%, wp =

Er

€p
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t=10.6 sec t=12.0 sec

L | e
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FIGURE 5. Configuration of the free surface profile for large-amplitude roll-pitch forcing with vorticity in the
initial condition.

Figure 5 shows the configuration of the free surface at a sequence of times. Although the amplitude is
quite large, the motion of the free surface remains quite gentle. It appears that the vorticity enhances the
mixing of the interior fluid, but does not greatly affect the free surface. The numerical parameters in this
simulation are Az = 0.01, Ay = 0.005 and At = 0.01.

12.3. Forcing using exact Euler-angle representation of pitch-roll-yaw

The only results in the literature where full roll-pitch-yaw forcing of sloshing is reported is in Huang &
Hsiung (1996) (see also Huang (1995) and Huang & Hsiung (1997)). However, although their formulation
includes this forcing their results are limited to planar rotations. Hence the results reported here are the
first sloshing simulations with full roll-pitch-yaw forcing.

The 3-2-1 Euler angles are used and the properties needed are recorded in §C.1. The expression for Q
is given in equation (C-4) and the required body representation of the angular velocity is given in (C-5).
The yaw, pitch and roll angles are taken to be harmonic

Y (t) =eysin(wyt) , 0(t) =epsin(wpt) , ¢ (t) = e sin(wyt) . (12.3)
The gravity vector is
—sin6(t)
g(t) := 9Q"es = g | sing(t) cos b(t)
cos ¢(t) cos O(t)

The fluid and vessel geometry parameters are set at
L1 = O50m, L2 = ()'{')OTTL7 h() = 012m, d1 =—0.25 m, d2 = —O.25m, d3 =00m.

With this geometry the natural frequencies are

Wimn & 6.824/m? + n? rad/sec.

We will present results for a typical run in this configuration. Take the forcing function parameters to be
gy =20°, ¢,=10°, & =10°, wy,=wy,=uw, =52171rad/sec,

and set the numerical parameters at Ax = Ay = 0.01, and At = 0.01. With this low amplitude of forcing
the singularity of the Euler angles is safely avoided.

Snapshots of the surface profile at a sequence of times are depicted in Figure 6. Almost immediately a
pair of interacting travelling waves, close to a bore, are generated. They are very similar to the standing
cnoidal waves that can be found analytically (e.g. Bridges 1987). However, the waves here do not maintain
form after many interactions.
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FIGURE 6. Snapshots of surface profile due to roll, pitch and yaw with forcing (12.3).

12.4. Discussion

We have just scratched the surface of possibilities in the study of the implications of 3D rotations on
sloshing. As expected, near resonant forcing produces travelling hydraulic jumps, and far from resonant
forcing produces gentle sloshing.

However, the situation here is much more complicated than the case of one horizontal space dimension,
since there are two frequencies in roll-pitch and three frequencies in roll-pitch-yaw. In one horizontal space
dimension, the theory is very clear: there is a region in frequency space about resonance, where the response
is a travelling hydraulic jump (e.g. Ockendon & Ockendon 1973; Kobine 2008). In two horizontal space
dimensions, there is more than one frequency, and more types of hydraulic jump, and the hydraulic jumps
have wavefront curvature, and can interact.

Another feature that arises here is the interaction between the multiple forcing functions. For example,
there are dynamical systems implications when the ratio of w, to w, is irrational. In this case the forcing
is quasiperiodic rather than periodic. In the dynamical systems literature, Wiggins (1987) shows that a
Dulffing oscillator with quasiperiodic forcing can have a chaotic response. In the context of sloshing, there
is the additional potential for chaotic interaction between travelling hydraulic jumps. Furthermore there
are implications for the generation of potential vorticity.

In the above simulations, the typical number of grid points in space is about 2500. CPU time is about
5 seconds per time step without any special optimisation: coded in MATLAB and run on a 32 bit 2.0 GHz
processor. The simulations are run for 500-600 time steps. Typically 2-3 iterations are required per time
step, and when hydraulic jumps are present the number of iterations is increased to 5-7 per time step.

13. Sloshing in vessels undergoing pure yaw motion

The case of pure yaw forcing is of interest for several reasons. First, there is a simplified form of potential
vorticity conservation; secondly, the surface SWEs and the HH SWEs agree in this case (assuming equal
velocity fields) and so the results can be compared, and thirdly this case is the closest to the rotating SWEs
in geophysical fluid dynamics.

In the case of pure yaw forcing, the coefficients in the surface SWEs reduce considerably. With ; =
Qs =0 and Q3 = v, where 1(¢) is the yaw angle,

a1 = ax=g¢g, a2=an=0,
by = 20V +Q%(x+di) + Qs(y +da),
by = —2Q03U +Q%(y+dy) — Qs(x+dy).
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FIGURE 7. Velocity fields associated with the pure yaw forcing (13.2).

The surface equations and the HH equations are identical (assuming equivalent velocity fields) and the
momentum equations reduce to the classical SWEs with forcing

Uy +UUy + VU, 4 ghe = 20V +92(x +dy) + 0y + da) , (15,1
Vit UVy +VVy +ghy, = —20U+92(y+ds) — Pz +dy). '
The general expression for PV in §8 reduces in this case to
PV V, — Uy, +2¢
=—
Consider the yaw motion to be harmonic
P (t) =eysin(wyt) with e, =10.0°, and w, =4.1746 rad/sec. (13.2)

Set the vessel and fluid parameters at

Li=10m, L;=10m, hy=0.18m, d;=-05m, do=-05m, d3=-03m.

The forcing frequency is near the lowest natural frequency. The natural frequencies are
Wimn & 4.1746 \/m?2 + n? rad/sec.
The numerical parameters are set at Az = Ay = 0.02 and At = 0.01.

The field of velocity vectors is shown at different values of time in Figure 7. There is a very clear swirling
motion set up. The conservation of PV generates a vertical vorticity field, and this is evident in the figures.

13.1. Comparison with results of Huang & Hsiung (1996)

Now change the parameters in order to compare with the results of Huang & Hsiung (1996). Set the vessel
and fluid parameters at

Li=10m, Ly=08m, hy=01m, dy=-05m, dy=-04m, d3=0.0m.

The numerical parameters are
Ax=0.02m, Ay=0.016m, At=0.01s.
The forcing is harmonic yaw motion as in (13.2) with parameters

ey =4.0°, w, =6.0rad/sec.
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FIGURE 8. Surface profile and velocity field due to yaw at t = 1.5 s: comparison of the numerics based on the
surface SWEs with Figures 28 and 29 of Huang & Hsiung (1996).

The snapshot of the surface profile at ¢t = 1.5 s and the corresponding velocity field are depicted in Figure
8. This result agrees very well with Figures 28 and 29 of Huang & Hsiung (1996), including the vortex
pattern. The initial conditions are vorticity free. Hence the generation of vorticity is due to the imposed
rotation, but it appears to be enhanced by the numerical dissipation-like truncation error.

14. Diagonal and swirling waves due to coupled surge-sway motion

Surge-sway forcing is the most studied of forcing functions for 3D sloshing (e.g. Chen et al. 2009; Wu
et al. 1998; Faltinsen et al. 2003; Liu & Lin 2008; Wu & Chen 2009). It is simple to implement since there
is only translation and no orientation change. On the other hand, there are identifiable wave types and
bifurcations that occur that make it easier for experimental and theoretical comparison. The results in this
section are inspired by the theory and experiment of Faltinsen et al. (2003) and the 3D simulations of Wu

& Chen (2009). The purpose is to show that the shallow-water model captures the essential features of
diagonal and swirling waves.

To capture diagonal modes, the prescribed surge and sway motions of the vessel are taken to be harmonic
and in phase

q1 (t) =e1cos(wit) and o (t) = ez cos (wat) .
Set the fluid and vessel geometry parameters at
Li=05m, Ly=05m, and hog=0.0Tm, (14.1)

giving a fluid aspect ratio of hg/L; = 0.14, and natural frequencies

Winn & 5.207v/m? + n? rad/sec.

The numerical parameters are taken to be Ax = Ay = 0.025m and At = 0.01 s.

Following the strategy in the experiments of Faltinsen et al. (2003) and the simulations of Wu & Chen
(2009), points on the vessel walls are identified and the time series at the fixed points are compared. We

will restrict attention to two points on the vessel walls which we identify as Ps and Pr (see Figure 13(b)
in Faltinsen et al. (2003)). Their locations are

Ps : (z,y) = (L1,3L2) , Pr : (z,y) = (3L1,0) .
((Ps, Pr) here correspond to (Py, Ps) in Faltinsen et al. (2003).)
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FI1GURE 9. Time histories of the surface displacements at points Ps and P;, and a parametric graph of the pair
(Ps,Pr).

14.1. Surge-sway motion with diagonal forcing

The forcing function parameters for diagonal forcing with forcing frequency well above the lowest natural
frequency are

€1 =0.002m, e2=0.002m, and w; =ws= 14w ="7.2893rad/sec. (14.2)

The time histories of the surface displacement at points Ps and P; and the parametric curve of the pair are
shown in Figure 9. The parametric graph in Figure 9 has a non-trivial slope. According to the theory of
Faltinsen et al. (2003) this type of parametric graph indicates square-like waves in the tank. A square-like
wave corresponds to a nearly diagonal standing wave (see the last few sentences of page 17 of Faltinsen
et al. (2003)). The structure of a square-like wave is also seen in Figures 7(b), 8(b) and 9(b) of Wu & Chen
(2009).

14.2. Surge-sway forcing with a phase shift

By taking the surge and sway forcing functions to be out of phase, a clear example of a swirling wave
emerges. Consider the case of diagonal forcing with the surge and sway 90° out of phase

q1 (t) = ey cos(wit) and g¢a(t) = egsin (wat) .

The parameters (14.1) and the numerical parameters remain the same, and the forcing function parameters
are taken to be

g1 =0.00012m, €3 =0.00012m, and w;=ws=0.99w; = 5.15467rad/sec. (14.3)

The time histories of the surface displacement at points Ps and P; and their parametric curve are shown
in Figures 10 and 11 respectively. Figure 12 show surface plots at a sequence of times which show very
clearly the propagation of a counterclockwise swirling wave. These surface plots agree qualitatively with
the surface plots of a swirling wave in Figure 11 of Wu & Chen (2009).

Additonal contour plots and simulations of surge-sway are given in the report of Alemi Ardakani &
Bridges (2009g).

15. Sloshing on the London Eye

The London eye is a large ferris wheelf. A schematic of the attached vessel on the London Eye is shown
in Figure 13. Mathematically, the vessel, partially filled with fluid, is prescribed to travel along a circular
path. Even when the speed along the path is constant, sloshing occurs due to change in direction. The base
of the vessel remains horizontal along the path. In addition the vessel can also have a prescribed rotation.

t http://www.londoneye.com/
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FI1GURE 10. Time histories of surface displacements at points Ps and P associated with the out-of-phase forcing
(14.3).
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FIGURE 11. Parametric graph of the pair (Ps,Pr) associated with the out-of-phase forcing (14.3).

The interest in this example is threefold. It is an example with very large displacements of the vehicle
and illustrates the generality of the prescribed vessel motion. Secondly, it is a prototype for the transport
of a vessel along a surface. In this case the surface is a great circle on the two-sphere. As the vehicle
moves along the surface it can also rotate relative to the point of attachment. Other examples of surfaces
of interest are the full two-sphere or a bumpy sphere, which is a model for a satellite containing fluid and
orbiting the earth, and a surface modelling terrain. The latter is a model for vehicles transporting liquid
on roads through hilly terrain.

Thirdly, it is an excellent setting to test control strategies for sloshing. For example, suppose the speed
along a path in the surface is prescribed. Sloshing will result if the path is curved due to induced acceleration.
The local rotation of the body could act as a control, and roll, pitch or yaw could be induced to counteract
any sloshing due to motion along the path.

In this section the basic model is introduced, and a simulation of the vessel moving along the circle at
constant speed, with coupled roll-pitch motion, is presented. The interest in this example is as a prototype
for more general trajectories, since the actual London Eye is designed to have extremely low centripetal
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t=43.2 sec t=43.06 sec

FIGURE 13. Schematic showing an attached vessel which moves along a circular path, modelling a pod on the
London Eye.

acceleration. According to the London Eye website, the radius, R, of the wheel is 65m, and the travel time
of a pod is 30 min, giving a frequency of w. = 7/900. The relevant dimensionless parameter is the ratio of
centripetal acceleration to gravity

2

Fo = et (15.1)

g
This parameter is like a Froude number (p. 111 of Vanyo 1993), since the ratio is a velocity squared over
gR, but it is a vessel motion parameter and not a a fluid parameter. The Froude number for the London
Eye is

Fr ~ 0.009.

This Froude number is quite low (passengers can disembark from the London Eye without it changing
speed), and so we will increase it by an order of magnitude in order to induce sloshing fluid motion.

The radius of the circle is denoted by R. The vector q(t) = (q1(t), ¢2(t), q3(t)) defines the distance from
the origin of the fixed coordinate system to the point of attachment of the vessel on the circle,

g1(t) =0, q(t)=—R+ RcosO.(t) and g¢3(t) = Rsinf.(t), with 0.(t) = w.t. (15.2)

w, is the angular speed along the path and it is taken to be a specified constant.
An example of purely plane motion, where the vehicle moves along the curve at constant speed, and has
an added harmonic pitch forcing about the suspension point, is shown in Figure 14. In this case the axis of
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FIGURE 14. Planar example, illustrating the fluid motion as the vessel moves along the circle.

rotation is above the still water level and the vessel is suspended. In the planar case we have made videos
of the coupled motion and these are very effective at illustrating the coupled slosh-vehicle dynamics, and
they are available at the website.

For the three-dimensional case, the point of attachment of the vessel will be allowed to undergo a
prescribed 3D rotation. For definiteness, take this rotation to be of the roll-pitch form as defined in Appendix
C and §12. The pitch and roll motions are taken to be harmonic and of the same form as (12.1). The initial
conditions are taken to be quiescent.

The vessel and fluid geometry parameters are set at

Li=10m, Ly,=080m, hy=015m, di=-05m, dy=-04m, d3=00m.

The geometric parameters associated with the path are set at R = 1.2m and w, = 0.4 rad/sec.

For this vessel motion, the assumption (SWE-3), in the form (7.3), arises, and it can be formulated in
terms of the Froude number (15.1). The condition (7.3) is equivalent to assuming that Fr is small compared
to unity. For the above parameter values

Fr~0.14,

and so the condition (7.3) is well satisfied, but it is still an order of magnitude larger than that of the
London Eye. The numerical parameters are set at Az = 0.02, Ay = 0.016 and At = 0.01. The first two
natural frequencies of the fluid are w1y ~ 3.81 and wgy; = 4.76.

Figures 15 to 16 show snapshots of the free surface at a sequence of times when

gp=10°, &.=1.0°, wp,=0.2wp ~0.9527rad/sec, w, =0.95w1p = 3.6204 rad/sec.

Two prominent features show up. First there is a bias towards one side of the tank due to the induced
accelerations from the path. Secondly, even though the second frequency is near the resonant frequency the
response is relatively gentle, indicative of the interaction between the q(t) path forcing and the roll-pitch
forcing.

16. Concluding remarks

A new set of shallow-water equations which model the three-dimensional rigid body motion of a vessel
containing fluid has been derived. The only assumptions are on the vertical velocity and acceleration at
the surface. The equations give new insight into shallow-water sloshing, and numerical simulations include
the effect of viscosity and are much faster than the full 3D equations. It has been demonstrated that
the equations capture many of the features of 3D sloshing for the case when the free surface is single
valued: diagonal waves, swirling waves, curved hydraulic jumps, and interacting waves. A form of vorticity
is captured by the equations and numerics, and the motion of the vessel can be specified in complete
generality.

In this paper the vessel motion has been prescribed. The vessel motion can also be determined by solving
the rigid body equations coupled to the fluid motion. Some results, for the case of coupled motion for a rigid
body with shallow-water fluid in two dimensions, have recently been obtained (Alemi Ardakani & Bridges
2010, 2009a). The extension to coupling between three-dimensional rigid body motion and shallow-water
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Appendix A. The horizontal pressure gradient

A.1. x—derivative of pressure
Differentiate (3.2) with respect to x

10p
_ hz Dw w
p 837 Dt Jr f ( )
20, Vh, + 20 fz vpds — 205U, — 29 [ u, ds
—(2 4+ D3)(h+ d3)hy — Bo(h — 2) — Bhy — 00,div(k) .
Use the vorticity equation to substitute for (%ﬂf’)w
1op _ thw +f [(J) — 20,28 20,8 20,2 +2§22} ds
p 3x Dt ox
+20,Vhy, + 29, [ v, ds — 2QgUhx — 20 [P u, ds
—(Q3 + Q%) (h+ d3)he — Bo(h — 2) — Bhy — 0O, div(k).
or
1 0p Dw " Du 4 h h h .
or = har| +BE| 20 [ vads —2Q [ vy ds —2Q3 [ v, ds +2Q(h — 2)
F20,Vhy, + 29 [ v, ds — 202Uh, — 20 [ u, ds
_(Q% + Q%)(h + d&) ﬁz( ) - th - andiv(’{) .
or
D 1 h h .
qu + ;% = ’g;;‘ + 1};;‘ By + 2Q5W — 2Q3V 4 2Qy(h — 2)
20, Vhy — 205U Ry — 200w + 2050 (A-1)

—(9} + Q3)(h + d3)hg — Bo(h — 2) — Bhy — 00,div(K) ,
which is equation (3.3) in §3.

A.2. y—derivative of pressure

Differentiate (3.2) with respect to y

13p Duw w

+2§21Vhy +20, fz vy ds — 205Uhy — 20 [ u, ds
(92 4+ Q2)(h + d3)hy — By (h — 2) — Bhy — 50,div(K).

Use the vorticity equation to substitute for (£%)

1 .
% = e 0 (B de 200 20t 2]

p Oy
+2M Vh, + 204 fz vy ds — 2QoUh,, — 20 fz uy ds
— (3 + Q3)(h + ds)hy — By(h — 2) — Bhy — 00,div(k) .

or
h

hy'pe| + (B7)
+20,Vhy + 29, [ v, ds — 20,Uh, — 29, [ u, ds
—(QF + Q3)(h + ds)hy — By(h — 2) = Bhy — 00,div(k).

h
+ 20 fzh Uy ds + 20 fzh uy ds + 2Q3u

h .
— 2Ql(h — Z)

z

19p
p Oy

or

Dv 18p B Dvh h

S TRy Dol Dwl o — 204 W + 203U — 2Q4(h — 2)
—|—291V]7,y - 2QQUh + QQlw - Qqu 3
—(QF + D) (h +d3)hy — By(h — 2) — Bhy — 0, div(k).

which is equation (3.4) in §3.
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Appendix B. Verification of potential vorticity conservation

In this appendix, the conservation of the generalization of PV stated in (8.3) is proved. It is clear that
the projection of the angular velocity onto the normal vector is important, so define

f(il',y,t) = Qd _thr _Qth :£n~ﬂ, (B-].)
and re-write the surface SWEs emphasizing the role of f
Ui+ UU, + VU, + ah, —2fV = b
(B-2)
Vi+ UV, +VV,+ah,+2fU = by,

where a = a1 — 21V, 61 = by — 2Q3V, 32 = by + 2Q3U and a1, by and by are given in (4.4), (4.6) and
(4.10) respectively. In the vorticity equation only the derivatives of a, b; and be appear and they are

a; = —(QB2+)h, — Q0+ U3, ay=—(+QB)hy, + U + W0y
(b1)y = —2Dohy + Qs — 0Q — (0 + 0 Qs)h, (B-3)
(b2)e = 2Qhu — Qs — Qo+ (2 — QQ3)h, .
Differentiate the second of (B-2) with respect to x and the first with respect to v,
D(V, —U,) by 9y
Substituting (B-3) then gives
D
E(Vm —Uy+2f)+ (Ve = Uy +2f)(Us +V,) =0.
Noting that V,, — U, 4+ 2f = h PV, and using the mass equation % + h(U, +V,) =0, confirms that
D
—(PV)=0.
D (FV) =0

Appendix C. Parameterizing rotations using Euler angles

Euler angles are the most widely used parameterization of rotations, and can be found in almost every
textbook on analytical dynamics, ship dynamics and spacecraft dynamics. It is straightfoward to write
down an Euler angle representation. The key issue with Euler angles is getting the angular velocity right,
and making the correct distinction bewteen the body representation and the space representation. We have
found the treatment in O’Reilly (2008) the most complete, for the purposes of this paper. In this appendix
we record the representations of Q and the body representation of the angular velocity used in the paper.

Roll-pitch motion is the simplest non-commutative rotation that is of interest in ship dynamics. The
roll-pitch excitation has been used by a number of authors for forced sloshing (e.g. Pantazopoulos 1988,
1987; Faltinsen et al. 2006b; Huang & Hsiung 1996, 1997; Huang 1995).

First, the properties of the Euler angle representation of roll-pitch are recorded. The roll-pitch rotation
consists of a counterclockwise roll rotation about the x—axis with angle ¢, followed by a counterclockwise
pitch rotation about the current y—axis, as illustrated schematically in Figure 17. After converting both
rotations to the same basis the rotation matrix takes the form

cos 0 sin 6
Q= | singsinf@ cos¢ —singcosh| . (C-1)
—cos¢sinf sin¢g  cos¢cosf

From this expression the body representation of the angular velocity is easily deduced using QTQ =0
and so
(b cos
Q= 0 : (C-2)
Hsin
The spatial angular velocity is obtained by multiplication of € by Q. A derivation of the roll-pitch angular
velocity from first principles is given in Alemi Ardakani & Bridges (2009¢).
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O roll

X, x

FIGURE 17. Schematic of the roll-pitch motion in terms of Euler angles ¢ and 6.

If # and ¢ are considered as small, then the approximate body angular velocity is
O~ <¢7 9.’ 0) ) (0'3)

obtained by neglecting quadratic and higher-order terms in (C-2). This simplified version of the angular
velocity has been used by Pantazopoulos (1988, 1987), Falzarano et al. (2002) and Faltinsen et al. (2006b).
However, this simplification makes the body and spatial representations of the angular velocity equal and
so it destroys a key qualitative property of the rotation (cf. discussion in §9.1).

C.1. Yaw-pitch-roll rotation and 3-2-1 Euler angles
The yaw-pitch-roll rotation is one of the most widely used Euler angle sequences (see §6.8.1 of O'Reilly
(2008) where they are called the 3-2-1 Euler angle sequence). It was first used in the context of sloshing
by Huang (1995) and Huang & Hsiung (1996, 1997).
The 3-2-1 Euler angle sequence starts with a yaw rotation about the z—axis with angle 1, followed by
a pitch rotation about the new y—axis denoted by 6, followed by a roll rotation about the new xr—axis
denoted by ¢. The composite rotation is

cosfcosty singsinfcosy — cospsiny cos ¢ sin b cosy + sin ¢ sin
Q = |cosfsiny singsinfsiny + cos¢pcosy cospsinfsiny —sinpcos| . (C-4)
—sinf sin ¢ cos 6 cos ¢ cos 6

The body angular velocity is computed to be
é —1psind
= | Pcosfsing +6bcose | . (C-5)
1 cos 6 cos ¢ — Bsin ¢
Full details of the 3-2-1 Euler angles and the derivation of the angular velocity are given in Alemi Ardakani

& Bridges (20090).
In matrix form the angular velocity is related to the Euler angles by

Q=B"'0,
with
1 singtanf cos¢tan6 10)
B=|0 cos ¢ —sing and ©:= (4
0 singsec cos@psect P

This is the form of the angular velocity used in Huang (1995) and Huang & Hsiung (1997). The singularity
of this Euler angle representation arises due to the non-invertibility of B:

det(B) = secl,

and so to avoid the singularity the restriction *%7‘( <0< %7‘( is required. For some applications, e.g. sloshing
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in a moving ship, this restriction is not severe, but for others, e.g. space applications, it is a restriction.
If all three angles are small then B is approximately the identity and Q = (¢,6,v). The pitfalls of this
approximation are discussed in §9.1.

Appendix D. Details of the discretization

In this appendix a sketch of the numerical discretization is given. Complete details can be found in Alemi
Ardakani & Bridges (2009¢).

Rewrite the governing equations (4.3)-(4.7), with the assumptions (SWE-1) and (SWE-2) in a form
suitable for the first half-step of the scheme,

he + WUy +U*hy +hVy +Vh, = 0,

Ui + U U, + VU, + 20V h, + 292k,
+ [z, y,t) + 20V — (QF + Q3) h* ] hy = 203V — (QQ + 9193) h+ B(z,y,t), (D-1)

Vi + UV, + V'V, — 200U hy — 201 by
+[ola, y,t) — 200U — (2 + Q2 b by = —203U + (Ql - 9293) h+ B(z,y,t),

where «, 3 and B are the terms that are independent of h, U and V,

alw,y,t) = —(B2+92)ds+ (Ql n 9293) (y + da) + (9193 . Qz) (z +dy)
+Qes - q+gQes - e3,

Blayt) = —(Qa+ Q) ds+ (05— ) (y+da) + (OB + ) (v + ) D2)
—Qe;-q—gQe; - e3,

Bla,y,t) = (Ql - Q293) d3z — (Qg + Q192) (z+di)+ (0 +Q3) (y+da)

—Qez-q—gQe; -e3.

The terms with * superscript are nonlinear terms that are treated implicitly. In this first half step only
x—derivatives are implicit and y—derivatives are explicit. The nonlinearity is addressed using iteration.

The x—interval 0 < & < Ly is split into I1 — 1 intervals of length Ax = HL—il and so

xi=(—1DAx, i=1,...,II,

Lo

747 and so

and the y—interval 0 < y < Lo is split into JJ — 1 intervals of length Ay =

yi=0G-1DAy, j=1,...,JJ,
and

hi; = h(zi,y;,tn), Ul';=Ulzi,yj,tn) and V= V(xg,yj,tn),

where t,, = nAt with At the fixed time step. A schematic of the grid is in Figure 18.
The discretization of the mass equation is

n+3 n+% n+3 n+i n+i
hig =05 e Yinas —Vicay g Pivry = hiciy
%At J 2Ax ©J 2Ax (D-3)
B Vilien = Vil v hijen —hitj 0
g 2Ay Vi 2Ay -
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FIGURE 18. A schematic of the grid layout.

The discretizations of the equations for U,V are

n+l ntdl nt+dl
U, . 2_yr. U., ,2-U, 2 ur n+i —h"

N 1,7 * i+1,5 i—1,7 ‘777, i,j+17 1 _7 1 Q‘In z _]+1 i,j—1
1A + U] T ear T Vi 2Ay 260, 24y

ntd ntd

1 1 1\2 1\2 T2 2
" [a?jQ +207 vy - ((Q?*?) +(057%) ) h?,;} 7““’;;“”

n+i oon+i “n+1 n+s n+i\  nt+i n+1h —h
=203V ; 2_(92 B U 02 2)h * =20, TR J""ﬁ '

Wl

i
(D-4)
nt 3 n nt+d ntd ' nt ntl
Vi,j;m‘/l 5 4 UF, Vi“%A: L + v 7+;AVLJ‘—1 _ 2Q;L+%Ui*’j hi+12‘;’;i—12,.7
n+sg 29"'*‘2 Un Q""‘% 2 Q""‘% 2 hr hi i i—hi
o, — - 1 + 8 ii| ~ Ay
1 1 —h"
= 20 PRI 4 (07T - TRyt TR 20 7” +ATE
2
where
O‘Z'L,j = a(xiaijtn)7 ﬁ:f] ﬁ(xzvijt ) and ﬁ:f] = 5(%7%’%)
By setting
n.
0]
zi; = Uiyl
Vi
equations (D-3)-(D-4) can be written in block tridiagonal form
n4 1 n+ n+ n+ n+i n+i
Atz 12J+B”+2z A Tl = CytEl |+ D" Egy BJ (D-5)

n+ n4 =
-Gzl 8,7

The * left subscript is an indication that the matrix depends on A* and/or U*. Expressions for the matrices
are given in Alemi Ardakani & Bridges (2009¢). For fixed j = 2,...,JJ —1 the equations (D-5) are applied
for i =2,...,1T — 1. To complete the tridiagonal system equations are needed (for each fixed j) at i = 1
and ¢ = I1.

D.1. The equations ati =1 andi=1I forj=2,...,JJ —1
The purpose of this subsection is to show how the boundary conditions can be implemented exactly, even
at the half-step.
The equations at ¢ = 1 and ¢ = II are obtained from the boundary conditions at x = 0 and x = L;. The
only boundary condition at x = 0 is U(0,y,t) = 0. The discrete version of this is
Ug,; +U3;

U, =0 and J =0, foreachj, andforall n¢cN. (D-6)

»J 2



Shallow water sloshing in 3D 35
To obtain a boundary condition for &, use the mass equation at x = 0
hi + WUy +hV, +Vh, =0,
with discretization
n+ * n+g n n n n
W57+ sashiyUsg® = Wiy —daghty (Ve = Vi) — ang Wy (Mg —hiym) - (D7)

To obtain a boundary condition for V', use the y—momentum equation at x = 0
Vi+ V'V, = 20k + [a(e,y, 1) — (@ +Q3) A by = (2 = 00s) h+ Blr,y.1),
with discretization

Vn+2 N [29n+2 + 1At( n+2 7Q;+%Qg+%>:| thr% — Vl 4AyV1J (Vl b Vl,] 1)

1,5

A n+i -
_ﬁal,f ( Y41 — h?,j—l) (D-8)

1 =n
TR VNN VN
where

oy = apy— (@) + @) bl

.

Combining equations (D-6), (D-7) and (D-8) gives the equation for ¢ = 1

1 1 1
n-‘rl n+ _ n+s5 n n+i_n n+s n n+3 _
B *+ *Fluzza = Gy %z, T H 22 -Gy et + B0 (D-9)

Expressions for the matrices are given in Alemi Ardakani & Bridges (2009¢). A similar strategy is used to
construct the discrete equations at x = Ly.

D.2. Summary of the equations for j =2,...,JJ —1

This completes the construction of the block tridiagonal system at j—interior points. For each fixed j =
.,JJ —1, and fixed h*, U* and V*, we solve the following block tridiagonal system

:En+2 F +2 _ Gn+% n Hn-&-% n
iyt +, LiZ2y = Gzt 1
n+2 n+2
G Zl J+1 +1 /6 )
n+sg ”+2 n+i +2 nt+g nti _ n+sg n+ i
—Ay 7z +B"T 2z, ? Ay P2y 0 = Gy tzy ;o + DRz
nt+3 p n+3
—Cy ;25501 + 8257
ntg ”+2 nt3 ”+2 ntg ntgy ntg n n+i_n
By 2yt H BTz Ayt = Gyt DR (D-10)

”+2 P "+%
—C; ;%25 ;41 + 83,7,

n+3

—F 4zn+% N P Gn+%zn + H i
* L I1,5 11—1J 11,5 11,5 211,5—-1 11,5

n+3 n+3
-Gy 32 z7; g1 T fgn,f .
Special boundary systems are constructed for the lines j = 1 and j = JJ. These systems are exactly
constructed using boundary conditions and the details are given in Alemi Ardakani & Bridges (2009¢).

This completes the algorithm details for the first half step n — n + % For each fixed h* and U™, it
involves solving a sequence of linear block tridiagonal system for each j = 1,...,.JJ. Then the process is

1 1
repeated with updates of h* and U* till convergence h* — h""2 and U* — U™ " 2.

The second half step is constructed similarly with x—derivatives explicit and y—derivatives implicit, and
the integration is along vertical grid lines. The details are given in the report of Alemi Ardakani & Bridges
(2009¢).
_____________________________________________________________________________________________________________________________|
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Electronic versions of the technical reports, preprints and videos listed can be found at

http://personal.maths.surrey.ac.uk/st/T.Bridges/SLOSH/
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