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1 Introduction

Two derivations of the shallow water equations (SWEs) for fluid in a vessel that is
undergoing a general rigid-body motion in three dimensions first appeared in the
literature at about the same time, given independently by Pantazopoulos [8, 9, 10]
and Dillingham & Falzarano [3]. Both derivations follow the same strategy.
Their respective derivations are an extension of the formulation for two-dimensional
shallow water flow in a rotating frame in [2]. Their idea is to start with the classical
SWEs

ut + uux + vuy + ghx = 0

vt + uvx + vvy + ghy = 0

ht + (hu)x + (hv)y = 0 ,

(1.1)

where h(x, y, t) is the free surface elevation, u, v are representative horizontal ve-
locities and g > 0 is the gravitational constant. They then deduce the acceleration

a(x) := (a(x), a(y), a(z)) ,

of the body frame relative to an inertial frame. Then g is replaced by an average of
a(z) and approximations for a(x) and a(y) are substituted into the right-hand side
of the horizontal momentum equations. The resulting SWEs will be called the DFP
SWEs. These equations were also later used in [4] to study the dynamical behaviour
of an offshore supply vessel with water on deck.

The purpose of this report is to determine the precise approximations used in
the derivation in order to compare with the new shallow-water equations found in
[1].
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2 Summary of DFP SWEs

Pantazopoulos [8, 9, 10] and Dillingham & Falzarano [3] propose the fol-
lowing form for the 3D rotating shallow-water equations

ut + uux + vuy + a(z)hx = f1

vt + uvx + vvy + a(z)hy = f2

ht + (hu)x + (hv)y = 0 ,

(2.2)

where f1 and f2 are representations of the horizontal accelerations due to the vessel
motion. In the sequel we will use [10] as a guide to the derivation as it gives the
most detail. The final equations in all the sources are the same modulo typographical
errors. The expression given for f1 is

f1 = −n̈1 cos θ − n̈2 sin φ sin θ + n̈3 sin θ cos φ − 2ω1ω2x sin φ sin θ cos θ

−ω1ω2y cos φ cos θ − ω1ω2zd sin φ(sin2 θ − cos2 θ) + ω2
1x sin2 θ

−ω2
1zd sin θ cos θ + ω2

2x(1 − sin2 θ sin2 φ) − ω2
2y sin φ sin θ cos φ

+ω2
2zd sin θ sin2 φ cos θ + 2ω1v sin θ − 2ω2v sin φ cos θ +ω̇1y sin θ

−ω̇2y sin φ cos θ − ω̇2zd cos φ + g sin θ cos φ ,

(2.3)

after correcting typos and adding in a missing term (boxed in the above equation).
This missing term also appears to be a typo since the boxed term is included in a(x)

in [10] and f1 = −a(x) + u̇ . The expression for f2 in [10] is

f2 = −n̈2 cos φ − n̈3 sin φ + ω2
1y − ω2

2x sin φ sin θ cos φ + ω2
2y sin2 φ

+ω2
2zd sin φ cos φ cos θ − ω1ω2x cos φ cos θ − ω1ω2zd sin θ cos φ

−2ω1u sin θ + 2ω2u sin φ cos θ − ω̇1x sin θ + ω̇1zd cos θ

+ω̇2x sin φ cos θ + ω̇2zd sin θ sin φ − g sin φ ,

(2.4)

after correction of two typos. The vertical acceleration term is

a(z) = n̈1 sin θ − n̈2 sin φ cos θ + n̈3 cos φ cos θ + ω1ω2x sin φ(sin2 θ − cos2 θ)

+ω1ω2y sin θ cos φ − 2ω1ω2zd sin φ sin θ cos θ

+ω2
1x sin θ cos θ − ω2

1zd cos2 θ − ω2
2x sin θ sin2 φ cos θ

−ω2
2y sin φ cos φ cos θ − ω2

2 zd (1 − sin2 φ cos2 θ) + 2ω1v cos θ

+2ω2v sin φ sin θ − 2ω2u cos φ + ω̇1y cos θ − ω̇2x cos φ

+ω̇2y sin φ sin θ + g cos φ cos θ .

(2.5)
In the term ω2

2 zd (1 − sin2 φ cos2 θ) in [8, 10], the boxed part, zd , is missing and
it has been reinstated here. The same equations are used in [3, 4, 9]. We have not
seen reference [3] but [4] imply that the equations are the same as above.
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3 Major assumption on the angular velocity

In these equations ω = (ω1, ω2, ω3) is the spatial angular velocity and the reader
will note that ω3 does not appear anywhere in the above expressions. This missing
term is because of the following assumption

ω3 = 0 . (DFP-1)

This assumption is surprising. It is both inconsistent and unnecessary. It is incon-
sistent because the third component of the body angular velocity is not set to zero
as well (see below). It is unnecessary because the authors develop these equations
for numerical simulation and so inclusion of ω3 is straightforward.

The use of spatial angular velocity – rather than body angular velocity – is also
what causes the expressions for f1, f2 and the vertical acceleration to be excessively
complicated.

4 Moving frame of reference

Let X = (X, Y, Z) be coordinates for a fixed spatial frame and let x = (x, y, z) be
coordinates for the body frame. Then DFP use the following relationship between
the fixed frame and the moving frame

X = Q(x + d) + n ,

with n = (n1, n2, n3) the spatial translation of the moving frame. The following
assumptions are imposed on x and d

x =




x

y

0


 , (DFP-2)

and

d =




0
0
zd


 . (DFP-3)

The rotation matrix is restricted to

Q =




cos θ 0 sin θ

sin φ sin θ cos φ − sin φ cos θ

− cos φ sin θ sin φ cos φ cos θ


 . (DFP-4)

This matrix is given explicitly in equation (6) on page 29 of [10]. The angles φ

and θ are Euler angles associated with roll and pitch respectively. A derivation of
(DFP-4) using rotation tensors is given in the next section.
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Figure 1: Schematic of the roll-pitch motion in terms of Euler angles φ and θ .

5 Prescribed roll-pitch motion of the vessel

A derivation of the rotation matrix (DFP-4) is given in terms of rotation tensors.
Let {E1,E2,E3} be a basis for the spatial frame X .

Using a coordinate-free rotation tensor formulation [7], the roll motion is

R := L(φ,E1) = cos φ (I− E1 ⊗E1) + sin φ Ê1 + E1 ⊗ E1 , (5.1)

where
(a⊗ b) c := (b · c) a , a,b, c ∈ R

3 ,

and

â :=




0 −a3 a2

a3 0 −a1

−a2 a1 0


 . (5.2)

The hat-matrix has the property that

â b = a× b , a,b ∈ R
3 .

The rotation (5.1) is a counterclockwise rotation about the X−axis as shown
schematically in Figure 1.

The matrix representation of the rotation (5.1) is

R =




1 0 0
0 cos φ − sin φ

0 sin φ cos φ


 .
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However it is not a good idea to use a matrix representation until the full rotation
matrix is constructed since the basis for the rotation is changing. The pitch rotation
is a counterclockwise rotation about the y−axis. The axis of rotation is

a2 := RE2 = cos φE2 + sin φE3 .

The pitch rotation is therefore

P := L(θ, a2) = cos θ (I − a2 ⊗ a2) + sin θ â2 + a2 ⊗ a2 .

The roll-pitch rotation is then
Q = PR .

In order to construct a matrix representation of this composite rotation, use the
property of rotation tensors

L(θ,Rb) = RL(θ,b)RT .

when R is any proper rotation (see [5, 6] for a proof of this identity). Applying this
property to Q gives

Q = PR

= L(θ,RE2)L(φ,E1)

= RL(θ,E2)R
TR

= L(φ,E1)L(θ,E2) .

Since both matrices are now relative to the standard basis, a matrix representation
can be constructed,

Q =




1 0 0
0 cos φ − sin φ

0 sin φ cos φ







cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ


 ,

which when multiplied out gives (DFP-4).
The angular velocities are now easily computed. Considering φ and θ as func-

tions of time

Q̇QT =




0 −Ωs
3 Ωs

2

Ωs
3 0 −Ωs

1

−Ωs
2 Ωs

1 0


 = Ω̂s ,

where Ωs = (Ωs
1, Ω

s
2, Ω

s
3) is the spatial angular velocity vector. Now

d

dt
L(γ,Ej)L(γ,Ej)

T = γ̇Êj ,

and

Q̇ = L̇(φ,E1)L(θ,E2) + L(φ,E1)L̇(θ,E2) = φ̇Ê1Q + θ̇L(φ,E1)Ê2L(θ,E2)
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and so
Ω̂s = Q̇QT = φ̇Ê1 + θ̇L(φ,E1)Ê2L(φ,E1)

T .

Now use the identity

Q̂v = Qv̂QT , for any v ∈ R
3 , and any Q ∈ SO(3) ,

to arrive at
Ωs = φ̇E1 + θ̇L(φ,E1)E2

= φ̇E1 + θ̇a2

= φ̇E1 + θ̇(cos φE2 + sin φE3) ,

or in components

Ωs =




φ̇

θ̇ cos φ

θ̇ sin φ


 .

The body angular velocity and spatial angular velocity are related by

Ωb = QT Ωs =




φ̇ cos θ

θ̇

φ̇ sin θ


 .

If we assume that θ is small then

Ωs ≈




φ̇

θ̇

φθ̇


 ,

and

Ωb ≈




φ̇

θ̇

θφ̇


 .

If we further neglect the quadratic terms φθ̇ and θφ̇ then the angular velocities
reduce to

Ωs = Ωb =




φ̇

θ̇

0


 .

This is the approximation used explicitly by [4] and appears to be implicitly used
in [8, 10]. Formalizing this assumption

φ ≈ 0 and θ ≈ 0 . (DFP-5)

The assumption φθ̇ ≈ 0 implies assumption (DFP-1). However there is an incon-
sistency in this assumption in that φ̇θ is not assumed to be small! Hence Ωs

3 is
assumed to be small but Ωb

3 is not assumed to be small.
On the other hand since the aim is to numerically simulate, neither assumption

(DFP-1) or assumption (DFP-5) is necessary.
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6 Simplifying f1 and f2

The authors [4, 8, 9, 10] all use the spatial angular velocity in their derivation. But
the equations are relative to the body frame. It is certainly correct, but it leads to
cumbersome equations. In this section it is shown that the terms f1 and f2 simplify
considerably when the body angular velocity is used. To simplify notation use

ω = (ω1, ω2, ω3) ,

for the spatial angular velocity as in [8, 10] and use

Ω = (Ω1, Ω2, Ω3) ,

for the body angular velocity as in [1].
With the assumption (DFP-1), the body angular velocity can be expressed in

terms of the spatial angular velocity using ω = QΩ ,

Ω1 = ω1 cos θ + ω2 sin φ sin θ

Ω2 = ω2 cos φ

Ω3 = ω1 sin θ − ω2 sin φ cos θ .

(6.3)

The translation and gravity terms can be expressed using Q ,

n̈ · Qe1 = n̈1 cos θ + n̈2 sin φ sin θ − n̈3 cos φ sin θ ,

and
ge3 · Qe1 = −g cos φ sin θ .

Using these two expressions, (6.3), and the formulae in Appendix A, f1 simplifies
to

f1 = −n̈ · Qe1 + (Ω2
2 + Ω2

3)x − Ω1Ω2y − Ω1Ω3zd

+2Ω3v − Ω̇2zd + Ω̇3y − ge3 · Qe1 .
(6.4)

A similar construction shows that

f2 = −n̈ · Qe2 + (Ω2
1 + Ω2

3)y − Ω1Ω2x − Ω2Ω3zd

−2Ω3u + Ω̇1zd − Ω̇3x − ge3 · Qe2 .
(6.5)

The simplification in the expressions (6.4) and (6.5) over the original expressions
(2.3) and (2.4) is remarkable. The simplification is due first to the use of the body
angular velocity and secondly to the explicit use of the rotation operator.

To see that these are equivalent to (2.3) and (2.4) substitute (6.3) into (6.4) to
recover (2.3) and substitute (6.3) into (6.5) to recover (2.4).

The vertical acceleration term can also be simplified to

a(z) = n̈ · Qe3 − (Ω2
1 + Ω2

2)zd + Ω1Ω3x + Ω2Ω3y

+2Ω1v − 2Ω2u + Ω̇1y − Ω̇2x + ge3 · Qe3 .
(6.6)

That this expression is equivalent to (2.5) is verified by substitution of (6.3) into
(6.6).
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7 Comparison of the surface equations [1] with

the DFP SWEs

With the coefficients now expressed in terms of the body angular velocity we can
compare the DFP SWEs with the new surface equations derived in [1]. The surface
momentum equations derived in [1], neglecting surface tension are

Ut + UUx + V Uy + a11 hx + a12 hy = b1 ,

Vt + UVx + V Vy + a21 hx + a22 hy = b2 ,
(7.1)

with
a11 = 2Ω1V + Qe3 · q̈ + gQe3 · e3 − (Ω2

1 + Ω2
2)(h + d3)

−(Ω̇2 − Ω1Ω3)(x + d1) + (Ω̇1 + Ω3Ω2)(y + d2)

a22 = −2Ω2U − (Ω2
1 + Ω2

2)(h + d3) + Qe3 · q̈ + gQe3 · e3

+(Ω̇1 + Ω2Ω3)(y + d2) − (Ω̇2 − Ω1Ω3)(x + d1) .

(7.2)

and
a12 = 2Ω2V ,

a21 = −2Ω1U
(7.3)

and

b1 = −2Ω2ht + 2Ω3V − Qe1 · q̈ − gQe1 · e3 + (Ω2
2 + Ω2

3)(x + d1)

+(Ω̇3 − Ω1Ω2)(y + d2) − (Ω̇2 + Ω1Ω3)(h + d3) ,

b2 = 2Ω1ht − 2Ω3U − Qe2 · q̈ − gQe2 · e3 + (Ω2
1 + Ω2

3)(y + d2)

−(Ω̇3 + Ω1Ω2)(x + d1) + (Ω̇1 − Ω2Ω3)(h + d3) .

(7.4)

The advantage of these equations is that the vessel motion is exact with the only
assumption being neglect of the vertical acceleration at the free surface [1].

The velocity field (U, V ) is not the same as the velocity field in the DFP SWEs.
Assume for purposes of comparison that (U, V ) ≈ (u, v) , and the the coefficients in
the two systems can be compared.

First note that q = n , ω3 = 0 in the DFP equations and d3 = zd . Comparing,

a11 = a(z) + 2Ω2U − (Ω2
1 + Ω2

2)h − (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2

a12 = aDFP
12 + 2Ω2V

a21 = aDFP
21 − 2Ω1U

a22 = a(z) − 2Ω1V − (Ω2
1 + Ω2

2)h − (Ω̇2 − Ω1Ω3)d1 + (Ω̇1 + Ω2Ω3)d2 .

In the DFP formulation, the coefficients a12 and a21 are identically zero. The
right-hand side coefficient comparison is

b1 = f1 − 2Ω2ht + (Ω2
2 + Ω2

3)d1 + (Ω̇3 − Ω1Ω2)d2 − (Ω̇2 + Ω1Ω3)h

b2 = f2 + 2Ω1ht + (Ω2
1 + Ω2

3)d2 − (Ω̇3 + Ω1Ω2)d1 + (Ω̇1 − Ω2Ω3)h
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If we invoke the assumption (DFP-3) then these relations simplify to

a11 = a(z) + 2Ω2U − (Ω2
1 + Ω2

2)h

a12 = aDFP
12 + 2Ω2V

a21 = aDFP
21 − 2Ω1U

a22 = a(z) − 2Ω1V − (Ω2
1 + Ω2

2)h

b1 = f1 − 2Ω2ht − (Ω̇2 + Ω1Ω3)h

b2 = f2 + 2Ω1ht + (Ω̇1 − Ω2Ω3)h .

Therefore in order to reduce the surface equations to the DFP equations we need
the further assumptions

|2Ω2U − (Ω2
1 + Ω2

2)h| ≈ 0

|2Ω1V + (Ω2
1 + Ω2

2)h| ≈ 0

|2Ω2ht + (Ω̇2 + Ω1Ω3)h| ≈ 0

|2Ω1ht + (Ω̇1 − Ω2Ω3)h| ≈ 0

|Ω2V hy| ≈ 0

|Ω1Uhx| ≈ 0 .

(DFP-6)

With these additional assumptions, and equivalence of the velocity fields, the equa-
tions reduce to the same form. These assumptions are however quite severe and are
not justified in general.

— Appendix —

A Vector identities used in transforming spatial

coordinates to body coordinates

Using the transformation (6.3)

2Ω × u =




−2Ω3v

2Ω3u

2Ω1v − 2Ω2u


 =




−2ω1v sin θ + 2ω2v sin φ cos θ

2ω1u sin θ − 2ω2u sin φ cos θ

2ω1v cos θ + 2ω2v sin φ sin θ − 2ω2u cosφ


 .
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Now let x = (x, y, zd) where zd is the constant vertical distance from the centre of
gravity to the deck. Then

Ω̇ × x =




Ω̇2zd − Ω̇3y

−Ω̇1zd + Ω̇3x

Ω̇1y − Ω̇2x




=




ω̇2zd cos φ − y(ω̇1 sin θ − ω̇2 sin φ cos θ)
−zd(ω̇1 cos θ + ω̇2 sin φ sin θ) + x(ω̇1 sin θ − ω̇2 sin φ cos θ)

y(ω̇1 cos θ + ω̇2 sin φ sin θ) − ω̇2x cos φ


 .

Similarly

Ω × (Ω × x) =



−(Ω2

2 + Ω2
3)x + Ω1Ω2y + Ω1Ω3zd

Ω1Ω2x − (Ω2
1 + Ω2

3)y + Ω2Ω3zd

Ω1Ω3x + Ω2Ω3y − (Ω2
1 + Ω2

2)zd


 .

Translating into spatial angular velocities

Ω × (Ω × x)1 = −xω2
1 sin2 θ − xω2

2(1 − sin2 φ sin2 θ) + 2xω1ω2 sin φ sin θ cos θ

+yω1ω2 cos φ cos θ + yω2
2 sin φ cos φ sin θ + zdω

2
1 sin θ cos θ

+zdω1ω2 sin φ(sin2 θ − cos2 θ) − zdω
2
2 sin2 φ sin θ cos θ ,

Ω × (Ω × x)2 = xω1ω2 cos θ cos φ + xω2
2 sin φ cosφ sin θ − yω2

1

−yω2
2 sin2 φ + ω1ω2zd cos φ sin θ − ω2

2zd sin φ cos φ cos θ ,

Ω × (Ω × x)3 = xω2
1 sin θ cos θ − xω1ω2 sin φ(cos2 θ − sin2 θ) − xω2

2 sin2 φ sin θ cos θ

+yω1ω2 cos φ sin θ − yω2
2 sin φ cos φ cos θ − 2zdω1ω2 sin φ sin θ cos θ

−zdω
2
1 cos2 θ − zdω

2
2 sin2 φ sin2 θ − zdω

2
2 cos2 φ ,

B Sketch of the derivation of Pantazopoulos [10]

In his thesis, Pantazopoulos gives a derivation of the acceleration terms relative
to the moving frame. Here a sketch of that derivation is given which shows how the
use of the spatial angular velocity complicates the equations. The general relation
between X and x is

X = Q(x + d) + n , (B-1)

where Q is a rotation matrix, d is the distance to the centre of rotation and n
is the displacement of the body frame. In [10] it is assumed that x = (x, y, 0),
d = (0, 0, zd) and Q is restricted to the form (DFP-4). To simplify notation let

x = (x, y, zd) , (B-2)
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Hence (B-1) simplifies to
X = Qx + n , (B-3)

With derivative
Ẋ = Q̇x + Qẋ + ṅ . (B-4)

Use the spatial angular velocity ω defined by

Q̇QT = ω̂ ,

where the hat-map is defined in (5.2). Hence (B-4) has the equivalent representation

Ẋ = ω × (X− n) + Qẋ + ṅ . (B-5)

Note also that
Ẋ− ṅ = ω × (Qx) + Qẋ . (B-6)

Differentiate (B-5) again to obtain the absolute acceleration

Ẍ = ω̇ × (X − n) + ω × (Ẋ− ṅ) + Q̇ẋ + Qẍ + n̈ , (B-7)

or after substitution,

Ẍ = n̈ + Qẍ + ω × (ω × (Qx)) + 2ω × (Qẋ) + ω̇ × (Qx) . (B-8)

This latter equation is in fact equation (5) in [10] with the identifications

r̈ = n̈

ρ̈ = Qẍ

ρ = Qx

ρ̇ = Qẋ .

[10] makes the assumption ω = (ω1, ω2, 0) as noted in (DFP-1). A problem is that
the right-hand side of (B-8) has a mixture of spatial vectors and body vectors: x is
the position in the body coordinates, but ω is the spatial angular velocity.

[10] proceeds to derive the acceleration relative to the body. Let

As := Ẍ ,

be the acceleration relative to the fixed frame and let

Ab = QTAs , (B-9)

be the acceleration viewed from the body frame. In [10] this latter vector is denoted
by

Ab :=




a(x)

a(y)

a(z)


 .
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[10] proceeds to derive explicit expressions for the components of Ab (in equation
(10a) (10b) and (10c) on page 33 of [10]). However a general expression can be found
which highlights why the formulae in [10] are so complicated. Combining (B-8) with
(B-9) gives

Ab = QT As = QT (n̈ + Qẍ + ω × (ω × (Qx)) + 2ω × (Qẋ) + ω̇ × (Qx)) .

Before analyzing this expression, note that ẋ is the Lagrangian velocity and ẍ the
Lagrangian acceleration of a fluid particle. Replacing these terms gives

Ab = QTAs = QT

(
n̈ + Q

Du

Dt
+ ω × (ω × (Qx)) + 2ω × (Qu) + ω̇ × (Qx)

)
.

(B-10)
To simplify further use the following fundamental identity [7]: for any vectors a,b ∈
R

3 and any invertible 3 × 3 matrix M,

Ma ×Mb = det(M)
(
M−1

)T
a× b .

If M=Q and Q is a proper rotation (det(Q) = 1 and Q−1 = QT ) then this formula
simplifes to

Qa × Qb = Q(a × b) .

Apply this formula to (B-10)

Ab = QT n̈ +
Du

Dt
+ QT

ω × (QT
ω × x) + 2QT

ω × u + QT
ω̇ × x . (B-11)

Hence it is clear that if we insist on using the spatial angular velocity then the
equation will be very complicated. [10] treats gravity as an acceleration (it is in fact
a body force) and so Ab becomes

Ab = QT n̈ +
Du

Dt
+ QT

ω × (QT
ω × x) + 2QT

ω × u + QT
ω̇ × x + gQTe3 , (B-12)

where g > 0 is the gravitational constant. It is precisely the components of Ab in
(B-12) which appear in equation (10) on page 33 of [10].

If instead we replace the spatial angular velocity with the body angular velocity

Ω := QT
ω ,

then the equation simplifies dramatically

Ab = QT n̈ +
Du

Dt
+ Ω × (Ω × x) + 2Ω × u + Ω̇ × x + gQTe3 . (B-13)

In general, one can use either (B-12) or (B-13) to write out the components of
Ab , but the latter expression is less complicated.
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